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Abstract. The mate selection plays a key role in natural evolution process.
Although a variety of mating strategies have been proposed in the commu-

nity of evolutionary computation, the importance of mate selection has been

ignored. In this paper, we propose a clustering based mate selection (CMS)
strategy for evolutionary algorithms (EAs). In CMS, the population is par-

titioned into clusters and only the solutions in the same cluster are chosen
for offspring reproduction. Instead of doing a whole new clustering process

in each EA generation, the clustering iteration process is combined with the

evolution iteration process. The combination of clustering and evolving pro-
cesses benefits EAs by saving the cost to discover the population structure.

To demonstrate this idea, a CMS utilizing the k-means clustering method is

proposed and applied to a state-of-the-art EA. The experimental results show
that the CMS strategy is promising to improve the performance of the EA.

1. Introduction. In this paper, we consider the following continuous global opti-
mization problem.

minf(x) s.t x ∈ [ai, bi]
n (1)

where x = (x1, x2, · · · , xn) ∈ Rn is a decision variable vector; [ai, bi]
n defines the

feasible range of the decision space and ai ≤ xi ≤ bi for i = 1, 2, · · · , n; and
f : Rn → R is the objective function.

The evolutionary algorithm (EA) is a type of heuristic optimization method,
which is inspired by the natural evolution process [1]. It has become a major method
to tackle (1). The major components in a general EA include a reproduction op-
erator, and a selection operator. There is a key operation in natural evolution,
named as mate selection, which chooses mating pairs or groups for breeding and
plays a key role in sexual propagation. In EAs, a proper mate selection can also
control the population convergence and diversity efficiently [6, 12, 13]. In the last
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decades some mating strategies have been proposed [16], including random mat-
ing, roulette wheel selection, truncate selection, tournament selection, gender based
selection [7, 15, 19], niche based selection [2], dissociative selection [3, 4], and some
other methods [5, 14, 18]. Although these mating strategies have been proposed,
it has not attracted much attention in the community of evolutionary computa-
tion [16]. The major reasons might be that (a) most of existing mating strategies
need some problem specific control parameters or are computationally expensive,
and (b) some widely used EAs work well by randomly choosing mating pairs. In this
paper, we shall demonstrate that existing EAs can be improved by using properly
designed mating strategies.

Statistical and machine learning (SML) techniques aim to extract information
from data sets and transform it into an understandable pattern or structure for
further use [8]. It is arguable that in EAs, an individual can be regarded as a training
example, and its corresponding fitness value be a label. From the viewpoint of SML,
the population of an EA forms a training data set. Therefore, SML techniques
can be naturally applied to EAs to extract population information and guide the
search. Some algorithms, such as estimation of distribution algorithms [10], and
surrogate assisted evolutionary algorithms [9], are along this direction. Basically
SML techniques are computationally expensive comparing to general EAs, which
limits their usages. How to use SML techniques in EAs more efficiently is still an
open question.

In this paper, we present a new way to combine SML methods with EAs. The
basic idea is to iteratively call SML training step and EA evolving step. In the
SML step, the obtained population is utilized to train a model that captures the
population structure, and then in the EA step, the population structure information
extracted in the SML step is used to guide the search. The combination of the SML
iteration process and the EA iteration process can find and refine the population
structure information and thus save the SML cost. In multi-objective evolutionary
optimization, there are some works with similar idea [20]. However for scalar-
objective optimization, this strategy is still new. Based on this idea, this paper
proposes a clustering based mate selection (CMS) operator for EAs. In CMS, the
population is partitioned into classes in each generation, and only the solutions
in the same class are allowed to mate with each other. A CMS utilizing the k-
means [11] clustering method is proposed and applied to a state-of-the-art EA to
show its advantages.

The rest of the paper is organized as follows. Section 2 presents the proposed
CMS strategy. An EA integrated CMS is introduced in detail as well. Section 3
compares the proposed CMS strategy with some other mating strategies, and studies
the influence of the control parameters. Finally, the paper is concluded in Section 4.

2. Clustering based mate selection. A major challenge by applying SML tech-
niques in EAs is on the high computational cost. This section introduces a clustering
based mate selection (CMS) to address the challenge. The basic idea is to combine
an EA with an iterative clustering method together. Take the k-means method as
an example. In each generation (iteration) of the combined process, the clustering
process uses the EA population to assign points and update cluster centers; and
then based on the population partition, an EA chooses the parents in the same clus-
ter to generate new trails solutions. It should be noted that the CMS assisted EA
does not implement a clustering method in each generation. Instead it combines the
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clustering iteration with the EA iteration, and only one clustering iteration is im-
plemented in each generation. Actually, the clustering process is only implemented
several times sequentially along with the EA process. By this way, the computa-
tional cost is saved up. The major components of an iterative clustering method
and an EA are combined in the CMS assisted EA (CMS-EA for short). A restart
checking component is added to reinitialize the clustering. A major reason is to
avoid getting into local optima in clustering.

In this paper, we use the CMS strategy to improve the performance of the com-
posite differential evolution (CoDE) algorithm [21]. In CoDE, each solution pro-
duces three candidate offspring solutions by using three reproduction operators with
randomly selected three control parameters, and chooses the best candidate as the
offspring solution for updating. More details of CoDE can be found in [21]. The
k-means clustering method is used to partition the population. In the following, we
give the framework of the proposed approach, named as CMS-CoDE.

1 Randomly initialize a population P = (x1, x2, · · · , xN ), and set generation
count g = 0.

2 If mod(g,G) = 0, initialize the cluster centers m1,m2, · · · ,mK , and set K
empty clusters C1, C2, · · · , CK .

3 For each solution xi, (i = 1, 2, · · · , N), assign it to the k-th cluster Ck which
satisfies

k = arg min
j=1,2,··· ,K

dis(xi,mj),

where dis(a, b) is the Euclidean distance between a and b.
4 For each cluster Ck, (k = 1, 2, · · · ,K), update its center as

mk =
1

|Ck|
∑
x∈Ck

x.

5 For each solution x ∈ Ck (k = 1, 2, · · · ,K),
5.1 Generate trial solution u1, u2, and u3 by using the parents from Ck.
5.2 Set y = arg min

u∈{u1,u2,u3}
f(u).

5.3 Replace x by y if f(y) < f(x).
6 If the stop condition is not satisfied, set g = g + 1 go to Step 2; otherwise,

terminate and rerun the best solution found so far.

We would make the following comments to the above algorithm.

• In Step 2, the clustering process is re-initialized every G generations. The
purpose is to prevent the clustering process tracking in local optima.

• In Step 5.1, CoDE generates three candidate solutions for each solution x by

u1,j =

{
xr1,j + F · (xr2,j − xr3,j) if rand < Cr or j = jrnd
xj otherwise

u2,j =

{
xr1,j + F · (xr2,j − xr3,j) + F · (xr4,j − xr5,j) if rand < Cr or j = jrnd
xj otherwise

u3,j = xj + rand · (xr1,j − xj) + F · (xr2,j − xr3,j)

where j = 1, 2, · · · , n, jrnd is a random index between 1 and n, rand returns
a random number in [0.0, 1.0], xr1 − xr5 are randomly selected parents from
the same cluster as x, and F and Cr are two control parameters which are
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randomly selected from [F = 1.0, Cr = 0.1], [F = 1.0, Cr = 0.9], and [F =
0.8, Cr = 0.2].

• In Step 6, CoDE terminates when the function evaluation exceeds a given
threshold.

• It is required that the minimum number of solutions in each cluster is 5 in
the reproduction. If the number of solutions of a cluster is less than 5, the
parents are selected from the whole population.

3. Comparison with other mating strategies. In this section, we compare the
proposed CMS strategy with the following related strategies. Random mating
strategy (RND): In this strategy, the parent solutions are randomly chosen from
the whole population. The original CoDE algorithm actually utilizes this strategy.
Nearest neighbor strategy (NNS): For a solution x, this strategy selects the
closest bNK c solutions to form a mating pool for x, and the parents are randomly
choose from the mating pool, where N is the number of population size and K
is the number of niche the population can be divided. Batch clustering based
strategy (BCS): As the CMS strategy, this strategy also uses the k-means method
to partition the population. The difference is that the whole clustering process is
implemented in the beginning of each iteration. All the strategies are incorporated
into CoDE algorithm as CMS-CoDE does.

To access the performance of the compared strategies, the first 20 instances from
the CEC 2005 test suite [17] are used for the comparison study. The parameters in
the experiments are as follows: the dimension of the instances is n = 30 for all the
20 problems, all the algorithms stop after 30 independent runs with a maximum
of 300, 000 function evaluations (FES), the population size is N = 100 for all algo-
rithms, the number of clusters is K = 3 in the k-means clustering, and the k-means
restarts every G = 10 generations. To have a fair comparison, the Wilcoxon’s rank
sum test at a 0.05 significance level is conducted, and −, +, and ≈ in the tables
indicate that the performance of the corresponding method is better than, worse
than, and similar to that of CMS, respectively. All the algorithms are executed in
the workstation.

3.1. Experimental results. The experimental results are given in Table 1, and
the population partitions of a typical run for BCS and CMS strategies with CoDE
are plotted in Fig. 1 on two instances.

RND vs. CMS: From Table 1, we can see that CMS-CoDE performs better than
RND-CoDE on 15 test instances and worse than RND-CoDE on 3 test instances.
This suggests that, since CMS restricts the mating parents to be selected from the
similar individuals, the mating strategy can improve the algorithm performance
significantly.

NNS vs. CMS: It is clear from Table 1 that, CMS-CoDE outperforms NNS-
CoDE on 7 instances and is outperformed by NNS-CoDE on 10 instances. In NNS,
the parents are the closest ones with similar characteristics around the solution.
Thus it may help to converge to optima quickly especially when there is no variable
dependency in the problems. In CMS, the parents are likely to be the closest ones
but there is still some probability that the parents are far away from each. This
may help to keep population diversity in a sense. And this might be the reason
to explain the different performances between NNS and CMS. Although the results
are comparable, we can see from the next section that CMS-CoDE has a lower
theoretical computational complexity than NNS-CoDE.
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Table 1. The mean results of the compared methods over 30 in-
dependent runs on 20 test instances of 30 variables with 3000,000
FES.

RND NNS BCS CMS
F1 3.21e-08+ 0.00e+00≈ 0.00e+00≈ 0.00e+00
F2 3.14e-01+ 8.17e-04+ 2.71e-05− 5.66e-05
F3 1.21e+05− 2.13e+05− 2.22e+05≈ 2.64e+05
F4 1.08e+01+ 3.74e+00+ 1.87e-01− 2.72e-01
F5 3.90e+02− 1.00e+03≈ 6.85e+02− 8.69e+02
F6 2.65e+01+ 7.19e+01+ 4.55e+01≈ 3.80e+01
F7 4.70e+03+ 4.70e+03+ 4.70e+03≈ 4.70e+03
F8 2.09e+01+ 2.08e+01+ 2.02e+01− 2.03e+01
F9 1.67e+01+ 5.15e-06− 4.65e+00− 7.31e+00
F10 1.63e+02+ 3.52e+01− 4.64e+01+ 4.11e+01
F11 3.37e+01+ 9.85e+00− 1.33e+01≈ 1.35e+01
F12 1.88e+05+ 1.54e+05+ 7.16e+04≈ 7.90e+04
F13 8.18e+00+ 2.65e+00− 2.58e+00− 2.91e+00
F14 1.33e+01+ 1.21e+01− 1.24e+01≈ 1.23e+01
F15 6.40e+02+ 5.14e+02+ 4.71e+02≈ 4.78e+02
F16 4.25e+02+ 3.00e+02− 3.10e+02≈ 3.15e+02
F17 4.66e+02+ 3.03e+02− 3.16e+02≈ 3.19e+02
F18 9.26e+02− 9.26e+02≈ 9.24e+02≈ 9.24e+02
F19 9.26e+02≈ 9.26e+02− 9.25e+02≈ 9.26e+02
F20 9.26e+02≈ 9.24e+02− 9.25e+02≈ 9.25e+02
+ 15 7 1
− 3 10 6
≈ 2 3 13

BCS vs. CMS: It is surprising that BCS-CoDE performs slightly better than
CMS-CoDE. Table 1 shows that there is not much difference between the results
obtained by the two algorithms on 13 out of 20 test instances. The reason might be
that the clustering results of k-means highly depend on the initial cluster centers
and k-means is very likely to converge to local optima. Therefore, the mis-clustering
in k-means leads some randomness to the population and prevent the premature of
the population. Although BCS-CoDE is slightly superior to CMS-CoDE, it has a
higher computational complexity according to the analysis in the next section.

With respect to the population partitions for BCS and CMS strategies with
CoDE on F2 and F3, it is easy to find from Fig. 1 that, for CMS-CoDE, during the
continuous 9 generations, the population partitions change a little; but for BCS-
CoDE, it presents quite different partition models at each generation. The reason
might be that the clustering operation of CMS-CoDE only iterates one time but
that of BCS-CoDE iterate for many times. Actually, the stable population should
be more helpful to generate the solutions with high quality.

3.2. Time complexity. The additional time complexity brought by the mating
strategies is a major concern. The time complexity for the four strategies are as
follows. RND: O(N). NNS: For all solutions, the time complexity to calculate the
distance between each pair is O(N2 · n). For each solution, it choose the closes
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Figure 1. Population partition of a typical run for BCS and CMS
strategies with CoDE on (a) F2 and (b) F3.

bNK c solutions, and the time complexity is O(N · N · NK = 1
KN3). Therefore, the

total time complexity is O(N2 · n + 1
KN3). BCS: In k-means assignment step, the

time complexity to assign each point to a cluster is O(N · K · n). In the update
step, the time complexity is O((|C1| + |C2| + · · · + |CK |) · n) = O(Nṅ). Each
solution will randomly select at most 5 parents from corresponding cluster and its
time complexity is O(N). Suppose the training steps in k-means is L. The total
time complexity is O((K + 1) ·N · n · L + N). CMS: From the above analysis, we
can see that the time complexity is O((K + 1) · n ·N + N).

It is reasonable to assume that K � N and N � L. The time complexities of
NNS and BCS are much higher than those of RND and CMS. We can also see that
although the time complexity of CMS is higher than that of RND, it is still linear
according to N .
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Table 2. The average CPU time (seconds) used by the four algo-
rithms on F1-F20 with 300, 000 function evaluations over 30 runs.

RND NNS BCS CMS
F1 11.68 12.84 17.61 12.99
F2 12.21 12.70 15.02 12.82
F3 12.93 12.83 15.11 13.09
F4 12.99 13.29 15.39 13.31
F5 16.07 15.18 17.08 15.09
F6 11.72 12.76 500.28 12.71
F7 14.54 15.73 17.33 15.58
F8 16.89 17.65 16.89 14.39
F9 14.98 14.46 126.06 12.82
F10 15.06 13.14 13.98 13.09
F11 61.29 58.76 58.64 57.58
F12 46.49 47.59 44.44 42.98
F13 13.06 13.15 14.53 13.00
F14 17.08 16.40 16.32 14.39
F15 113.89 115.58 180.81 115.32
F16 119.73 116.78 171.78 116.16
F17 120.10 117.87 452.28 117.31
F18 123.71 121.59 121.74 120.65
F19 149.03 152.96 152.79 147.89
F20 220.64 217.06 218.65 215.53

We also record the CPU run time in Table 2 although it depends on the algorithm
implementation. It clearly shows that the additional cost consumed by CMS is not
much by comparing RND and CMS strategies. On some instances, the CPU time
of CMS is slightly less than that of RND. On all the instances, BCS needs more
time than CMS which is consistent with the above analysis.

3.3. Influence of control parameters. There are two control parameters in
CMS: the number of clusters K, and the number of generations G to restart the
clustering process. This section studies the influence of the two parameters. Two
unimodal functions F2 and F3, two multimodal functions F7 and F8, and two hy-
brid composition functions F16 and F17 are used to assess the performance. The
population size is N = 100, the cluster number is set to K = 2, 4, 6 or 8, and the
generation number to restart clustering is set to G = 5, 10, 20, or 30. The other
parameters are the same as in the previous section.

Fig. 2 plots the error bars of the results obtained by CMS-CoDE with different
combinations of control parameters over 30 runs on the 6 instances. On F2, it clearly
shows that as K and G increase, the performance decreases. The reason is that F2
is unimodal problem and the best cluster number is 1, and k-means fails to capture
the population structure with the given control parameters. On the contrary on
F8, the performance increases as K and G increase. The reason is that F8 is a
multimodal problem and large number of clusters may lead to better population
partition. On F7, CMS-CoDE obtains very stable results and this indicates that
CMS is not sensitive to the control parameters on the two problems. On F3, F16,
and F17, the performance curves are not stable and the standard deviations are big
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Figure 2. The error bars of the results obtained by CMS-CoDE
with different combinations of control parameters (K,G) over 30
runs on some test instances.

on several combinations. We can also see from Fig. 2 that the performance is more
sensitive to K than G. A moderate number of clusters is suitable.

4. Conclusions. In this paper, we proposed a strategy to integrate statistical and
machine learning (SML) techniques to guide the search of evolutionary algorithms
(EAs) efficiently. The idea is to combine the SML iteration and EA iteration to-
gether. The learning process and optimization process are performed alternatively.
As an example, a general clustering based mate selection (CMS) assisted EA frame-
work was proposed. In CMS, the population is partitioned into classes and the
parents in the same class are allowed to do offspring reproduction. More specifi-
cally, a CMS utilizing k-means clustering technique was designed and integrated into
a state-of-the-art EA. The experimental results suggested that CMS can improve
the performance of existing EAs. The time complexity analysis also showed that
the proposed approach does not bring much additional cost to the EA to improve.

It should be noted the current work is very preliminary and there are a variety of
directions worth exploring. The combination of CMS and EAs should be improved.
How to organize data for model building should be studied. Furthermore, it is worth
to apply CMS strategy to multi-objective optimization problems.
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