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Abstract. Inspired by the representation designed for floorplanning prob-

lems, in this paper, we proposed a new representation, namely the moving
block sequence (MBS), for resource investment project scheduling problems

(RIPSPs). Since each activity of a project in RIPSPs has fixed duration and

resource demand, we consider an activity as a rectangle block whose width
is equal to the duration of the activity and height the resource needed by the

activity. Four move modes are designed for activities, by using which the activ-

ity can move to the appropriate position. Therefore, the new representation of
the project of RIPSPs consists of two parts: an activity list and a move mode

list. By initializing the move modes randomly for each activity and moving it

appropriately, the activity list can be decoded into valid solutions of RIPSPs.
Since the decoding method of MBS guarantees that after moved, each activity

is scheduled in the left-most and bottom-most position within a coordinate,
which means that each activity in the corresponding project is arranged as

early as possible when the precedence constraints and resource demands are

satisfied. In addition, the multiagent evolutionary algorithm (MAEA) is em-
ployed to incorporate with the newly designed MBS representation in solving

RIPSPs. With the intrinsic properties of MBS in mind, four behaviors, namely

the crossover, mutation, competition, and self-learning operators are designed
for agents in MAEA. To test the performance of our algorithm, 450 problem

instances are used and the experimental results demonstrate the good perfor-

mance of the proposed representation.

1. Introduction. The project scheduling problems (PSPs) are very general issues
in the area of planning [1, 3, 26], management [22], engineering [4, 18], and designing
[5]. To solve PSPs, the objectives may be minimizing the cost, total makespan or
due date performance [25]. The resource investment project scheduling problem
(RIPSP) is a variation of PSPs with no limitation on the resource capacity, and the
objective is to minimize total resource costs with a due date.

In recent years, RIPSPs have attracted increasing attentions. Möhring in [19]
discussed minimizing costs of resource requirements with a fixed completion dura-
tion in the early years. He considered this problem as the problem of scarce time
and proved that this problem is NP-hard. Demeulemeester [7] presented another
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exact algorithm for resource investment problems and considered this problem as
the resource availability cost problem (RACP). Drexl et al. in [9] discussed the
lower and upper bounds using Lagrangian relaxation and column generation meth-
ods. An extension of resource investment problems that included time dependent
renting costs for resources and the maximum and minimum time lags was studied
by Nübelin [20], which was labeled as the resource renting problem (RRP), and
a depth first branch and bound algorithm was proposed. Brucker et al. [2] gave
a comprehensive survey of problems of scarce time, scarce resources, and other
PSPs. Leveraging design principles to optimize technology portfolio prioritization
was studied by Depenbrock et al. [8] and a simulation based heuristic approach for
handling RIP was presented in [23].

The genetic algorithm (GA) has been used to solve RIPSPs by Shadrokh et al.
in [24], in which, a valid activity sequence and four available resource capacities
generated between the lower and upper bounds were initialized as an individual.
Then, the algorithm started with the initial individuals and optimized the makespan
as well as the four available resource capacities. Serial schedule generation scheme
(SGS) is used to obtain the makespan. And they changed the four available resource
capacities one by one in the procedure of finding optimal solutions. In the fitness
function, they jointed both the makespan and the four available resource capacities
with two reasonable penalty values together.

Recently, Xiong et al. in [25] proposed an evolutionary multi-objective approach
for stochastic extended resource investment project scheduling problems (SERIP-
SPs) which is a new version of RIPSPs. They employed scenarios to capture the
space of possibilities and proposed a robustness measure for the solutions when
uncertainties like duration perturbation, resource breakdown, and precedence al-
teration interact. Finally, the SERIPSPs have been formulated as multiobjective
optimization problems with the objectives as makespan, cost, and robustness. The
experiments show that their approach is effective in solving SERIPSPs.

The representation is a very important component in solving RIPSPs, which
determines the size and topology of the searching space. Among all literature we
mentioned above in solving RIPSPs or their variations, the representation used for
the projects consists of two parts: the activity sequence and the resource capacity
list. The SGS used to transform activity sequences to precedence feasible schedules
is either serial schedule generation scheme (SSS) or parallel schedule generation
scheme (PSS) [11, 12, 13]. The SSS can always generate an active schedule and
guarantee that each active schedule corresponds to an appropriate activity sequence
[11], but it has the disadvantage that the same schedule may be mapped from more
than one activity sequence [6], which means that the size of encoding space is greater
than the active schedules [10]. As for the PSS, it can always generate a feasible
schedule if does exist. However, it suffers from the weakness that the schedule it
generates might not be the optimal schedule [11].

In [16], a new representation, namely moving block sequence (MBS), has been
proposed to solve the floorplanning problem which is a basic step in the physical
design of very large scale integration (VLSI). Liu et al. in [16] analyzed the strength
of MBS thoroughly and obtained the conclusion that the four moving modes of MBS
are useful and the MBS is a successful extension of the bottom-left (BL) and bottom-
left-fill (BLF) method, which are classical approaches in the field of cutting and
packing, and the computational complexity for decoding the MBS to a floorplan
is between linear and quadratic in considering the number of blocks. Through



A MBS-BASED EA FOR RIPSP 41

numerous experiments they declared that the MBS is very useful for extending the
applications of evolutionary algorithms (EAs) in the area of floorplanning. Thus,
with the intrinsic properties of RIPSPs in mind and inspired by the MBS, we come
up with the idea that considering an activity as a rectangle block whose width
is equal to the activity duration and height the resource needed by the activity.
For each activity, there are four types of move modes which are similar to [16].
Therefore, we can encode the projects into the representation that consist of two
parts: the activity list and move mode list. Then, the activity list is decoded into
an active schedule according to the corresponding move modes.

From [16] we can know that by using MBS representation in RIPSPs, the com-
putational complexity of decoding an activity list into an active schedule is between
linear and quadratic in terms of the activity number, and the decoding process
guarantees that the activity will be arranged as early as possible when the prece-
dence constraints are satisfied. With the decoding method, we do not need to initial
the available resource capacities within a lower and upper bounds as proposed in
[24] and then optimize them step by step. We just need to calculate the maximum
width and height of the placed activities at the end of decoding. And according
to the obtained results, a directional mutation operator is designed. Moreover, the
decoding method and the MBS representation can be applied to any EAs in the area
of PSPs. Theoretical analyses that conducted in [21] show that the representation
of solution is important for the effectiveness of evolutionary algorithms.

Many previous works show that the multiagent evolutionary algorithm (MAEA)
has great potential in solving NP-hard problems [15, 17, 27]. In this paper, we in-
tegrate MAEA with MBS to solve RIPSPs and the proposed approach is labeled as
MBSMAEA-RIPSP. Four behaviors, namely crossover, mutation, competition, and
self-learning operator, are designed for the agents in considering the environment
they live. To test the performance of MBSMAEA-RIPSP, the experiments are con-
ducted on Möhring instances and three generated test sets J10, J14 and J20. By
comparing with other EAs that have been employed to deal with the same test sets,
the experimental results demonstrate that the MBSMAEA-RIPSP can obtain better
performance.

The remaining parts of the paper are organized as follows. Section 2 gives the
definition RIPSPs. Section 3 describes the MBS representation for RIPSPs. Sec-
tion 4 presents the algorithm for transforming an MBS to a schedule. Section 5
introduces MBSMAEA-RIPSP in detail, including the definition of agents, design
of operators and the general framework of MBSMAEA-RIPSP. Section 6 shows the
experimental results. Finally, conclusions are given in Section 7.

2. RIPSPs. In a RIPSP [24], the project is represented as a directed activity-on-
node (AON) network G shown in Figure 1. In an AON network, each node denotes
an activity and the arrow line represents the precedence relationship between two
activities i.e. if there is an arrow line from activity v to w, then v precedes w,
which means activity w cannot start before v is finished. Thus, v is the predecessor
of w and w is the successor of v. Note that one activity may have more than
one predecessor and successor as well. For each activity i, let P i represent the
set of predecessors of it, and S i the set of successors. The network G contains n
non-dummy activities with two dummy activities labeled as 0 and n+1, which are
the initial and terminal activities respectively. K = {1, 2, . . . , ρ} is a set of ρ
renewable resource(s). Each activity i (i = 0, 1, . . ., n+1) has a fixed duration D i

and requires r ik units of renewable resource k (k ∈ K) during its duration. For
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two dummy activities, we have D0 = Dn = 0 and r0,k = rn+1,k = 0, k ∈ K. The
objective of RIPSPs is to determine the start time of activity i, S i, (i = 0, 1, . . .,
n+1), and the available resource capacity Rk (k ∈ K ), such that the precedence
relations of activities are satisfied and the total cost of all resources and tardiness
penalty is minimized. A constant cost of C d for each unit of time delay from a due
date T is incurred and C k is a resource cost for each unit of available capacity.
Let x i,t be 1 if activity i starts at time t and 0 otherwise, then we have S i =∑T
t=0 t× xi,t. The mathematical model of RIPSPs can be described as follows,

min
{ ρ∑
k=1

CkRk + Cd ×max{0, Sn+1 − T}
}

(1)

s.t.

T∑
t=0

t× xi,t ≥ Dj +

T∑
t=0

t× xj,t, j ∈ Pi, i = 1, 2, . . . , n+ 1 (2)

n∑
i=1

t∑
u=t−Di+1

ri,k × xi,u ≤ Rk, t = 0, . . . , T, k ∈ {1, 2, . . . , ρ} (3)

T∑
t=0

xi,t = 1, i = 1, 2, . . . , n+ 1 (4)

x1,0 = 1 (5)

xi,t ∈ {0, 1}, i = 1, 2, . . . , n+ 1, t = 0, 1, . . . , T (6)

Rk ≥ 0, k ∈ K = {1, 2, . . . , ρ} (7)

where objective (1) is to minimize the total cost of a project. Constraints (2) is
the precedence relation between each pair of activities (i, j), where j immediately
precedes i. And (3) limits the total resource usage within each period to the available
amount. Constraints (4) and (5) make sure that each activity i can only have one
start time. (6) and (7) are the range of certain variables.

Figure 1. An example of precedence graph.

3. Moving block sequence representation for RIPSPs. In a RIPSP, there
are n activities need to be scheduled. To solve RIPSPs with the idea of MBS
designed for floorplanning problems, we need to first transform each activity into
a hard rectangular block. It is well-known that in RIPSP, each activity has a
fixed duration and demands for several renewable resources. Therefore, the fixed
duration of an activity can be regarded as the width of a hard rectangular block
and the maximum resource demand as the height of the block. After transforming
all activities to blocks, the block will be placed in the first quadrant shown as
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Figure 2, in which the X-axis stands for the time and the Y-axis is the resource.
In addition, to locate the position of a block in the coordinate, two variables xlb and
ylb, which corresponds to the abscissa and ordinate of the lower left corner of the
block respectively, are necessary to be defined. Assume B i, (i = 0, 1, . . . , n+1),
where B0 and Bn+1 are two dummy blocks, denotes the blocks that correspond to
the n-activity project, the information structure of block B i is defined as follows,

struct B i

{
(x lb , y lb): coordinate of the left-bottom corner of block B i;
width: width of block B i;
height : height of block B i.
}

where B0.width = Bn+1.width = 0 and B0.height = Bn+1.height = 0.
Each block starts from an initial position and moves in the first quadrant until

it reaches an appropriate position. Four initial positions labeled as 0 to 3 shown in
Figure 2 are designed and the corresponding move rules will be described in the
following context.

In Figure 2, (BoxRX , BoxTY ) is the coordinate of the right-top corner of the
shaded rectangle. And the coordinate of the left-bottom corner of shaded rectangle
is always (0, 0). Suppose that i -1 blocks have been placed in the shaded rectangle.
For the ith block Bpi in the block list, the four move rules corresponding to the
four initial positions are described as follows,

Move rule 0 : the coordinates of initial positions (Bpi.x lb, Bpi.y lb) are set to
(max t, BoxTY ), where max t is the maximum finish time among all predecessors
of activity i. From the initial position, the block can only move downward until no
downward movement is possible.

Move rule 1: the coordinates of initial positions (Bpi.x lb, Bpi.y lb) are set to
(BoxRX , 0). Then this block can only move leftward until no leftward movement is
possible.

Move rule 2: the coordinates of initial positions (Bpi.x lb, Bpi.y lb) are set to
(BoxRX - Bpi.width, BoxTY ). Then this block can repeatedly move downward and
leftward. Giving priority to downward movement so that this block can only moves
leftward if no downward movement is possible. But sometimes the initial positions
above may violate precedence relationship constraints. If that happens, then we
need to adjust the initial position to (max t, BoxTY ) and it can only move downward
until no downward movement is possible.

Move rule 3: the coordinates of initial position (Bpi.x lb, Bpi.y lb) are set to
(BoxRX , emphBoxTY - Bpi.y lb). Then this block can repeatedly move leftward and
downward. Giving priority to left movement so that this block can only move
downward if no left movement is possible.

Given the activity list and the move mode list, an MBS can be defined as follows,

Definition 3.1. An MBS has two vectors, namely a block list and a move mode
list.

MBS = ((Bp0, Bp1, . . . , Bpn, Bpn+1), (M0,M1, . . . ,Mn,Mn+1)) ∈ F (8)

where the first part is the corresponding block list that consists of a valid permuta-
tion of n non-dummy blocks which satisfies precedence constraints, and two dummy
blocks Bp0 and Bpn+1 which correspond to block B0 and Bn+1, respectively. The
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Figure 2. An example of precedence graph.

second part denotes the move mode list which is randomly initialized between 0 and
3. F represents the encoding space, namely, the search space.

Theorem 3.2. The size of search space F for activities satisfies 4n � |S| � n!4n.

Proof. From Definition 3.1 we can know that one MBS consists of a list of ac-
tivities and a list of move mode. In reality, the activity list is a permutation of
all activities, thus, if we consider an extreme condition that for each non-dummy
activity there is one and only one predecessor and one successor activity, which
means only one possible permutation exists, the lower bound of the size of search
space is equal to 1× 4n, in which 4n is the number of combination of move modes.
For another extreme case, if the precedence relationship among activities are not
taken into consideration, the number of combination of activities is n! and integrate
with the effect of move mode, the upper bound is obtained equals to n!4n. How-
ever, in actual RIPSPs these two extreme conditions can barely happen, for there
exist intricate precedence constraints among activities and many types of resource
constraints for each activity. Therefore, the size of search space is much larger than
the lower bound and much smaller than the upper bound, simultaneously.

To generate a valid block list of an MBS which satisfies precedence constraints,
the Algorithm 2 described in [10] which enumerates all the topological orders of a
network G is employed.

4. Algorithm transforming an MBS to a schedule. The location relationships
between blocks need to be considered when moving them. We know that each
hard rectangular block has four edges, namely top, bottom, left, and right edge.
According to the designed four move rules, all blocks need to be moved leftward
or downward. The problem of finding the reasonable left-most or the bottom-most
of a block is changed to that of judging the relative position between two edges.
Liu et al. [16] designed suitable structures e//X and e//Y to record the positions
of edges that parallel to X-axis and Y-axis, respectively. In MBSMAEA-RIPSP, we
also employ the structures of e//X and e//Y to record edge information, with which
we can easily judge if a block can further move or not. The description of e//X and
e//Y are as follows,

struct e//X

{
x l: X-coordinate of the left point;
x r: X-coordinate of the right point;
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y : Y-coordinate of the bottom edge.
}
struct e//Y

{
x : X-coordinate of the edge;
yb: Y-coordinate of the bottom point;
yt: Y-coordinate of the top point.
}
If a block is projected to the X-axis vertically or to the Y-axis horizontally, the

blocks in the projection area will affect the bottom-most or the left-most position
where this block can move to. Thus, two types of overlap relations are defined in
Definition 4.1, and Figure 3 shows all kinds of top-overlaps and right-overlaps,
in which the shadow areas are the projection of block A.

Definition 4.1. Let a//X and b//X be two edges parallel to the X-axis. If a//X

and b//X satisfy (9), a//X top-overlaps b//X ; otherwise, a//X un-top-overlaps b//X .
Let a//Y and b//Y be two edges parallel to the Y-axis. If a//Y and b//Y satisfy
(10), a//Y right-overlaps b//Y ; otherwise, a//Y un-right-overlaps b//Y .

(a//X(y) ≥ b//X(y)) and (a//X(xr) > b//X(xl)) and (a//Y (xl) < b//X(xr)) (9)

(a//Y (x) ≥ b//Y (x)) and (a//Y (yt) > b//Y (yb)) and (a//Y (yb) < b//Y (yt)) (10)

A

B

A

B

A

B

A

B

a a a a
b b b b

(a)

B
B A B A

A B

A

b

a

b

a
b

a
b

a

(b)

Figure 3. The types of overlaps. (a) All kinds of top-overlaps,
(b) all kinds of right-overlaps.

Assume that CoverRightX and CoverTopY stand for the left-most and the
bottom-most positions where blocks can move to, respectively, i.e., CoverRightX
is the X-coordinate of the left-most position where a block can move leftward and
CoverTopY is the Y-coordinate of the bottom-most position where a block can
move downward. With the intrinsic properties of hard rectangular blocks and the
precedence constraints among activities in mind, the appropriate position where a
block can move to is given as follows.
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When moving leftward, there are two conditions to stop block A. The first con-
dition is the left edge of block A right-overlaps the right edge of block B , as can be
seen in Figure 3 (b). We mark the position as CoverRightX i; the second condition
is that the X-coordinate of the left edge of block A is equal to max t, where max t is
the maximum finish time of the predecessors of activity A. According to the above
cases, CoverRightX ← max(CoverRightXi,max t), where max(m,n) returns the
maximum between m and n. Finding the bottom-most position CoverBottomY is
analogous to CoverRightX, except that the precedence constraints can be omitted.

When block A top-overlaps block D , there may exist some other continuous
blocks have the same Y-coordinate with block D , as shown in Figure 4. The mini-
mum X-coordinates of the left edges of those blocks is labeled as CoverLeftX. In the
same way we can get the CoverTopY. If CoverLeftX > CoverRightX and Cover-
LeftX - CoverRightX ≥ A.duration, the downward movement of A is feasible after
moved leftward, otherwise, block A cannot move downward furthermore, i.e. it will
stop at CoverRightX. Similarly, if CoverTopY > CoverBottomY and CoverTopY
- CoverBottomY ≥ A.height, the leftward movement of A is feasible after moved
downward, otherwise, block A will stop at CoverBottomY.

In general, almost every block will move repeatedly leftward and downward until
reach the stopping criterion. For example, the blocks that have the initial position
3 will move leftward firstly to the CoverRightX, then performing the judgment
that whether the blocks can move downward or not. If the blocks can further
move, then the corresponding movement will be conducted until they are placed in
the appropriate positions. For the blocks that have other initial positions, similar
procedures are conduceted.

Figure 4 (a) and (b) are two cases without precedence constraints, in which
block A moves left until right-overlaps block B . Figure 4(c) and (d) are cases
considering the precedence constraints, where C is a predecessor of block A, thus
block A will stop when reaches the right edge of block C .

BtoT //X and LtoR//Y denote two ordered sets of edges which are parallel to the
X-axis and Y-axis, respectively. They are designed to record the top edges from
bottom to top and the right edges from left to right of the blocks that have been
placed. Algorithm 1 describes the algorithm of transforming an MBS from an
initial block list and a corresponding move mode list to a schedule and Figure 5
shows the overall process clearly. All blocks will be placed and moved in the first
quadrant. Since Bp0 and Bpn+1 are two dummy blocks, they are omitted during the
transforming procedure and Bp1 is placed directly at the most left-bottom corner
of the first quadrant, then Bpi, i ∈ [2, n] will be moved iteratively according to the
move mode list at the first quadrant in the order they occur in block list.

In Algorithm 1, when all blocks have been placed in the first quadrant, BoxRX

is the total makespan of the project. From above we know that the maximum
resource demand of every activity is regarded as the height of the related block,
therefore, the BoxTY is not the actual resource capacity that needed by the project.
Thus, there is a need to calculate the actual resource capacity Rk (k ∈ K ).

In the proposed MBSMAEA-RIPSP, the idea of Effective Activity (EA) and the
set of all EA for resource k, AEAk that described in [24] are employed to find the
available resource capacity Rk (k ∈ K ). For an MBS and resource k, activity j is
defined to be an EA in AEAk, if this activity or parts of it, is scheduled during
time intervals [S i, S i + D i], i.e., width interval [Bpi.x lb, Bpi.x lb + Bpi.width] on
X-axis. In this way, we find each AEAki for each activity i. Before finding the
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Figure 4. Relative positions of CoverLeftX and CoverRightX.
(a) and (b) are the cases without violating precedence constraints.
(c) and (d) are the cases violating precedence constraints.

maximum amount of resource k, we need to eliminate the activities with precedence
constraints in each AEAki. After that, we add up resource usage for each activity
in an AEAki and label it as Qki. Then the maximum Qki is the available resource
capacity Rk.

Taking into account the makespan and available resource capacity Rk (k ∈ K ),
the value of fitness of MBS can be defined as follows,

f(MBS) =

ρ∑
k=1

CkRk + Cd ×max{0, Sn+1 − T} (11)

In Figure 5, parts one to four stand for the four designed move rules. The
values of (BoxRT , BoxTY ), BtoT //X and LtoR//Y are updated in part five after
schedule of a new block in the block list. After all blocks have been placed in the
appropriate positions, the fitness of the MBS will be calculated in the end part.

5. MBSMAEA-RIPSP. Since many previous works show that the MAEA has
great potential in solving complex problems [15, 17, 27], we integrated the MBS
with MAEA to solve the RIPSPs, which is labeled as MBSMAEA-RIPSP.

5.1. Agents based on MBS. With the intrinsic properties of the MBS and RIP-
SPs in mind, the agent in MBSMAEA-RIPSP is defined as follows,

Definition 5.1. An agent, labeled as I, represents a candidate solution in the
search space F , and is encoded using two integer vectors:

I = MBS = ((Bp0, Bp1, . . . , Bpn, Bpn+1), (M0,M1, . . . ,Mn,Mn+1)) I ∈ F (12)
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Algorithm 1 Transforming an MBS to a schedule

Input: MBS : An MBS in solution space F ;
Output: f(MBS): The fitness of the MBS ;

1: (Bp0.xlb, B
p0.ylb)← (0, 0); /∗Bp0 is a dummy block.∗/

2: (Bp1.xlb, B
p1.ylb) ← (0, 0); /∗Put Bp1 at the left-bottom corner of the first

quadrant.∗/
3: (BoxRX , BoxTY )← (Bp1.width,Bp1.height);
4: Add the top edge of Bp1 into BtoT //X ;
5: Add the right edge of Bp1 into LtoR//Y ;
6: for (i = 2, i < n, i+ +) do
7: if Mi = 0 then /∗Only move downward.∗/
8: (Bpi.xlb, B

pi.ylb)← (max t,BoxTY );
9: Calculate CoverTopY for Bpi from BtoT //X ;

10: Bpi.ylb ← CoverTopY ;
11: else if Mi = 1 then /∗Only move leftward.∗/
12: (Bpi.xlb, B

pi.ylb)← (BoxRX , 0);
13: Calculate CoverRightX for Bpi from LtoR//Y ;
14: Bpi.xlb ← CoverRightX
15: else if Mi = 2 then /∗Two cases are considered according to whether

violating precedence constraints or not.∗/
16: if max t ≥ (BoxRX − Bpi.width) then /∗Violating precedence con-

straints, move downward only.∗/
17: (Bpi.xlb, B

pi.ylb)← (max t,BoxTY );
18: Similar to case 0;
19: else /∗Do not violate precedence constraints, repeat downward and left-

ward movement.∗/
20: (Bpi.xlb, B

pi.ylb)← (BoxRX −Bpi.width,BoxTY );
21: CanMove← true;
22: while (CanMove = true) do
23: Calculate CoverTopY for Bpi from BtoT //X ;
24: Bpi.ylb ← CoverTopY ;
25: Calculate CoverRightX for Bpi from LtoR//Y ;
26: Calculate CoverLeftX for Bpi;
27: if (CoverRightX ≥ CoverLeftX) or ((CoverRightX <

CoverLeftX) and ((CoverLeftX − CoverRightX) < Bpi.width)) then
28: Bpi.xlb ← CoverRightX;
29: CanMove← false
30: else
31: Bpi.xlb ← CoverLeftX −Bpi.width;
32: CanMove← true;
33: end if
34: end while
35: end if
36: else if Mi = 3 then /∗Repeat leftward and downward movement.∗/
37: (Bpi.xlb, B

pi.ylb)← (BoxRX ,max(0, BoxTY −Bpi.height));
38: CanMove← true;
39: while (CanMove = true) do
40: Calculate CoverRightX for Bpi from LtoR//Y ;
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41: Bpi.xlb ← CoverRightX;
42: Calculate CoverTopY for Bpi from BtoT //X ;
43: Bpi.ylb ← CoverTopY ;
44: if Bpi.xlb = max t then
45: break;
46: else
47: Calculate CoverBottomY for Bpi;
48: end if
49: if (CoverBottomY ≤ CoverTopY ) or ((CoverBottomY > CoverTopY )

and ((CoverBottomY − CoverTopY ) < Bpi.height)) then
50: Bpi.ylb ← CoverTopY ;
51: CanMove← false;
52: else
53: Bpi.ylb ← CoverBottomY −Bpi.height;
54: CanMove← true;
55: end if
56: end while
57: end if
58: Update (BoxRT , BoxTY );
59: Add the top edge of Bpi into BtoT //X , and keep the order of BtoT //X ;
60: Add the right edge of Bpi into LtoR//Y , and and keep the order of LtoR//Y ;
61: end for
62: Calculate available resource capacity Rk for each kind of resource;
63: Calculate f(MBS);

For each agent I, we can get a makespan and an available resource capacity
for each kind of resource. The energy of I is equal to the negative value of its

Part 
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Part five

Initialize

i>n

end

Mi=?

Part 
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Part 

two

Part 

one

0 3

1 2

No
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Figure 5. The decoding process.
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associated objective function value, namely Energy(I) = −f(I). The purpose of I
is to increase its energy as much as possible by the behaviors it can take.

As described in [15, 17, 27], all agents in MBSMAEA-RIPSP live in a lattice-like
environment, which is called the agent lattice. Each agent is fixed on a lattice point
and can only interact with its neighbors. The agent lattice can be represented as
Figure 6. In this paper, we define the size of agent lattice as Rsize × Csize. Each
agent has eight neighbors. Suppose that agent I locates at (i, j), then the sets of
eight neighborhood domains are described as follows. For example, in Figure 6,
the agent in position (2, 2) is connected to its eight neighbors with imaginary lines.

neighbors(I) = {(i′, j), (i′, j′), (i, j′), (i′′, j′), (i′′, j), (i′′, j′′), (i, j′′), (i′, j′′)} (13)

where

i′ =

{
i− 1 i 6= 1
Rsize i = 1

, j′ =

{
j − 1 j 6= 1
Csize j = 1

i′′ =

{
i+ 1 i 6= Rsize

1 i = Rsize
, j′′ =

{
j + 1 j 6= Csize

1 j = Csize

(14)

...

(2,1)

...

(     ,1)

(1,1)

...

...(      ,2) (    ,    )

...(1,2)

(2,2)

(1,      )

(2,     )...

...

sizeC

sizeC

sizeCsizeR sizeRsizeR

Figure 6. The agent lattice of MBSMAEA-RIPSP

5.2. Operators for agents. In MBSMAEA-RIPSP, four operators are employed to
explore the search space. In addition to the crossover and mutation operators, the
competition and self-learning operators are designed for agents to gain more energy.

5.2.1. Crossover. In MBSMAEA-RIPSP, two-point crossover based on MBS repre-
sentation is designed. Assume this operator conduct on two parents p1 and p2,
where p2 is the agent that with the largest energy among the neighbors of p1. Since
there are precedence constraints among activities, one of the significant properties
of the crossover operator should be maintaining the precedence constraints, in other
words, the children produced by crossover operator should be feasible. Therefore,
the two-point crossover operator introduced by Hindi et al. in [10] is employed to
the activity list. As for the move mode list, the general two-point crossover operator
is utilized.
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5.2.2. Mutation. The mutation operator is designed to reintroduce diversity to the
population. It is conducted both on the activity list and the move mode list. For
the part of the activity list, the classical mutation operation introduced in [10] is
employed, in which an activity is moved randomly between the position of its last
predecessor and first successor according to the temporary order of the activity list.
Thus the newly generated activity list is still feasible.

As mentioned before that all activities move in the first quadrant and the ob-
jective of RIPSPs is to minimize the summation of the project makespan and the
resource capacity. Moreover, the position that an activity will be placed can be par-
tially decided by the move modes. Therefore, according to whether the makespan
of a project exceed the due date or not, a direction-based mutation operator is de-
signed for the move mode list. If the project makespan is larger than the due date,
then our goal is to increase the upper bounds of resources, i.e., the available resource
capacities Rk (k ∈ K), while decreasing the makespan. Otherwise, our goal is to
increase the makespan while decreasing the upper bound of resource. The details
of the mutation operator designed for the move mode list are given in Algorithm
2.

In Algorithm 2, if the makespan of the project exceed the due date, the de-
creasing of the total makespan is desired. Thus, the move modes of the predecessors
and the successors of the randomly chosen activity v are set to 0 and 2 respectively,
which means that the initial positions of these activities preferred to be in the top
edge of the placed blocks, and according to the related move rules, these activ-
ities will be placed within BoxRX , which guarantees the decreasing of the total
makespan. Otherwise, the move modes of predecessors and successors of activity
w are set to 3, in which the positions of these activities are initialized to the left
edge of the placed blocks, which guarantees the decreasing of the available resource
capacities.

5.2.3. Competition. For an agent I on the agent lattice, an eight-neighbor compe-
tition operator is designed. The comparison between I and its strongest neighbor
I ′, which has the maximum energy among all eight neighbors, is conducted. If
Energy(I) > Energy(I ′), I is a winner and it can survive on the agent lattice,
otherwise, it is a loser and will be occupied by agent I ′. After the competition
operator is conducted, agents that with low energy are replaced by better agents,
which generally speaking will increase the total energy of the whole population.
Moreover, by replacing the low-energy agents, more opportunities can be given to
the better agents, which to some extent can schedule the computational efforts more
appropriately.

5.2.4. Self-Learning. It is well-known that the incorporation with local search can
accelerate the convergence speed of EAs. Therefore, the self-learning operator is
designed as a local search to further increase the energy of an agent. From above
we can know that the mutation operator is self-adaptive to some extent, thus it is
employed in self-learning operator to generate alternative agents.

In self-learning operator, the designed mutation operator will be conducted it-
eratively for SelfLT ime times. After each iteration, if the energy of the newly
generated agent is larger than the old one, then the old agent will be replaced by
the newly generated one; otherwise, no operation will be conducted. Therefore,
after performing the self-learning operator on an agent, its energy will be increased
as much as possible. In order to reduce the computational cost, the self-learning
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Algorithm 2 Mutation operator for move mode list

Input: I: An agent;
Output: I ′: The agent after performing the mutation operator;

1: if makespan(I) > T then
2: Choose an activity v at random from 1 to n;
3: Find Pv and Sv;
4: for (i = 0; i < n+ 1; i+ +) do
5: if s[i] ∈ Pv then
6: Set the move mode of activity s[i] in agent I ′ to 0;
7: else if s[i] ∈ Sv then
8: Set the move mode of activity s[i] in agent I ′ to 2;
9: end if

10: end for
11: else
12: Choose an activity w at random from 1 to n;
13: Find Pw and Sw;
14: for (i = 0; i < n+ 1; i+ +) do
15: if s[i] ∈ Pw or s[i] ∈ Sw then
16: Set the move mode of activity s[i] in agent I ′ to 3;
17: end if
18: end for
19: end if
20: Transform the agent I ′ to a schedule;

operator is only performed on the best agent in each generation. The details of
self-learning operator are given in Algorithm 3.

Algorithm 3 Self-learning operator

Input: I: Agent I;
SelfLT ime: The maximum number of iterations;

Output: Agent I;

1: for (i = 0; i < SelfLT ime; i+ +) do
2: I ′ ← Mutation(I);
3: if Energy(I ′) > Energy(I) then
4: I ← I ′;
5: end if
6: end for

5.3. Implementation of MBSMAEA-RIPSP. In MBSMAEA-RIPSP, the popu-
lation is initialized firstly, in which the algorithm described in [10] is employed in the
initialization of the activity lists and the move mode for every activity is randomly
initialized from 0 to 3. Then, the designed decoding algorithm that detailed in Al-
gorithm 1 is used to generate the feasible schedules and the energy is calculated
for every agent. The competition operator is conducted on every agent according
to probability Pcom, after which the agents that with low energy are occupied by
their strongest neighbors, as a consequence of increasing the total energy of the



A MBS-BASED EA FOR RIPSP 53

whole population. Afterwards, the crossover and mutation operator are performed
for every agent with probability Pcro and Pmut, respectively. At the end of each
generation, the self-learning operator is conducted on the best agent of the cur-
rent generation with probability Psel. The whole evolution process will stop until
reach the stopping criteria. The details of the MBSMAEA-RIPSP are described as
Algorithm 4.

Algorithm 4 MBSMAEA-RIPSP

Input: G: An AON network;
Pcro: Crossover probability;
Pmut: Mutation probability;
Pcom: Competition probability;
Psel: Self-learning probability;
Rsize and Csize: The number of rows and columns of the agent lattice;
MaxGen: The maximum number of generations;

Output: The best agent found;

1: Initialize the agent lattice;
2: For each agent, calculate f(I);
3: repeat
4: for i = 1, 2, . . . , Rsize, j = 1, 2, . . . , Csize do
5: Conduct competition operator on agent I(i, j) with probability Pcom;
6: end for
7: for i = 1, 2, . . . , Rsize, j = 1, 2, . . . , Csize do
8: Conduct crossover operator on agent I(i, j) with probability Pcro;
9: end for

10: for i = 1, 2, . . . , Rsize, j = 1, 2, . . . , Csize do
11: Conduct mutation operator on agent I(i, j) with probability Pcro;
12: end for
13: if U(0, 1) < Psel then
14: Conduct the self-learning operator on the best agent in the current gener-

ation;
15: end if
16: until (reach the stopping criteria)

6. Experiments and results. In this section, Möhring instances [19] and the
generated instances J10, J14, J20, which are generated by ProGen software [14], are
used to test the performance of MBSMAEA-RIPSP. Möhring instances are a small
bridge construction project, consisting of 18 activities and 4 kinds of resources.
For each kind of resource, a per unit availability cost is defined, which is 1 or 3.
Therefore, the combinations of unit availability costs for the four resource types are
16. The cost combination is labeled as C1/C2/C3/C4. Note that 1/1/1/1 is the
same as 3/3/3/3, so the total number of combination is 15.

For the generated instances J10, J14 and J20, there are 10, 14 and 20 non-
dummy activities, respectively, and 4 kinds of renewable resources for every instance.
Activity durations and resource requirements of the 4 types of resources are obtained
using a discrete uniform distribution within [1, 10]. The project networks have three
non-dummy start activities and three non-dummy finish activities. The network
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complexity NC is set to 1.5, the resource factor RF is 1 and resource strength RS
is set to 0.2. The maximum number of predecessors/successors is three. Original
resource availabilities of single mode resource constraint project scheduling problem
(SMRCPSP), which are generated by ProGen, are used as the unit cost of the
corresponding resource type. The tardiness cost, Cd, is considered as 1/4 of the
sum of the unit cost of the resources. Each network contains 20 instances.
T is the due date of a project and T = θ×EFT , where EFT is the earliest finish

time of the project having infinite resource capacities, and θ ∈ {1.0, 1.1, 1.2, 1.3,
1.4, 1.5}. Therefore, there are totally 15 × 6 = 90 test sets for Möhring instances
and 20× 6 = 120 test sets for J12, J16 and J22, respectively. The total number of
instances is 90 + 120 + 120 + 120 = 450.

6.1. Experiments on Möhring instances. For Möhring instances, there are to-
tally 90 instances. 20 independent experiments are conducted for each instance
with the 1000 times of fitness evaluation as the stooping criterion. The size of agent
lattice is set to Rsize = 4, Csize = 4, and Pcro = 0.95, Pmut = 0.85, Pcom = 1.0,
Psel = 0.5, SelfLT ime = 12. The percentages of the number of finding the optimal
solutions in all replications for each instance are shown in Table 1. The percent-
age value will be 1 if the MBSMAEA-RIPSP can find the optimal solution for all 20
times; otherwise, it will be smaller than 1.

From Table 1 we can know that for all 90 Möhring instances, there are 43
instances with the percentage values equal to 1, which means that the proposed
MBSMAEA-RIPSP can solve these instances easily. And, there are 25 instances with
the percentage values various from 0.5 to 0.95 and 19 instances with the values below
0.5, which means for these instances the MBSMAEA-RIPSP can find the optimal
solutions with certain probabilities. However, the rest three instances are relatively
difficult that the proposed MBSMAEA-RIPSP cannot find optima in all replications.
In one word, the MBSMAEA-RIPSP is able to solve most of the Möhring instances.

In order to further verify the performance of MBSMAEA-RIPSP, the comparison
between MBSMAEA-RIPSP and the GA designed by Shadrokh etal. in [14] is con-
ducted. According to [14], the numbers of generation are recorded for both two
algorithms once the optimal solution is found for each instance. The parameter
settings of MBSMAEA-RIPSP are identical to the aforementioned experiment. The
results are shown in Table 2, in which the bold numbers represent the smaller
values of the number of generations and MBS represents the MBSMAEA-RIPSP for
convenience. From Table 2 we can know that there are 40 instances that the pro-
posed MBSMAEA-RIPSP finds the optimal solutions using less generations, which
means it is more effective; 24 instances that two algorithms have the same values of
generations, and 26 instances the MBSMAEA-RIPSP needs more generations than
GA to find the optimal solutions. Overall, for most Möhring instances the proposed
MBSMAEA-RIPSP performs better than GA.

6.2. Experiments on J10, J14, and J20 instances. For J10, J14, and J20
test sets, we generated and tested 20 instances for each group, and the due date
T is still set to T = θ × EFT , where θ ∈ {1.0, 1.1, 1.2, 1.3, 1.4, 1.5}. Therefore,
totally 3× 20× 6 = 360 problems were solved. The self-learning probability Psel is
set to 0.5 and the other parameter settings of MBSMAEA-RIPSP for J10, J14 and
J20 are shown in Table 3, which are selected empirically. The stopping criteria
is either the optimal solution is found or the predetermined maximum number of
generation is reached. The percentages of finding the optimal solutions for each
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Table 1. The Percentages of Finding Optimal Solutions for
MBSMAEA-RIPSP on Möhring Instances with 1000 Evaluations

C1/C2/C3/C4 θ = 1.0 θ = 1.1 θ = 1.2 θ = 1.3 θ = 1.4 θ = 1.5
1/1/1/1 1.00 1.00 1.00 1.00 0.067 0.033
3/1/1/1 1.00 0.90 0.90 0.80 0.133 0.067
1/3/1/1 1.00 1.00 1.00 0.80 0.700 0.333
1/1/3/1 1.00 1.00 1.00 1.00 0.950 0.067
1/1/1/3 1.00 1.00 1.00 0.60 1.00 0.067
3/3/1/1 1.00 0.50 0.80 0.80 0.00 0.333
3/1/3/1 1.00 1.00 0.90 0.85 0.60 0.333
3/1/1/3 1.00 0.75 0.95 0.75 0.533 0.067
1/3/3/1 1.00 1.00 1.00 1.00 0.70 0.033
1/3/1/3 1.00 1.00 1.00 1.00 0.80 0.00
1/1/3/3 1.00 1.00 1.00 1.00 0.60 0.00
3/3/3/1 1.00 1.00 0.90 1.00 0.333 0.20
3/3/1/3 1.00 0.45 1.00 0.75 0.133 0.033
3/1/3/3 1.00 1.00 0.95 0.85 0.167 0.067
1/3/3/3 1.00 1.00 1.00 1.00 0.70 0.067

Table 2. The Comparison of Numbers of Generation to Reach
to the Optimal Solutions between MBSMAEA-RIPSP and GA for
Möhring Test Sets

C1/C2/C3/C4
θ = 1.0 θ = 1.1 θ = 1.2 θ = 1.3 θ = 1.4 θ = 1.5

MBS GA MBS GA MBS GA MBS GA MBS GA MBS GA
1/1/1/1 1 1 1 2 1 1 1 6 6 21 14 1
3/1/1/1 1 1 6 1 1 2 1 2 7 20 27 1
1/3/1/1 1 2 1 33 1 4 1 1 2 43 13 1
1/1/3/1 1 1 1 1 1 1 1 1 1 23 4 3
1/1/1/3 1 1 1 1 1 3 2 1 12 1 4 5
3/3/1/1 1 1 1 28 1 2 1 2 5 1 7 1
3/1/3/1 1 1 1 1 1 2 1 1 8 11 8 9
3/1/1/3 1 2 1 2 1 6 2 1 9 8 10 2
1/3/3/1 1 1 1 1 1 8 2 1 1 15 2 3
1/3/1/3 1 1 1 2 1 1 1 1 8 6 20 1
1/1/3/3 1 3 1 3 1 2 1 2 5 37 12 1
3/3/3/1 1 1 1 2 1 2 1 2 9 14 13 1
3/3/1/3 1 1 4 1 1 1 3 2 8 8 22 1
3/1/3/3 1 2 1 21 1 1 2 1 31 18 4 5
1/3/3/3 1 2 1 2 1 3 3 1 19 3 49 23

Table 3. Parameter Settings for J10, J14 and J20 Test Sets

Test Set #Agent MaxGen ExcuteNum SelfLTime Pcro Pmut Pcom

J10 20× 20 10 10 12 0.95 0.85 0.9
J14 20× 20 10 8 12 0.95 0.85 1.0
J20 20× 19 10 8 12 0.95 0.85 1.0

group with different θ values “Opt.%” , the percentage of the average deviation
“Dev.%”, and the number of fitness evaluations “Eva.” are shown in Table 4. The
comparisons between MBSMAEA-RIPSP and GA are shown in Table 5, in which
the bold numbers mean the better performance in the specific measurement and
MBS represents the MBSMAEA-RIPSP for convenience. From Table 5 we can see
that for all three test sets, MBSMAEA-RIPSP has larger values of “Opt.%” than GA,
which means the proposed method has better performance. In terms of “Dev.%”,
the MBSMAEA-RIPSP outperforms GA only in J20 test set and for J10 and J14,
GA has smaller values. Overall, the MBSMAEA-RIPSP has better performance than
GA.
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Table 4. Experimental Results of MBSMAEA-RIPSP for J10, J14
and J20 Test Sets

θ
J10 J14 J20

Opt.% Dev.% Eva. Opt.% Dev.% Eva. Opt.% Dev.% Eva.
1.0 40.0 6.8896 6988 76.5 0.7970 3719 32.5 4.9126 7135
1.1 41.0 3.4006 7225 63.0 1.0457 4981 35.0 5.4335 7327
1.2 55.0 2.5922 5821 43.125 2.5851 7683 33.0 4.9258 7273
1.3 51.5 2.4822 6170 49.375 2.2975 7369 43.0 2.6173 7188
1.4 56.0 2.8036 6065 47.5 1.9321 6771 43.0 2.0079 7279
1.5 68.5 1.8743 4496 55.0 1.8272 7465 43.0 1.9728 7154

Table 5. Comparisons between MBSMAEA-RIPSP and GA for
J10, J14 and J20 Test Sets

Test Set
Opt.% Dev.%

MBS GA MBS GA
J10 52.00 48.20 3.3404 0.23
J14 55.75 40.00 1.7474 0.32
J20 38.25 33.33 3.6445 4.68

7. Conclusion. In this paper, a new MBS representation is first designed to deal
with PSPs, and an MAEA based on MBS representation is proposed to solve the
single-mode RIPSPs. The decoding method guarantees to generate feasible sched-
ules based on the MBS representation. Therefore both the newly designed repre-
sentation and the decoding method can be applied to other EAs that designed to
solve PSPs.

In experiments, 450 test instances are used to test the performance of the pro-
posed MBSMAEA-RIPSP. Table I and II indicate that the proposed method can
solve almost all of the Möhring instances and has better performance than GA in
terms of the efficiency for finding the optimal solutions. Moreover, the generated
test sets J10, J14 and J20 are employed to further verify the ability of MBSMAEA-
RIPSP and the experimental results indicate the outperformance of the proposed
method.

RIPSP is just one general issue of PSPs and the newly designed MBS repre-
sentation and the corresponding decoding method can be extended to other PSPs.
Therefore, the extending of MBS representation and the decoding method for solv-
ing other variations of PSPs will be our future work.
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