
AIMS Public Health, 9(2): 415–422. 

DOI: 10.3934/publichealth.2022028 

Received: 09 February 2022 

Revised: 23 March 2022 

Accepted: 30 March 2022 

Published: 12 April 2022 

http://www.aimspress.com/journal/aimsph 

 

Review 

Mechanism of Antiviral Activities of Nanoviricide’s Platform Technology based Biopolymer 

(NV-CoV-2) 

Ashok Chakraborty1,*, Anil Diwan2, Vinod Arora1, Yogesh Thakur1, Vijetha Chiniga1, Jay 

Tatake1, Rajesh Pandey1, Preetam Holkar1, Neelam Holkar1 and Bethany Pond1 

1 Department of Biochemistry, AllExcel, Inc., 118, Wood Street, Ste 201, West Haven, CT 06516, USA 
2 Department of Virology, NanoViricides, Inc., 1, Controls Dr. Shelton, CT 06484, USA 

* Correspondence: Email: ashok.chakraborty@allexcel.com; Tel: +12039070237; Fax: 

+12035138809. 

Abstract: NV-CoV-2 is a nanoviricide that is covalently bonded with polyethylene glycol (PEG) and 

alkyl pendants. This molecular design is used to attack many strains of coronaviruses in a 

broad-spectrum manner. The ligand works by competitive inhibition and binds to the same site on the 

S-protein of SARS-CoV that attaches to the cognate cellular receptor, ACE2. This prevents 

SARS-CoV from binding and infecting the cell. NV-CoV-2 is designed to bind to the free virion 

particles at multiple points encapsulate the virus and disable its ability to infect the cells. The 

multi-point binding interaction, like a nano-velcro-tape, may lead to lipid-lipid fusion of the alkyl 

chains in the nanoviricide micelle with the lipid envelope of the virus. The virus becomes dismantled 

to a capsid form before the host immune system becomes involved. This putative mechanism is 

orthogonal to many other anti-coronavirus agents in development. Thus, it maybe possible to produce 

a stronger antiviral effect when combining NV-CoV-2 therapy with other anti-coronavirus therapies 

such as Remdesivir (RDV). NV-CoV-2 can encapsulate other antiviral compounds as well. In this 

study, RDV was encapsulated and protected from serum-mediated degradation in vivo. As a result, 

RDV was available for a longer period of time to interact with RNA polymerase and inhibit. 
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1. Introduction 

Nanoviricide® is a platform technology based biopolymer that is used as a broad-spectrum antiviral 

compound [1]. The flexible polymer backbone is comprised of a polyethylene glycol (PEG) and alkyl 

pendants. PEG forms the hydrophilic shell and imparts non-immunogenicity. In fact, a familiar 

technique used to minimize immunogenicity of proteins and antibodies is known as PEGylation. The 

alkyl chains float together to make a flexible core, like an immobilized oil droplet. The resulting 

materials are polymeric surfactants that form stable micelles and not dynamic micelles that liposomes 

form. Chemical groups are uniformly distributed along the polymer chain, which allow attachment of 

virus-specific ligands like chemical moieties, peptides, antibody fragments or other proteins (Figure 1). 

 

Figure 1. Novel platform technology: A nanoviricide is a cell mimic. A, B: HIV particle 

is binding to a cell via CD4 and a co-receptor. C: A nanoviricide “looks like” a human 

cell to the virus. 

Nanoviricides are large enough for a virus particle to latch onto it, yet small enough to be 

circulated in the body. A nanoviricide wraps around the virus particle and encapsulates it, preventing 

the virus’s ability to enter a cell. The viral resistance to the nanoviricide drug is unlikely because it still 

will bind to the same cell surface receptors, even if the virus mutates. 

NV-CoV-2 is a nanoviricide that is recently being developed to treat the SARS-CoV-2 infection. 

NV-CoV-2 is an off-white, odorless material. At room temperature the material is a waxy, 

non-crystalline semi-solid that tastes slightly sour [2] 

(https://www.genengnews.com/covid-19-candidates/nanoviricides/). 

Proof-of-Concept studies were completed through both in vivo and in vitro studies. The human 

coronavirus, CoV-NL63 was used in the virus-infected cell culture and rats [3–8]. Similarly to 

SARS-CoV-2, CoV-NL63 also binds to the angiotensin-converting enzyme 2 (ACE2) in order to enter 

into the host cells [6,7]. Therefore, CoV-NL63 is an appropriate model virus for the proof-of-concept 

studies for both in vitro and in vivo [3–8]. 

 

 

https://www.genengnews.com/covid-19-candidates/nanoviricides/
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2. Mechanism of action 

2.1. The broad spectrum of the antiviral activity of a nanoviricide 

A nanoviricide is composed of a number of antiviral small chemical ligands that are covalently 

attached to a micelle-forming polymeric chain. The polymeric chain is a homopolymer of a 

monomer that is covalently bonded to polyethylene glycol (PEG), a connecting group and alkyl 

pendants. Self-assembly of the polymeric chain will occur in an aqueous solution where the PEG 

shell surrounds the hydrophobic alkyl core. This particular ligand is designed through molecular 

modeling to bind to the S-protein of SARS-CoV-1 and prevent the virus from binding to the cognate 

cellular receptor, ACE2. Therefore, the nanoviricide, NV-CoV-2 was designed to prevent 

coronaviruses such as SARS-CoV-1, SARS-CoV-2 and NL63 from binding to the ACE2 receptor. In 

addition, NV-CoV-2 has similar activity against the human coronavirus 229E (hCoV-229E), which 

uses Aminopeptidase N (APN) as its cellular receptor instead of ACE2 [7]. There are certain 

conserved elements in the quaternary structures in both peptidases ACE2 and APN that may explain 

why NV-CoV-2 works similarly on both [8]. The broad-spectrum activity of NV-CoV-2 working 

against both hCoV-NL63 and hCoV-229E indicates that it may continue to stay active against a 

number of coronaviruses, even after it mutates [5–11]. This proposed mechanism of action is shown 

graphically in Figure 2. 

 

Figure 2. The graphic representation of the mechanism of action when a Nanoviricide 

binds and inactivates the viruses. Step 1: A nanoviricideTM binds to virus particle; Step 2: 

Lipid fusion of bound nanoviricideTM with the virus particle; Step 3: Bound 

nanoviricideTM encapsulates the virus particle; Step 4: The virus particle is destroyed by a 

nanoviricideTM. 



418 

AIMS Public Health  Volume 9, Issue 2, 415–422. 

2.2. Encapsulation of the virus leads to disintegration 

NV-CoV-2 is designed to bind to the free virion particles at different places through 

receptor-ligand interaction and encapsulate the virus. Encapsulation of the virus disables its ability to 

infect the cells. Similarly to “nano-velcro-tape”, this multiple binding interaction may lead to a 

lipid-lipid fusion of the alkyl chains in the nanoviricide micelle with the lipid envelope of the virus. 

This dismantles the virus to a capsid form, which does not require any involvement from the host 

immune system. This putative mechanism is orthogonal to many other anti-coronavirus agents that are 

in development [12].  

The support of this mechanism is shown in the electron photomicrographs of Figure 3. In this 

study, the murine cytomegalovirus (CMV) was incubated with a nanoviricide. The loss of the viral 

envelope occurred when the nanoviricide started to bind to the CMV receptors, which made the virus 

non-infectious to other cells (Figure 3B,C). As a result, the binding of the nanoviricide renders the 

CMV to become inactive due to the capsid organization becoming disrupted. The proposed 

mechanism of action for the nanoviricides is not expected to interfere with the intracellular replication 

of the virus to any appreciable extent [13]. Therefore, it may be possible to achieve a stronger antiviral 

effect in the future by combining NV-CoV-2 therapy with other anti-coronavirus therapies  

 

Figure 3. The effects of two different nanoviricides binding to Murine Cytomegalovirus 

(MCMV). A: Control Treated virion: MCMV containing multiple capsids and a lipid coat 

with coat proteins; B, C: MCMV virions treated with two different nanoviricides. Virion 

disruption with capsids spilling out. 

2.3. Protection by encapsulation during delivery of other antiviral drugs 

It’s possible that NV-CoV-2 can only deliver encapsulated cargo into infected cells and not 

healthy cells. In fact, it’s only the infected cells that display the viral antigen S-protein (S1 and S2 

proteins) on either the budding virion or on the exposed cell membrane structures were NV-CoV-2 
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binds. In addition, NV-CoV-2 can encapsulate to protect other antiviral drugs and act as a double arm 

effector in humans. 

It is hypothesized that NV-CoV-2 may provide substantial antiviral effects in vivo, which could 

result in rapid recoveries of the patients. The proposed combination is NV-CoV-2 encapsulating 

remdesivir (RDV) during the standard RDV treatment. RDV is the only antiviral drug approved and 

being used against the SARS-CoV-2 virus. RDV is the only anti viral that has recently been approved for 

using against SARS-CoV-2 virus. However, the efficacy of RDV in vivo studies is very low compared to 

in vitro cell culture studies. RDV is very unstable in the presence of plasma [2]. However, when RDV 

was encapsulated by NV-CoV-2, the antiviral efficacy of RDV increased in the rat studies [3,4]. In this 

study the untreated rats and the vehicle-treated rats infected with the CoV-NL63 virus only survived for 

5 days. The rats treated daily with a dose of RDV at 10 mg/kg, survived up to 7.5 days. The group of rats 

treated with NV-CoV-2, 320 mg/kg survived until day, 14. The survival rate of the rats administered 

with NV-CoV-2-R for 5 days increased to 18 days [3]. Therefore, NV-CoV-2-R clearly demonstrates 

antiviral efficacy in this in vivo animal study infected with the CoV-NL63 virus. 

3. Discussion 

NV-CoV-2 is a “nanoviricide®” that is designed to attack most strains of coronaviruses in a 

broad-spectrum manner. It is composed of a number of antiviral small chemical ligands that are 

covalently bound to a micelle-forming polymeric chain. This particular ligand is designed through 

molecular modeling to bind to the S-protein of SARS-CoV-1 and prevent the virus from binding to 

the cognate cellular receptor, ACE2. Therefore, NV-CoV-2 was designed to prevent coronaviruses 

such as SARS-CoV-1, SARS-CoV-2 and NL63 from binding to the ACE2 receptor. NV-CoV-2 also 

has activity against the human coronavirus 229E (hCoV-229E), which binds to the Aminopeptidase 

N (APN). This appears to be because of the certain conserved elements in the quaternary structures 

of ACE2 and APN that are both peptidases with different specificities. The broad-spectrum activity 

of NV-CoV-2 against both h-CoV-NL63 and h-CoV-229E indicates that it may continue to be active 

against a number of coronaviruses, even after it mutates [1].  

The mechanism of action of NV-CoV-2 is not well defined yet, but is hypothesized to bind to 

free virion particles at multiple points and encapsulate the virus. Once the virus is encapsulated, it 

becomes neutralized and its ability to infect cells is disabled. This putative mechanism is orthogonal 

to many other anti-coronavirus agents that are being developed. Furthermore, it may be beneficial 

and possible to achieve a stronger antiviral effect by combining NV-CoV-2 nanoviricide with other 

anti-coronavirus therapies in the future.  

We have experienced that NV-CoV-2 works in three different ways to destroy the SARS-CoV-2 

virus. which causes COVID-19. First, a nanoviricide micelle will bind to a virus particle because of 

the specific interaction between a ligand on the nanoviricide with the glycoproteins on the virus 

surface. The flexible nanoviricide can get close to the virus and cause additional ligands to bind to 

additional viral coat proteins, in a mode called “co-operative binding”. Co-operative binding is a 

well-known natural process that forms the basis of biological recognition such as antibody-antigen 

binding complexes, DNA hybridization, and protein assembly. The idea that multiple ligands are 

attached to a single polymer chain and multiple polymer chains make up a single micelle may lead to 

a very high avidity for the micelle to bind to the virus. This is analogous to the “Velcro” effect that 

results from cooperative interactions. This property enables the use of ligands that may individually 
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have low affinity, but the polyvalency can result in very high avidity. This concept has been shown 

quite convincingly with polymeric vs. monomeric inhibitors in the scientific literature [12,13].  

An analogy may be drawn between nanoviricides and neutralizing anti-viral antibodies. 

Antibodies are an integral part of the natural immune process to bring infections under control. 

Antibodies can ameliorate or prevent many viral infections and may aid in the resolution of viral 

infections. Some antibodies do this through a process called neutralization. Antibodies can neutralize 

viral infectivity by causing aggregation of the virus particles, inhibiting the virus from binding to its 

host cell surface receptor(s), blocking endocytic uptake into cells and/or preventing virus uncoating 

in endosomes. When anti-viral antibodies bind to the viruses, the resulting complexes can be lysed 

upon subsequent binding by complement factors. In addition, virus-antibody complexes can be taken 

up by phagocytes and destroyed. In contrast, a nanoviricide micelle binds to a virus particle through 

van der Waals interactions and promotes encapsulation of the virus particle. Re-arrangement of the 

polymeric chains takes place where the lipid tails of the nanoviricide micelle integrate with the lipid 

membrane coating the virus (for “enveloped” viruses). Encapsulation of the virus particle may lead 

to the viral envelope becoming dismantled, viral surface lipids getting stripped off and the removal 

of glycoproteins that are necessary for viral adsorption and cellular entry. 

Viruses bind to specific cell surface ligands in order to attach to cells and internalize. 

Nanoviricides become very useful by neutralizing these crucial steps of the viral particles. A 

nanoviricide is designed to act like a human cell decoy. When the virus sees the appropriate ligand 

displayed on a nanoviricide micelle, the virus is believed to bind to it. The nanoviricide is very 

flexible and can bind all over the viral particle surface, which could potentially lead to fusion with 

the lipid-coated virus surface by a phase-inversion. Basically, the fatty core of the nanoviricide could 

merge with the viral lipid coat and the hydrophilic shell of the nanoviricide could become the 

exterior of the particle, completely engulfing the virus. Once encapsulation occurs the coat proteins 

that are necessary for the virus to bind to other cells becomes unavailable. This highly targeted attack 

may also lead to a loss of viral coat proteins and the nanoviricide may further dismantle the engulfed 

virus capsid. The loss of virus particle integrity could render the virus non-infectious. This proposed 

mechanism of action (Figure 2) supports the electron photomicrographs (Figure 3), where the murine 

cytomegalovirus (CMV) was incubated with a nanoviricide. Figure 3B,C demonstrates inactivity 

because it is believed there is a disruption of capsid organization. Given this proposed mechanism of 

action, nanoviricides are not expected to interfere with the intracellular replication of the virus to any 

appreciable extent. 

The antiviral efficacy, potency and the cytotoxicity of the antiviral compound NV-CoV-2 was 

studied in cell cultures [4–8]. A relative CPE level was compared between all groups to identify any 

reduction in the viral replication. Reduction in the CPE levels was compared to untreated infected 

controls which suggests there is a decrease in the virus production, growth and spread. Furthermore, 

the polymer encapsulation renders RDV highly effective against SARS-CoV-2 by protecting the drug 

against the plasma [4] (Figure 4).  

Treatment with NV-CoV-2 and NV-CoV-2-R extended the survival of the rats infected 

intra-tracheally with a lethal dose of human CoV-NL63 virus. In fact, NV-CoV-2-R showed a better 

effect than NV-CoV-2, and both treatments were better than RDV treatment alone. Thus, NV-CoV-2-R 

clearly demonstrates antiviral efficacy in this lethal infection model with CoV-NL63 virus. 



421 

AIMS Public Health  Volume 9, Issue 2, 415–422. 

 

Figure 4. Graphical representation of a Nanoviricide (NV-CoV-2) mechanism of action. 

Mechanism I: Step I–1: NNVC attacks Virus; Step I–2: NNVC binds to the Virus; Step I–3: 

Encapsulate the Virus; Step I–4: Destroy the Virus. Mechanism II: Competitive binding of 

Virus and Nanoviricide to the same cell receptor. Mechansim III: Protective delivery of 

active antiviral RDV by Nanoviricide enabling a double arm effect against virus. 
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