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Abstract: Starting February 2020, COVID-19 was confirmed in 11,946 people worldwide, with a
mortality rate of almost 2%. A significant number of epidemic diseases consisting of human Coron-
avirus display patterns. In this study, with the benefit of data analytic, we develop regression models
and a Susceptible-Infected-Recovered (SIR) model for the contagion to compare the performance of
models to predict the number of cases. First, we implement a good understanding of data and perform
Exploratory Data Analysis (EDA). Then, we derive parameters of the model from the available data
corresponding to the top 4 regions based on the history of infections and the most infected people as
of the end of August 2020. Then models are compared, and we recommend further research.
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1. Introduction

A pandemic is defined as “an epidemic occurring worldwide, over a very wide area, crossing inter-
national boundaries, and usually affecting a large number of people” [1]. Since this is a broad definition
that could include seasonal epidemics (which are discarded pandemics), the transmissibility and sever-
ity of a disease can be measured to characterize and further describe it. One metric used to measure
the transmissibility of a disease is the effective reproduction number (R), which represents the average
number of persons infected by one single infectious individual. A measure of severity is the case fatal-
ity ratio, which represents the number of deaths caused by the disease. The World Health Organization
(WHO) lists nineteen(19 ) pandemic, epidemic diseases: Chikungunya, Cholera, Crimean-Congo hem-
orrhagic fever, Ebola virus, Hendra virus infection, Influenza (pandemic, seasonal, zoonotic), Lassa
fever, Marburg virus disease, Meningitis, MERS-CoV, Monkeypox, Nipah virus infection, Plague, Rift
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Valley fever, SARS, Smallpox, Tularaemia, Yellow fever, and Zika virus disease [2]. On March 11,
2020, the WHO declared the novel coronavirus (2019-nCoV) a global pandemic, adding the twentieth
disease to this list [3]. On April 25, 2020, the number of confirmed cases reached 2,810,325 and the
number of confirmed deaths 193,825, affecting in this way 213 countries, areas, or territories [4].

Some papers discussed the international trade as driver of virus spread [5–7]. Some studies dis-
cuss SARS-CoV-2 and the corresponding disease [8–10] Many researches have discussed the matter
as of the effective reproduction numbers [11, 12]. Many researches cover the environmental effect of
COVID-19. A study tries to find the connection between weather factors and the spread of virus [13].
Coccia, in his study, discussed the geo-environmental effect on the spread of the COVID-19. Data
from North Italy showed a high association between air pollution and the number of infected individ-
uals [14–18]. Regarding the spread of the COVID-19 in another work, he discussed geo-ecological
determinants of the sped-up dissemination of COVID-19 [19]. Following his work he also developed
two indexes which measure the exhibition to confront pandemic dangers by nations, also discussed
economic growth of nations [20, 21]. Another study has assessed the connection between ecological
contamination determinants and the COVID-19 flare-up in California [22].

Although there are still many questions about this disease, data is being collected and used to learn
more about this disease. This study seeks to predict the number of confirmed cases and the number
of deaths with the epidemic model and data analytical models. Data analytic have been used in many
different areas such as transportation, finance [23] and healthcare. Pandemics have been a topic of
interest to several researchers in the data analytic field. Consequently, researchers have been used
different models to study the behavior of the data, gain some insight, and draw conclusions. One
popular model that is being used is the SIR model. One of the most recent pandemics (before COVID-
19) was the H1N1 [24]. According to the Centers for Disease Control and Prevention (CDC), between
April 12, 2009, and April 10, 2010, the number of cases reported was 60.8 million and the number of
deaths 12,469 in the United States [25]. Ebola (first discovered in 1976) had a recent large outbreak
in West Africa (2014–2016). In this significant outbreak, there were 28,652 cases and 11,325 deaths
according to the CDC [26].

Chowell et al. [27] discussed the most common modeling approaches used to study and analyze
the early spread of an epidemic. These approaches include meta population spatial models, individual-
based network models, examining early growth from spatial models (including the SIR model), SIR
model with reactive behavior changes, and SIR model with inhomogeneous mixing. The authors iden-
tified a gap that requires the incorporation of imperative epidemic features, such as a flexible epidemic
growth (from polynomial to exponential dynamics). Mutalik [28] provided a literature review of math-
ematical models used to predict H1N1 outbreaks. The author included thirty-one (31) articles; nine
(9) of them used the SIR model, and the other nine (9) use the SIER model. Other models included:
SIS; Compartmental Model; combined model; combined model with SIER – two models only; early
exponential growth rate, simple SIER model and complex SIER model, stochastic SIR model; the com-
bination of SIS, SIR, SIER. The author found that the most used mathematical model was the SIER
model. The author concluded that a mathematical model along with another secondary model would
generate a better prediction.

Zhan et al. [29] used COVID-19 historical data of 367 cities in China and obtained the set of param-
eters of the augmented Susceptible - Exposed-Infected-Removed (SEIR) model for each city; to create
a set of profile codes representing a variety of transmission mechanisms and contact topology. They
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compared data of the early outbreak of a given population with the complete set of historical profiles.
Then, they selected the best-fit profiles and used the corresponding sets of profile codes for predicting
the future progression of the epidemic in that population. They applied the method to the data of South
Korea, Italy, and Iran. The results showed that peaks of infection cases were expected to happen before
the end of March 2020. Moreover, the percentage of the population infected in each city would be
less than 0.01%, 0.05% and 0.02%, for South Korea, Italy, and Iran, respectively. In another research
Lover and McAndrew [30] used the exponential growth model and epidemiological parameters from
the epidemic in Wuhan, China to forecast cumulative infections in the United States. Their forecast
results showed that a significant number of infections are undetected, and without considerable non-
pharmaceutical interventions, the number of infections are expected to grow exponentially. In another
work, Liu et al. [31] used the SEIR model combined with network-driven dynamics to simulate the
spread of COVID-19 in the United States accounting for the domestic air traffic occurring amongst
the 50 US states, Washington DC, and Puerto Rico. Based on the model predictions for March 14 to
March 16, if no containment plans were done, the national epidemic peak could be expected to arrive
by early June, corresponding to a daily active count of 7% of the US population. Their results showed
that Epidemic peaks were expected to arrive in the Washington and New York states by May 21 and
25, respectively. They also reported that the epidemic progression could be delayed by up to 34 days
with a modest 25% reduction in COVID-19 transmissibility via community-level interventions. One
work has discussed the prediction of cases in United States using ARIMA and SARIMA models [32].
Another model was implemented by Roosa et al. [33]. They used three phenomenological models
to do short-term forecasts in real time. The models had been previously used to perform short-term
forecasts for several infectious diseases, including SARS, Ebola, pandemic influenza, and dengue. The
generalized logistic growth model (GLM) extended the simple logistic growth model to accommodate
sub-exponential growth dynamics with a scaling of growth parameter, p. The Richards model also
included a scaling parameter, a, to allow for deviation from the symmetric logistic curve. They also
included a sub-epidemic wave model that supports complex epidemic trajectories, including multiple
peaks. Based on data up until February 9, 2020, their forecasts agreed across the three models pre-
sented to a large extent and predicted an average range of 7409–7496 additional confirmed cases in
Hubei and 1128–1929 additional cases in other provinces within the next five days. Models also pre-
dicted an average total cumulative case count between 37,415 and 38,028 in Hubei and 11,588–13,499
in other provinces by February 24, 2020. Taking into account the nature of the epidemic disease data is
time series, Gupta and Pal [34] applied the ARIMA model to predict the future trends in India. Based
on their forecasts generated by the ARIMA model, the number of infected cases in India may go up
to 700 thousand in the next 30 days in the worst-case scenario. However, the most optimistic scenario
may show the numbers up to 1000–1200. Moreover, the average number of infected cases predicted
by the ARIMA model was around 7000 in the next 30 days while the current number was 536. Some
studies have discussed the inefficiency of the SIR model and developed a modified SIR model [35–37].
A study used the Susceptible-Infectious-Recovered-Dead (SIDR) model and data of the COVID-19
spread in Hubei, China from January 11 to February 10, 2020, to estimate the parameters of basic
reproduction number R0 (2.6 based on confirmed cases and almost 2 considering twenty times the
number of confirmed cases and forty times the number of recovered) and per day infection mortality
(0.15% considering the second scenario) and recovery rates. The authors also predicted that the epi-
center would be on February 29, 2020, with a cumulative number of infected of 45,000–180,000 and a
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number of deaths of more than 2,700 [38]. Read et al. [39] applied a fitted a deterministic SEIR meta
population transmission model with an assumed four (4) days incubation period (based on a SARS
approximation) to estimate the R0, which ranges between 3.6 and 4.0. Moreover, they estimated a
transmission rate of 1.07 within Wuhan. The authors estimate that only 5.1% (with a 95% confidence
interval) of infections in Wuhan are identified. They also predict more than 190,000 cases by February
4, 2020.

While different models have been proposed [40, 41], it is hard to predict the number of cases because
non identifiability in model alignments utilizing the affirmed case information [42]. To compare this
study with previous researches, one study has compared the SEIR model with the polynomial model
and SEIR showed better results in long term [43]. Another work compares The SIR and the ARIMA
model and showed the ARIMA model outperforms the SIR model [44]. This work tries to give a good
understanding of the data by providing data visualization in different models. In the next step, we are
trying to investigate the modeling and prediction based on each model. We have used logistic function,
linear regression, SIR model which is the well-known epidemiologic model, and ARIMA model a
time series model to define and predict the number of cases for four countries. These four countries
are selected based on the highest number of infected individuals at the period of study. The rest of
the study is classified as materials and methods in the second part which describes the data and model
used, results and discussion which clarify the outcomes of the models, and conclusion at the end.

2. Materials and method

2.1. Sample and data

For this research, we have used GitHub data repository managed by Johns Hopkins University
which contains daily time series summary tables, including confirmed, deaths and cases infected more
than once per day. Daily data of the influenced individuals are very helpful for data scientists. All
data are from the daily case report, retrieved from: https://github.com/CSSEGISand Data/COVID-19.
The number of global confirmed cases and deaths since January 22 is graphically illustrated in Figure
1. It shows that the expansion begins between March and April 2020. It is important to note that
this number includes the reported cases of people who have been tested. No nation knows the actual
number of individuals tainted with COVID-19. All we know is the status of the individuals who have
been tested. Each of them who has lab-affirmed contamination is considered as a confirmed case. This
implies the tallies of affirmed cases rely upon how much a nation really tests and the reliability of
results correctness. To decipher any information on the confirmed cases we have to know how much
testing for COVID-19 the nation really does. Although these numbers do not exactly reflect the real
situation that the world is facing, they still give valuable insight into the behavior of this disease’s
growth. We broke down our data sets with various EDA techniques and envisioned that information to
give an adequate cognizance concerning the flare-up of COVID-19. The top four nations with the most
infected patients are the USA, Brazil, India, and Russia.

We have separated the number of confirmed cases and the fatalities to show how Coronavirus is
contaminating individuals in each country. This measurement offers two key experiences: initially as a
proportion of how sufficient nations are testing; furthermore to assist us with understanding the spread
of the infection, related to information on confirmed cases. The positive rate is a decent measurement
for how satisfactorily nations are trying because it shows the degree of testing compared to the size of
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the episode. To have the option to appropriately screen and control the spread of the infection, nations
with more boundless flare-ups need to accomplish all the more testing. For classification, regression,
or forecast of a specific issue, feature selection techniques can be utilized to discover the highlights that
have the most elevated effect on that issue. As indicated by Figures 2 and 3, it doesn’t appear that the
spread is controlled in any of the referenced nations. As we can see in the depicted charts, the United
States has the highest number of infected patients. The figure shows that in almost 4 months of the first
case announced in the United State more than 5 million people were infected and after that India has
the sharpest rate of infection.

Figure 1. Global number of confirmed cases and deceased cases.

Figure 2. Confirmed cases per country.
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Figure 3. Deceased cases per country.

2.2. Model and data analysis

The mathematical modeling of epidemics has been the object of a vast number of studies over the
past century [45]. Given the importance of epidemics for life on Earth in general, it is not in the least
astonishing that the desire to understand their mechanism has led to the formulation of models which
make possible the simulation of events for which laboratory experiments cannot be conducted easily
[37]. The reason we have chosen the SIR model is that there is not enough evidence that the patient
might not be immune to the disease. Prominent among the mathematical models of epidemics, and
great historical importance, is the susceptible–infected- removed (SIR) model initially proposed by
Kermack and McKendrick [46]. The model has been defined with three groups of healthy people who
are susceptible (S), infected individuals (I), removed individuals either by them being recovered and
immunized or by their death (R). Since the number of susceptible, infected, and recovered people may
fluctuate over time, the SIR model is dynamic. Flowing from susceptible to infected and then recovered
could be showed in the Figure 4.

In this model, the infection rate is β, which is the probability of transmitting disease between a
susceptible and an infectious individual. γ is the recovery rate. N is defined as population and is equal
to N = S + I + R. We can write the SIR model as the following differential equation:
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dS
dt

=-
βS I
N

(1)

dI
dt

=
βS I
N
− γI (2)

dR
dt

=γI (3)

Figure 4. SIR following.

To perform the SIR model we have started with 1000 as the number of population. We have used
an initial number of infected equal to one and an initial number of removed equal to zero as the data
set. Therefore, everyone else is susceptible to infection initially. After taking several tests on the
model we have observed that the best combination of the beta and gamma for our data set would be
β = 3.524 which is a mean number of contacts (sufficient to spread the disease per day that each
infected individual has) and also γ = 3.45 the infected group that recovers (or dies) during any given
day. In this model, we did not consider the influence of immigration because once an epidemic has
started, the impact of any additional immigrants is small. The relative impact of an immigrant in the
subsequent growth of the epidemic drops geometrically with the number of local infected [47].

Our general surroundings are profoundly muddled. For instance, how an infection spreads, includ-
ing the novel strand of Coronavirus (SARS-CoV-2) that was distinguished in Wuhan, China, relies on
numerous components, among which some of them are considered by the exemplary SIR model, which
is somewhat oversimplified and can’t contemplate floods in the number of susceptible people. Regres-
sion models are utilized to assess or anticipate the target variable based on dependent factors. As we
know regression modeling characterizes an influential technique to model and estimate the target vari-
able. For the instance of predicting a continuous amount response variable regression is utilized, while
classification is reasonable for foreseeing a discrete class label response. Subsequently, for demonstrat-
ing the number of confirmed cases after some time and anticipating future development, regression is
thought of. To model the relationship between the response and the explanatory variable we are going
to use linear regression. Simple linear regression is a model with a single regressor x that corresponds
to a response variable y. Simple linear regression can be formulated as follow:

y = β0 + β1x + ε (4)

where β0 is intercept and β1 is the slope. Both of these parameters are constant. Here ε is a random
error component.

The logistic equation was initially advanced in 1920 not as an advantageous depiction, yet as a law
of development, and was enthusiastically condemned by statisticians and biologists for the resulting
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decade and a half. However, it endured and rose in an alternate setting as one of the base models of
experimental populace biology in the 1930’s and 1940’s. The move from dismissal to acknowledgment
was in no way, easy and was not just because of biologists’ progressive acknowledgment of the natural
value of the curve. The logistic curve portrays the development of a populace after some time. In its
easiest structure it is S-shaped, balanced, and is portrayed with the equation:

f (x) =
L

1 + e−k(x−x0) (5)

where
x0 = sigmoid’s midpoint,
L = the curve’s maximum value,
k = the logistic growth rate.

This equation communicates all the more the essential proposal underlying the logistic hypothesis,
that the pace of growth diminishes linearly as the population increases. The underlying phase of growth
is almost exponential; at that point, as immersion starts, the growth eases back to linear, and at the end,
stops the growth. The model can provide a forecast for 3 out of 4 countries closely as the actual data.
we have used 200 days to train the model and we have tested the model over the 50 days data after the
200 data.

ARIMA model is a well-known and generally utilized statistical technique for time series forecast-
ing. “Auto-Regressive Integrated Moving Average” is a given time series dependent on its previous
values, to forecast future values using the equation. non-seasonal time series with patterns that are
not white noises can be modeled by ARIMA. ARIMA model was presented by Box and Jenkins in
1970. ARIMA models have demonstrated proficient ability to create short-term forecasts. This model
is based on the idea that variables future value is dependent on the past values of that variable and
errors of that variable. This is conveyed as follows:

Yt = φ0 + φ1Yt−1 + φ2Yt−2 + ...φpYt−p + εt − θ1εt−2 − ... − θqεt−q (6)

where,
Yt is the real value,
εt is the random error at time t.

The steps in building ARIMA predictive model consist of model identification, parameter estima-
tion, and diagnostic checking [48]. ARIMA model has been fitted to the data using 180 days as train
data and the rest as test data. We can interpret from the charts that the model can be utilized in short-
term predictions since the data is changing in long term.

3. Results and discussion

Late epidemic behavior identification is important for monitoring and preventing infectious dis-
eases. The effectiveness of predictive models in predicted incidences of infectious disease has proven
to be useful. In this stage, we have all the results gathered as the following charts. Four different mod-
els were tested for four different countries with the highest number of infected individuals at the time
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of the study. Different models have depicted different behaviors for each country. The results might
change by expanding the time of the study or by changing the time of the study to another section.

Here we have the results for the SIR model in Figure 5. After calculating the best-fit parameters of
the model we plotted the best model for each country. The following figure shows the best possible
fit of the data for the United States, Brazil, India, and Russia. The model does not show a good fit for
the number of infected individuals. Results indicate that for the United States at early stages the SIR
model cannot predict the surge accurately, while it can predict the last surge of the infected individuals.
In the case of India, this division is smaller and the graph shows a better fir for India. SIR model is
acting the same for Brazil as it did for The United States. Again here we can see the first surge of the
infected individuals was not accurately modeled while it was performing better in the second surge.
Again the same thing happens for Russia. The results are quantified by using a MSE measure which is
mean squared error that is calculating the mean squared difference between the estimated values and
the actual value. Here we have MSE(US) = 8127.7, MSE(India) = 3781.9, MSE(Brazil) = 8430.9,
MSE(Russia) = 7321.2. At the end of this section, we will compare the MSE results for different
methods.

Figure 5. SIR model.

The graphical and the MSE result shows that the SIR model can not provide a useful early prediction
of the epidemic in this case. To improve we have decided to move to regression analysis. Moving
forward we have Linear Regression as our second model. Figure 6 demonstrates the results for linear
regression of the four countries. Over the test results, we can see that linear regression has performed a
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better prediction for Brazil over the three other countries. This shows that linear regression can not be
used in long term and since this data is nonlinear, a linear model could not explain the data perfectly.
By skimming through the charts we can say performs the worst for the United States and India while
is performing better for Brazil and Russia. To quantify the error again we have MSE(US) = 3241.2,
MSE(India) = 3561.3, MSE(Brazil) = 2658.1, MSE(Russia) = 2601.8. Comparing SIR and linear
regression here based on MSE error we can see linear regression is performing a better prediction in
the short term.

Figure 6. Linear regression.

For our third model, we have explained the Logistic Regression in section 2. We have discovered
a Logistic Function that is very near the watched COVID-19 information from these four countries.
Results for this model are depicted in Figures 7, 8, 9 and 10. The visual examination of the charts says
that the model is performing better than the SIR and linear regression. This is to say that the model is
visually performing the best for India. To better understand the performance of the model it is better to
take a look at the error. Here we have MSE(US) = 678.7, MSE(India) = 631.3, MSE(Brazil) = 731.0,
MSE(Russia) = 1501.1. Comparing the MSE we can see model is outperforming in India. Comparing
SIR, linear regression, and logistic regression here based on MSE error we can see logistic regression
is performing a better prediction in the short term.

Moving on to the last model we have used the ARIMA model to predict the number of infected
individuals. Figure 11 is the representation of the model. Albeit further information is required for a
more point-by-point forecast, the spread of the infection appears to be modeled precisely. Determining
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Figure 7. Logistic curve for US.

Figure 8. Logistic curve for India.

Figure 9. Logistic curve for Brazil.

the level of difference, the ARIMA model helps the data remain stationary. This will result in more
flexibility for the modeling. Results for the ARIMA model indicate that the model can capture the
effect of change in every stage of the data precisely. Errors again is the best representation of the
accuracy of the model here. For the ARIMA model we have MSE(US) = 120.2, MSE(India) = 146.8,
MSE(Brazil) = 165.4, MSE(Russia) = 102.7. This represents that comparing four models together the
ARIMA model managed to present the minimum error for the prediction that means is outperforming
the other three models.
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Figure 10. Logistic curve for Russia.

Figure 11. ARIMA model.

4. Conclusions

It is necessary to collect and analyze data of a pandemic to assess strategies of intervention, manage-
ment, and control. This analysis gives a crucial baseline of the characteristics of the transmission and
severity of the infectious disease. This study analyzes the behavior of the COVID-19 pandemic in the
United States. Moreover, a SIR-based model, Linear Regression, Logistic Regression, and ARIMA
model are presented to predict the number of cases and fatalities of this pandemic. Future research
could use other models such as variations to the basic SIR model or individual-based network models.
Comparisons among these models, in terms of accuracy and magnitude of error, could be made. Re-
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sults showed that the ARIMA model outperforms all three in the case of prediction. As the case of the
limitation of the study was the effect of other parameters like environmental and management effects
of the data which cannot be modeled in the series of models presented in this paper. There are some
extensions to the sir model that could be considered for further studies. Also, the ARIMA model could
be extended to the SARIMA.
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