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Abstract: Enteric neurons and ganglia are derived from vagal and sacral neural crest cells, which 
undergo migration from the neural tube to the gut wall. In the gut wall, they first undergo rostrocaudal 
migration followed by migration from the superficial to deep layers. After migration, they proliferate 
and differentiate into the enteric plexus. Expression of the Rearranged During Transfection (RET) gene 
and its protein RET plays a crucial role in the formation of enteric neurons. This review describes the 
molecular mechanism by which the RET gene and the RET protein influence the development of 
enteric neurons. Vagal neural crest cells give rise to enteric neurons and glia of the foregut and midgut 
while sacral neural crest cells give rise to neurons of the hindgut. Interaction of RET protein with its 
ligands (glial cell derived neurotrophic factor (GDNF), neurturin (NRTN), and artemin (ARTN)) and 
its co-receptors (GDNF receptor alpha proteins (GFRα1-4)) activates the Phosphoinositide- 
3-kinase-protein kinase B (PI3K-PKB/AKT), RAS mitogen-activated protein kinase (RAS/MAPK) 
and phospholipase Cγ (PLCγ) signaling pathways, which control the survival, migration, proliferation, 
differentiation, and maturation of the vagal and sacral neural crest cells into enteric neurons. 
Abnormalities of the RET gene result in Hirschsprung’s disease. 
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Abbreviations: AP-1: Activating protein 1; ARTN: Artemin; ATF2: Activating transcription factor 2; 
BMK1: Big MAP kinase; CAMK II: Calcium calmodulin-dependent kinase II; CAT: Cool-associated 
tyrosine-phosphorylated; CJN Kinase: C-Jun N-terminal kinase; CLD: Cadherin-like domain; EIK-1: 
E-twenty-six (ETS)-like transcription factor 1; ELK-7: E-twenty-six (ETS)-like transcription factor 7; 
ERK: Extracellular signal-regulated kinase; E2F: E 2 transcription factor; GDNF: Glial cell‐derived 
neurotrophic factor; GDP: Guanosine diphosphate; GEF: Guanine nucleotide exchange factor; 
GFR(α1-4): Glial cell derived neurotrophic factor receptor alpha proteins 1-4; GPI: 
Glycosylphosphatidylinositol; GRB2: Growth factor bound receptor protein 2; GTP: Guanosine 
triphosphate; InsPR: Inositol 1,4,5-triphosphate receptor; InsP3: Inositol 1,4,5-triphosphate; JNK: 
Jun N-terminal kinase; MAPK: Mitogen activated protein kinase; MAPKK: Mitogen activated 
protein kinase kinases; MAPKKK: Mitogen activated protein kinase kinase kinases; MEF2: Myocyte 
enhancer transcription factor 2; MEK: Mitogen activated protein kinase-extracellular signal related 
kinase; MEKK1-4: Mitogen activated protein kinase kinase-extracellular signal related kinase kinase 
1-4; MKK3: Mitogen activated protein kinase kinase 3; MKK4: Mitogen activated protein kinase 
kinase 4; MKK6: Mitogen activated protein kinase kinase 6; MKK7: Mitogen activated protein 
kinase kinase 7; MLK3: Mixed lineage protein kinase 3; mTorc: Mammalian target of rapamycin; 
Myc: Myelocytomatosis transcription factor; NRTN: Neurturin; PDPK1/PDK1: 
3-phosphoinositide-dependent protein kinase 1; PIP2: Phosphatidylinositol (4,5)-bisphosphate; PIP3: 
Phosphatidylinositol (3,4,5)-trisphosphate; PI3K: Phosphoinositide-3-kinase; PKB/AKT: Protein 
kinase B; PLCγ: Phospholipase Cγ; PSPN: Persephin; PTB: Phosphotyrosine-binding domain; p38 
MAPK: p38 mitogen-activated protein kinase; RAC: Ras-related C3 botulinum toxin substrate; RAF: 
Rapidly accelerated fibrosarcoma; RAS: Rat Sarcoma Virus; RAS/MAPK: Ras mitogen-activated 
protein kinase; RET: Rearranged during transfection; RSK: Ribosomal S6 kinases; SGK: Serum- and 
glucocorticoid-inducible kinase; SH2: Src homolog 2; SH3: Src homolog 3; Sos: Son of sevenless; 
SP1: Specificity protein transcription factor 1; Tak1: Transforming growth factor-β-activated kinase 
1; TGF-β: Transforming growth factor-β; Tyr: Tyrosine. 

1. Introduction 

The enteric nervous system is part of the autonomic nervous system and is comprised of a 
complex array of interconnected neurons in ganglia located throughout the gut wall. The majority of 
neurons of the gut wall are derived from the vagal neural crest cells, with a minor contribution from 
the sacral neural crest cells [1–3]. These neural crest cells undergo massive migration, proliferation, 
and differentiation, an event that starts at about embryonic day 8.5 in animals and after the third 
week of intrauterine life in humans [4]. Several genes play an important role during the development 
of enteric neurons including the Rearranged During Transfection (RET) gene [5]. 

2. Origin and development of the enteric nervous system 

The enteric nervous system is derived from the vagal and sacral neural crest of somite levels 
1–7 and 28 [6]. These crest cells give rise to enteric neurons and ganglia of the pre-umbilical and 
post-umbilical parts of the gut wall [7]. They initially undergo a single wave of rostrocaudal 
migration along the gut wall [8,9]. Only a small number of neural crest cells are required for 
rostrocaudal colonization in the gut wall [10,11]. Next, they migrate to the unoccupied site of the 
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developing gut and proliferate [12]. The migration of immature enteric neuroblasts in the gut wall 
takes place, on average, at a speed of 15 µm/h [13], which is slow compared to the undifferentiated 
vagal enteric neural crest cells [13,14]. A second wave of migration occurs from the periphery to the 
deep layers of the gut wall through connective tissue pathways, forming the myenteric plexus first, 
followed by the submucosal plexus [15]. In birds, the enteric neural crest cells first migrate toward 
the submucosa, forming the submucosal plexus, which then migrates outwards between muscle 
layers to form the myenteric plexus [16]. During the morphogenesis and differentiation of enteric 
neural crest cells into enteric neurons, several proteins [17,18] play essential roles. For the 
differentiation of vagal and sacral neural crest cells into enteric neurons, the RET gene and the 
encoded RET protein play a pivotal role [19,20].  

The RET protein is a receptor tyrosine kinase. The RET gene was originally described as a 
human oncogene, but it was later established that RET plays a crucial role in the development of 
enteric neurons and defects in the human RET gene result in the syndrome known as Hirschsprung’s 
disease [21]. 

3. Location and structure of the RET gene and protein 

3.1. Location of the RET gene 

The RET gene lies in the long arm of chromosome 10 (10q11.2) and contains 21 exons [22] and 
18 or 5 introns [23,24]. The DNA sequence of this gene was originally found to be rearranged within 
3T3 fibroblast cell line following transfection with DNA from lymphoma cells [25].  

3.2. Structure of the RET protein 

The RET gene encodes a receptor tyrosine kinase transmembrane protein [26]. The RET protein 
has three different isoforms (RET51, RET43, and RET9), which differ in the C-terminal amino  
acids [27]. Two isoforms, RET9 and RET51, also differ in their intracellular domains [28,29]. RET 
is comprised of 1114 amino acids [30] and has three domains. The N-terminal domain is 
extracellular and consists of 29–635 amino acids [30]. It has four cadherin-like domains (CLDs) and 
cysteine-rich regions [31–33]. The CLDs each consist of 110 amino acids [34] and CLD2 and CLD3 
each have a Ca2+ binding site, which is required for maintaining the integrity of the RET protein [35]. 
The cysteine-rich regions contain 120 residues and are connected to the transmembrane domain [34]. 
The hydrophobic transmembrane domain of RET spans the cell membrane [31,33] and consists of 
636–657 amino acids [30]. It mediates extracellular calcium-binding for maturation of the immature 
150-kDa RET protein in the endoplasmic reticulum to the mature 170-kDa protein and its migration 
to the cell membrane [36,37]. Finally, the cytoplasmic domain is a tyrosine (Tyr) kinase domain and 
consists of 657–1114 amino acids [30]. It contains 16 tyrosine residues (six in RET9, 18 in RET51, 
whereas Tyr 1090 and Tyr 1096 are present only in RET51) [31,32]. This domain also contains 
catalytic protein kinases, a distinct regulatory sequence of 14–18 tyrosine residues, and serine and 
threonine phosphorylation sites [38,39]. There are 18 tyrosine residues, two in the juxtamembrane 
domain, 11 in the kinase domain, and five in the carboxyl terminal tail [40]. In addition, this domain 
also has phosphopeptide motifs that provide a binding and docking site for cytoplasmic downstream 
signaling proteins, such as Src homolog 2 (SH2) and phosphotyrosine-binding domain (PTB) [41]. 
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4. Intracellular signaling pathways of RET for enteric neurogenesis 

The RET protein is a member of the glial cell-derived neurotrophic factor (GDNF) family of 
extracellular signaling molecules [25,42]. The RET ligand GDNF [1,43] is a dimeric growth factor 
protein related to a member of the transforming growth factor-beta (TGF-β) superfamily. This 
superfamily has four additional subtypes: GDNF, neurturin (NRTN) [44], persephin (PSPN) [45], 
and artemin (ARTN) [46]. They bind with the RET protein via its co-receptors, the GDNF receptor 
alpha proteins (glycosylphosphatidylinositol (GPI) anchored co-receptor family) GFRα1, GFRα2, 
GFRα3, and GFRα4 [47–49]. The cysteine-rich extracellular CLD4 domain of RET makes a direct 
crosslink with GFRα1 [50] and the CLD1–3 domains [51] fold into a compact shell [52]. This 
maintains the conformation of RET during binding [50]. The extracellular domains form ternary 
complexes of their ligand, co-receptor, and the receptor RET protein as follows: i) GDNF with 
GFRα1 and RET; ii) NRTN with GFRα2 and RET; iii) ARTN with GFRα3 and RET. These ternary 
complexes induce dimerization of the RET protein. During dimerization, there is 
trans-autophosphorylation of Tyr905 and Tyr900 of the tyrosine kinase domain of the RET protein, 
which further autophosphorylates other tyrosine residues (Tyr981, Tyr1015, Tyr1062, Tyr1063, and 
Tyr1096) [39,53]. Phosphorylation of Tyr1096 takes place only in the RET51 isoform. 
Phosphorylation of Tyr1062 of the tyrosine kinase domain of the RET protein activates RAS/MAPK 
and PI3K-PKB/AKT pathways [40,41,54,55] while autophosphorylation of other tyrosine residues 
induces PLC-γ and JNK pathways [47] (Figure 1). 

 

Figure 1. Schematic representation of intracellular signaling pathways of RET. 

4.1. RAS/MAPK pathway 

Phosphorylation of serine, threonine, and tyrosine of the activation loop of the tyrosine kinase 
domain of the RET protein stimulates mitogen-activated protein kinase kinases (MAPKK), which are 
upstream of the MEK proteins. MEKs are activated by various upstream activators, including kinases 
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and small GTP binding proteins. MEK then activates three MAPK [56] pathways: extracellular 
signal-regulated kinase 1/2 (ERK1/2), JNK, and p38 mitogen-activated protein kinase (p38 MAPK) 
(Figure 2). All three pathways consist of three-tiered kinase cascades that phosphorylate hundreds of 
substrates in the cytoplasm and nucleus, leading to cellular proliferation, survival, apoptosis, 
migration, and differentiation [57]. 

 

Figure 2. RAS/MAPK pathway. 

4.1.1. ERK1/2 pathway 

Upon activation, the RET protein tyrosine kinase domain [58] binds to Src homolog 2 and 3 
(SH2 and SH3) domains of phosphotyrosine. SH2 and SH3 bind to adaptor molecule GRB2 [59,60], 
which interacts with the guanine nucleotide exchange factor (GEF) Sos (Son of sevenless) [61]. Sos 
then promotes the exchange of GDP for GTP on the RAS protein, which binds and activates the 
MAPKK kinase protein, RAF. RAF then phosphorylates threonine and tyrosine residues on the 
activation loop of the MAPK protein, ERK1/2, which further phosphorylates multiple cytoplasmic 
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and cytoskeletal proteins [56,62] such as MAPK-activated protein kinases and ribosomal S6 kinases 
(RSK). ERK and ribosomal S6 kinases 1/2 (RSK1/2) then translocate into the nucleus. ERK 
phosphorylates and activates several transcription factors, including SP, E2F, ELK-1, AP-1 [63], 
ELK-7, FOS, Myc, and MEF2 [62,64,65]. RSK1/2 activates big MAP kinase (BMK1), i.e.,    
ERK5 [62,66], and it phosphorylates several transcription factors including Myc, MEF2 family 
members, FOS, and serum- and glucocorticoid-inducible kinase (SGK). Together, these transcription 
factors lead to cell cycle progression [67], proliferation, survival, migration, and fate choice of   
cells [68,69]. 

4.1.2. Jun-mediated signaling pathway 

The JNK pathway is required for the normal migration of enteric neural crest cells. Several 
MAPKKKs together with MEKK1–4, MLK3, and Tak1 phosphorylate and activate MKK4 and 
MKK7 [70]. MKK4 and MKK7 then catalyze the phosphorylation of C-Jun N-terminal kinase (CJN 
Kinase) [71]. This further activates MAPKKK via the small G-protein, RAC. RAC further activates 
MLK3, MEKK1, and MEKK4 [72–74], and finally activates the JNK pathway. This JNK pathway 
then causes the phosphorylation and activation of several transcription factors, including C-Jun, Jun 
A, Jun B, ATF2, and EIK, and these enable enteric neural crest cell survival [70] and      
migration [75,76]. 

4.1.3. p38 MAPK pathway 

Upon phosphorylation of the tyrosine kinase domain of the RET protein, it activates the four 
p38 isoforms, α, β, γ, and δ [77]. These p38 isoforms activate several MAPKKKs, including 
MEK1–4 and MLK1–4, which further activate MKK3 and MKK6, and thus induce apoptosis of 
extraneural crest cells [71]. 

4.2. PLCγ signaling pathway 

PLCγ contains two SH2 domains and one SH3 domain. The SH2 domains bind phosphotyrosine 
and the SH3 domain binds the proline-rich sequences of RET [78,79]. Upon ligand (GDNF) 
stimulation, there is phosphorylation of Tyr1015 and Tyr1016 of the tyrosine kinase domain of the 
RET protein. Through the PLCγ binding domain [80], the RET protein recruits the transmembrane 
adaptor, CAT protein [81]. CAT activates calcium calmodulin-dependent kinase II (CAMK II) and 
ERK1/2 [82,83], which causes the release of Ca2+ from the endoplasmic reticulum and extracellular 
milieu [84,85] through the inositol 1,4,5-triphosphate (InsP3) receptor (InsPR). The released Ca2+ 
then triggers RAS/MAPK by phosphorylating p42/44 of MAPK (ERK1/2). This modulates the 
enteric neuronal migration and enteric neuron synaptic plasticity [85,86] (Figure 3. a). 

4.3. PI3K pathway 

Upon stimulation by its ligand (GDNF), the tyrosine kinase domain of the RET protein binds 
with regulatory subunits p85α, p55α, p50α, p85β, p55γ, p110α, and p110β of PI3K enzymes via its 
phosphotyrosine-binding SH2 domain [87]. Then, the catalytic subunits p110α (activated by 
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G-protein RAS) and p110β (activated by G-protein RAC) [88] degrade the phosphatidylinositol 
(3,4,5)-trisphosphate (PIP3) to phosphatidylinositol (4,5)-bisphosphate (PIP2) by phosphatase [89]. 
This PIP2 activates 3-phosphoinositide-dependent protein kinase-1 (PDPK1/PDK1) [90] and 
phosphorylates AKT [91,92]. The activated AKT then regulates neural crest cell survival, 
specification, migration, proliferation, and differentiation into enteric neuroblasts [93] via the mTorc 
and P53 pathways [94] (Figure 3. b). 

 

Figure 3. a. PLCγ signaling pathway and b. PI3K pathway. 

5. Abnormalities of the RET gene 

Deletion of the RET gene or mutations in the exons and introns that result in changes in the 
intracellular and extracellular domains of RET lead to Hirschsprung’s disease (Tables 1–11). 
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Table 1. Germline mutations of the RET gene. 

Mutations Domains  

affected 

Exons 

affected 

Introns 

affected 

Codons 

affected 

Outcomes 

Germline mutation 

[95,96] 

Extracellular domain 

[95,96] 

10 - 609, 611, 618, 

620 

Hirschsprung’s 

disease 

11 - 630, 634 

Intracellular domain- 

tyrosine kinase 1 residue 

of tyrosine kinase 

domain [95,96] 

15 - 883, 891 

14 - 804 

15 - 883, 891, 918 

Germline mutation [97] - 10 - c.1852 T>C 

Table 2. Nonsense, frameshift, and point mutations of the RET gene. 

Mutations Domains  

Affected 

Exons 

affected 

Introns 

affected 

Codons 

affected 

Outcomes 

Nonsense 

mutation 

Extracellular domain [98] 2, 3, 4, 5, 

6 [98] 

- - Hirschsprung’s disease 

Amino acid substitution 

[98–101] 

- - - Familial or sporadic cases 

of Hirschsprung’s disease 

Frameshift 

mutation 

RET gene - - Phe147del 

[102] 

Hirschsprung’s disease 

Amino acid substitution in 

protein truncation of RET 

[98–101] 

- - - Familial or sporadic cases 

of Hirschsprung’s disease 

Point 

mutation 

RET gene in heterozygous 

state [24,98,103] 

- - - Hirschsprung’s disease 

Table 3. Missense mutations of the RET gene. 

Mutations Domains 

Affected 

Exons 

affected

Introns 

affected

Codons 

affected 

Outcomes 

Missense 

mutation 

Extracellular domain [98] 2, 3, 4, 

5, 6 [98]

- - Hirschsprung’s 

disease 

Impair the RET kinase activity 

leading to the impairment of the 

phospholipase C-γ signaling 

pathway [104] 

- - E762Q, S767R, R972G, 

M900T [104] 

Continued on next page 
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Mutations Domains 

Affected 

Exons 

affected

Introns 

affected

Codons 

affected 

Outcomes 

 

Complete loss of RET kinase 

activity [104] 

- - S765P, R873Q, F893L, 

R897Q, E921K [104] 

 

RET tyrosine kinase domain 

[23] 

- - - 

Dominant negative effect 

through loss of function 

[24,105,106] 

- - - 

- 15 [107] - At nucleotide 2813G to A 

with R873Q exchange in 

codon 873 [107] 

3 [108] - Nucleotide change GTG to 

ATG (V202M mutation) 

[108] 

7 [108] - Nucleotide change GAA to 

AAA (E480K mutation) [108] 

Rectosigmoidal 

aganglionosis 

17 [108] - Nucleotide change CCA to 

ATA (P973L mutation) [108] 

13 [108] - Nucleotide change GAC to 

AAC (D77/N mutation) [108] 

Total gut wall 

aganglionosis 

Amino acid substitution in RET 

protein [98–101] 

- - - Familial or 

sporadic cases of 

Hirschsprung’s 

disease 

Table 4. Deletions in the RET gene. 

Mutations Locations Outcomes 

Deletion [103] RET gene [103] Hirschsprung’s disease 

In 20% patient have low efficiency 

in detection of deletion [103] 
Partial deletion [109] RET locus at pericentromeric region of 

chromosome 10 [109] 

Interstitial deletion [110] In the long arm of chromosome 10- del10(q11.21, 

q21.2) [110] 

Total colonic aganglionosis and 

minor involvement of myenteric 

plexus [110] 

Proximal deletion [111] In the long arm 10- del10q11.2 to q21.2 

Deletion location likely lying between loci 

D10S208 and D10S196 [111] 

Colonic aganglionosis in hindgut 

[111]. 

Cytogenetic deletion [112] del (10) (q11.2 to q21.2) [112] Total aganglionosis with small 

bowel involvement [112] 



137 

AIMS Neuroscience  Volume 9, Issue 1, 128–149. 

Table 5. Mutations of the extracellular domain of the RET protein. 

Mutations Locations Effects Outcomes 

Mutation in 

extracellular 

domain 

N terminus region 

of RET protein 

[113–115] 

Affect the amino acid residue 

No glycosylation of immature 150-kDa form in the 

endoplasmic reticulum 

No production of mature 170k-Da form of RET protein 

No expression of RET protein in cell membrane 

[113,114] 

Hirschsprung’s 

disease [113–115] 

Table 6. Mutation of intracellular domain of the RET protein. 

Mutations Locations Effects Outcomes 

Mutation in 

intracellular 

domain 

Tyrosine kinase domain [23] Impaired intracellular signaling 

pathways [23] 

Hirschsprung’s 

disease 

Tyrosine kinase domain 1 [Glu 762-Gln 

(E762Q), Ser65 to Pro (S765P) and Ser767 

to Arg (S767R)] or tyrosine kinase domain 2 

[Arg 873 to Gln (R897Q), Glu 921 to Lys 

(E921K), Arg 972 to Gly (R972G), Pro 973 

to Leu (P973L) and Met 980 to Thr 

(M980T)] [24,98–100,116–119] 

- Familial and 

sporadic 

Hirschsprung’s 

disease 

[24,98–100,116

–119] 

Tyrosine residue at position 1062 which is 

intracytoplasmic docking site of RET protein 

[120] 

Impaired fixation of SHc to RET 

protein and thus prevention of the 

phosphorylation and inhibition of the 

signaling pathway and thus exert 

negative effect in the enteric 

neurogenesis [120] 

Hirschsprung’s 

disease 

Table 7. Insufficient expression of the RET gene. 

Expression of 

RET gene 

Effects Outcomes 

Insufficient level of 

expression 

Insufficient expression of RET protein on the cell surface for 

GDNF and its co-receptor GFR α1–4 [101,121] 

Hirschsprung’s disease
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Table 8. Mutations in exons of the RET gene. 

Mutations Locations Effects Outcomes 

Mutation 

in exons 

Exon 2 in codon 32 changing CTG to 

TTG [98] 

 

Changes the protein sequence of 

extracellular domain of RET 

from serine to leucine [98] 

Congenital absence of 

enteric neurons and 

ganglia in intestine [98] 

Exon 3 in codon 180 changing CGA 

to TGA 

[98] 

Changes the protein sequence of 

extracellular domain of RET 

from arginine to stop codon [98].

Exon 5 in codon 330 changing CGG 

to CAG [98] 

Changes the protein sequence in 

extracellular domain of RET 

from arginine to glutamine [98] 

 

Exon 6 in codon 393 changing TTC 

to TTA [98] 

Changes the protein sequence of 

extracellular domain of RET 

from phenylalanine to leucine 

[98] 
 

Exon 10 with nucleotide change of 

C1876A and amino acid change of 

Q6226K [122] 

- Sporadic 

ultra-short-segment 

aganglionosis [122] 

Exon 11 with nucleotide change of 

C1941T and amino acid change of 

16471 [122] 

- Sporadic long-segment 

aganglionosis [122] 

Exon 10 with change in five cysteine 

codons from Cys to Trp at codon 699 

and Cys to Arg at codon 618 or 620 

[97] 

- Hirschsprung’s disease 

Exon 2 with change in nucleotide 

from C254 G to A [123] 

Loss of function of RET gene 

[123] 

Total colonic 

aganglionosis [123] 

Exon 13 with change in nucleotide 

from C2308 C to T [123] 

Exon 14 with change in nucleotide 

from C2578 C to T [123] 

Exon 4 with change in nucleotide 

from C789 C to G [123] 

- Long segment 

Hirschsprung’s [123] 

Table 9. Mutations in the RET gene affecting RET protein isoforms. 

Mutations Effects Outcomes 

RET isoforms mutations and defects RET9 [124] Lack of enteric ganglion in colon 

[124] 

Mutation of tyrosine 1062 of RET9 

to phenylalanine [125] 

Deficient in enteric nervous system 

[125] 
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Table 10. Mutations in enhancer, promoter, and introns of the RET gene. 

Mutations Locations Effects Outcomes 

Mutation of 

enhancer [126] 

Enhancer domain of the RET gene in intron 1 

(CrS2435357) [126] 

- Hirschsprung’s disease with 

significantly higher impact in males 

than females [126] 

Promoter defect 

[127] 

Methylation of promoter of RET has 5’ CC-3’ 

[127] 

- Colonic aganglionosis [127] 

Mutation in introns Alteration in intron 4 at putative branch site 

of 24 nucleotides in front of exon 15 with 

nucleotide exchange of G to A [107] 

- Hirschsprung’s disease [107] 

Missense mutation in intron 19 (IVS 19-19 

C/T) [108] 

- Only rectosigmoidal aganglionosis 

[108] 

Table 11. Homozygous and heterozygous mutations of the RET gene. 

Mutations Locations Effects Outcomes 

Homozygous 

RET mutations 

C620R mutation [128] - Hirschsprung’s 

diseases [128] 

Mutation of tyrosine 1062 in 

RET with phenylalanine [129]

Impairing the binding site of tyrosine 

1062 for phosphotyrosine-binding 

domains for several adaptors and effector 

proteins which otherwise are important 

for activation of intracellular signaling 

pathways, such as RAS/ERK, 

phosphatidylinositol 3-kinase/AKT, and 

Jun-associated N-terminal kinase 

pathways [129] 

Severe defect in the 

development of enteric 

nervous system in 40% 

of cases [129] 

Homozygous missense 

mutation (CGG to TGG) at 

codon 969 of RET with amino 

acid change from arginine to 

tryptophan [130] 

Critical alteration in RET tyrosine kinase 

activity [130] 

Total gastrointestinal 

tract aganglionosis 

[130] 

Heterozygous 

RET mutation 

[128] 

C620R mutation [128] - Hirschsprung’s disease 

including 

hypoganglionosis of 

gastrointestinal tract 

[128] 
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6. Conclusions 

Vagal and sacral neural crest cells migrate in a rostrocaudal direction where they colonize in an 
orderly manner in the foregut, midgut, and hindgut following signaling by the receptor tyrosine 
kinase RET protein. This protein promotes the survival of enteric neurons, as well as proliferation 
and differentiation of multipotent enteric progenitor cells present in the gut wall. Developmental 
studies in model organisms and genetic studies of Hirschsprung’s disease have provided a detailed 
understanding of enteric nervous system development via expression of the RET gene. In summary, 
the RET gene encodes a tyrosine kinase receptor, RET, which is required for the normal formation of 
enteric neurons. Mutation of the RET gene leads to dysfunctional RET binding to the GDNF, ARTN, 
and NRTN ligands resulting in Hirschsprung’s disease. 
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