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Abstract: Alzheimer disease is a progressive neurodegenerative disorder, mainly affecting older 
people, which severely impairs patients’ quality of life. In the recent years, the number of affected 
individuals has seen a rapid increase. It is estimated that up to 107 million subjects will be affected 
by 2050 worldwide. Research in this area has revealed a lot about the biological and environmental 
underpinnings of Alzheimer, especially its correlation with β-Amyloid and Tau related mechanics; 
however, the precise molecular events and biological pathways behind the disease are yet to be 
discovered. In this review, we focus our attention on the biological mechanics that may lie behind 
Alzheimer development. In particular, we briefly describe the genetic elements and discuss about 
specific biological processes potentially associated with the disease. 
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1. Alzheimer’s disease 

Dementia is a broad category of neurodegenerative pathologies, whose main symptom is a 
decline in cognitive ability severe enough to interfere with activities of daily living. Among them, 
Alzheimer Disease (AD) is the most common type, accounting for 60% and up to 80% of the total 
Dementia cases. 

According to the Global Burden of Disease Study, AD is one of the fastest rising diseases 
among the leading causes of death [1,2]. About 10% of people of age 65 and older suffer from  
AD [3,4]. Epidemiologic data in the last decade highlighted a sharp increase of AD incidence: 
According to the estimations, the number of AD subjects will increase from the 26.6 million 
worldwide in 2006 up to 107 million by 2050, with 16.5 in Europe [3,4]. To note, 68% of the 
increase would be localized in the low- and middle-income countries [5]. 
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AD has a progressive nature, and eventually leads to a severe cognitive decline. It mainly 
affects older people (>65 years old) even though earlier onset forms are also described in literature 
(10% of AD cases) [6]. From a clinical point of view, AD is staged in four different phases: 
preclinical, mild, moderate and late-stage (see Box 1). This classification is mainly based on 
cognitive decline. 

The severity and the prevalence of AD promoted a flourishing research in order to develop 
strategies to confront this pathology. 

Box 1. AD Stages [6,7] 

The clinical classification of AD is mainly based on the severity of cognitive decline and the 

histopathological alterations. Four stages are usually described: 

Preclinical: This phases is often overlooked since no severe symptoms are present. It is usually 

classified as mild cognitive impairment. In this phase the earliest pathological changes begin, and 

hit entorhinal cortex (first) and hippocampus (later). From a symptomatologic point of view, 

subjects at this stage present mild memory loss with relative sparing of long-term memories. No 

significant impairment in their daily activities.  

Mild Alzheimer Disease: In this phase cognitive symptoms start manifesting. The pathological 

alterations reach the cerebral cortex during this phase. From a symptomatologic point of view, 

along with memory loss, there is an inability to remember new information, forgetting things and 

appointments, followed by impairment in problem-solving, judgment and executive functioning. 

Also subjects manifest personality changes, mood swings and loss of spontaneity. Further, states of 

confusion and disorientation are commonly seen. 

Moderate Alzheimer Disease: In this phase the symptoms severity increase further. The 

pathological damage further spreads to the areas responsible for language, reasoning and sensory 

processing (cerebral cortex). Other than an increased severity of symptoms from the previous 

phases, behavioral problems and social withdrawal tendencies begin to appear. This is followed by 

language disorder and impairment of visuo-spatial skills. Of note, subjects at this stage have trouble 

recognizing their own dears. 

Severe Alzheimer Disease: In this phase, subjects completely lose their independency for daily 

activities. The pathological damage in this stage is believed to cover all of the cortex areas. From a 

symptomatologic point of view, the affected subjects cognitive abilities reach its lowest state, 

further systemic symptoms starts to appear, including difficulty performing learned motor tasks 

(dyspraxia), olfactory dysfunction, sleep disturbances, extrapyramidal motor signs like dystonia, 

akathisia, and parkinsonian symptoms. 

To note, other staging systems were developed for AD, including the one introduced by Braak and 

Braak [7,8]. This model is based on topographical staging of neurofibrillary tangles and divides AD 

progression into 6 stages. This Braak staging is an integral part of the National Institute on Aging 

and Reagan Institute neuropathological criteria for the diagnosis of AD [7]. 
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In the 2002–2012 decade, over 240 drugs for AD were tested in publicly and privately funded 
clinical trials registered on the National Institutes of Health registry (clinicaltrials.gov) [9]. However, 
none of the pharmacologic treatments developed so far is able to cure or halt AD progression [10–16]. 
The two categories of approved drugs, Cholinesterase Inhibitors (tacrine, donepezil, rivastigmine, 
and galantamine) and partial N-methyl D-aspartate (NMDA) antagonists (memantine), only provide 
a temporary amelioration of symptoms [17–20]. For a brief summary, please see supplementary Box 1. 
Furthermore, these drugs have a variable efficacy among the subjects [21]. 

The absence of a definitive treatment is related to the lack of knowledge about the precise 
molecular mechanics and the events behind the disease [5]. 

Although the grade and type of symptoms may vary greatly from person to person [22], post 
mortem observations on AD subjects’ Central Nervous System (CNS) evidenced some common 
features: (1) synaptic loss, (2) accumulation of abnormal neuritic plaques and (3) presence of 
neurofibrillary tangles [23–25]. The first lesions are believed to start accumulating 10–15 years 
before the onset of cognitive symptoms [26]. 

2. Physiopathological manifestations 

Neuritic plaques are spheroid-like microscopic lesions characterized by a core of extracellular 
amyloid β peptide (Aβ) and surrounded by abnormal axonal endings. Aβ is derived from a large 
protein called amyloid precursor protein (APP). APP can be cleaved by the action of enzymes named 
α-, β-, and γ-secretase. In normal individuals, APP is firstly cleaved by α secretase and then γ 
secretase [27,28]. The action of α secretase eliminates the risk of formation of an Aβ peptide. 

In the neurons of the subjects suffering from AD, it is the β-secretase enzyme that acts to cleave 
the APP molecule instead of α secretase, and the resulting sAPPβ is released from the cell [29]. The 
sequential cleavage by β and then γ-secretase results in Aβ40, Aβ42 (β-amyloid 40 and β-
amyloid 42) and C99 amino acid peptides [30]. The increased concentration of Aβ42 (from thereon 
Aβ) favors the formation of oligomers, which have neurotoxic properties [31]. These oligomers tend 
to cluster around meningeal and cerebral vessels and gray matter in AD. These deposits coalesce to 
form the miliary structures that are known as plaques [7]. Interestingly, recent data suggest the 
importance of cholesterol for the γ-secretase cleavage of amyloid precursor protein, the last step of 
Aβ formation [32]. 

Regarding neurofibrillary tangles, they are fibrillary intracytoplasmatic structures in neurons 
formed by a protein called Tau. Physiologically, the primary function of Tau protein is to stabilize 
axonal microtubules. Usually, Tau is bound to microtubules and presents a certain number of 
phosphate molecules attached to it. The phosphorylation mechanics of Tau are altered in AD for 
reasons not entirely understood. This alteration leads to an abnormal increase of the phosphorylation, 
which in turn causes the detachment of Tau molecules from microtubules. Detached hyper-
phosphorylated Tau proteins tend to assemble to form filamentous structures known as paired helical 
filaments, which in turn aggregate in the insoluble neurofibrillary tangles [33,34]. Post mortem 
analyses on AD subjects demonstrated that few of the many different types of neurons in the brain 
develop abnormal Tau aggregates [35,36]. They are all projection neurons with high concentrations 
of neurofilaments whose axons are excessively long and thin compared to the size of their soma [36]. 
Analyses on AD subjects on various stages evidenced that neurofibrillary tangles start to form in the 



89 

AIMS Neuroscience Volume 8, Issue 1, 86–132. 

transentorhinal cortex, spread to the hippocampus, and then progress to cover the cerebral cortex at 
later phases [37–39]. 

Another typical feature of AD is the granulo-vacuolar degeneration observed in the 
hippocampal pyramidal cells. This degeneration is likely associated to the cognitive decline: 
alterations of cognition processes are correlated to the decrease in density of presynaptic buttons 
from pyramidal neurons in laminae III and IV [7]. The decrease of synaptic buttons is likely 
associated to the vascular degeneration. Indeed, the risk of dementia is increased fourfold with 
subcortical infarcts; also the presence of a cerebrovascular disease exacerbates the degree of 
dementia and its rate of progression. However, the mechanisms behind are not fully determined [7]. 

3. Genetics 

Despite a large part of its biological background is not characterized, AD has a strong genetic 
correlation with 3 genes: APP and the genes for the presenilin 1 (PSEN1) and presenilin 2 (PSEN2) 
proteins. Alterations within these genes are directly correlated with plaques formation. Literature 
data demonstrated that subjects inheriting mutations within APP or PSEN1 genes are guaranteed to 
develop AD, while those inheriting mutations within PSEN2 gene have a 95 percent chance of 
developing the disease [40]. The cases of AD caused by alterations within the three genes are labeled 
as autosomal dominant familial AD, because of its inheritance model. It generally develops within 60 
years of age, sometimes as early as 30 years of age [5]. For this reason, it is also often indicated as 
early onset AD (EOAD). This form presents a clear molecular background and it’s easily recognized 
since it runs in families. Up to 5% of all AD cases are of this type [41]. 

The largest part of AD cases (more than 95% AD) presents a sporadic manifestation and usually 
manifests between the 60 and 65 years of age (Late onset AD or LOAD). This form has a more 
cryptic genetic background [41]: 

Both EOAD and LOAD may occur in people with a positive family history of AD. About 60% 
of EOAD subjects have relatives affected by AD [42]. Around 13% of these subjects present an 
autosomal dominant inheritance with at least 3 generations affected [42]. EOAD cases may also 
occur in LOAD families [43]. 

Regarding the risk factors, contrary to EOAD single-gene inheritance, virtually all LOAD cases 
likely involve multiple susceptibility genes and environmental factors [2,43,44]. Although none of 
them can be labeled as causative, they are associated with an increased risk of developing the disease. 
Excluding the known three causative genes of EAOD form, only one other gene evidenced a strong 
association with AD risk: the Apolipoprotein E gene (APOe). 

APOe is the gene encoding for the Apolipoprotein E, whose function is to bind lipids and 
sterols and transport them through the lymphatic and circulatory systems. In particular, APOe is in 
charge of cholesterol transport in the brain [45,46]. Several studies associated the isoform e4 of this 
protein to an increased risk of developing AD [47–50]. At least one APOe4 allele is found in about 
15–25% of the general population and can reach 50% in AD population [50,51]. The fine molecular 
mechanisms behind the risk increase operated by APOe4 are not completely characterized, but seem to 
be related to the formation of neurofibrillary tangles [52,53] and amyloid clearance processes [54,55]. 
Also, this isoform alters multiple processes [56], in particular lipid metabolism [57,58]. The e4 
isoform is structurally unstable compared to other isoforms and thus it is not able to perform its 
functions normally. Further, the loss of cysteine residues decreases its antioxidant potential [59] and 
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may lead to an increased production of oxidant molecules like malondialdehyde and hydroxynonenal 
(products of lipid peroxidation), as observed in APOe4 allele carriers [60,61]. Data obtained from 
cell cultures evidenced how APOe4 promotes oxidative stress and the generation of neurotoxic 
fragments which impairs mitochondrial activity [62–64]. Furthermore, a reduction in cerebral 
glucose utilization was observed in brain regions typically affected by AD [65,66]. 

Following the discovery of APOe4 association with LOAD, a number of studies investigated 
other genes involved in the same molecular cascades of APOE. More than 500 candidates were 
proposed in the last two decades (see Table1 and [67,68] and references therein). They showed 
correlations with Tau phosphorylation, vacuolar sorting proteins, metallo-proteins, glucose and 
insulin metabolism, nitrous oxide synthesis, oxidative stress, growth factors, neurodevelopment, 
pruning-, inflammation- and lipid-related pathways. The blooming of association studies on new 
genes led to the creation of a genetic database (www.alzgene.org) by Bertram and colleagues [69]. 
The site collects numerous publications regarding genetic data of AD and several genes appear to 
affect AD risk. Table 1 reports the top ranked genes involved in the risk of AD (from Alzgene.org). 
It has to be noted that these genes are believed to have a limited effect on the overall prevalence of 
AD because they are rare or only slightly affect (in total a ∼20% increase or decrease) AD risk [69]. 

Table 1. Genes significantly associated with Alzheimer’s Disease (Retrieved from alzgene.org). 

Gene Name Extended Name Brief summary (exert from genecards.org) References

Genes associated with Early Onset Alzheimer’s Disease 

APP Amyloid β 
Precursor Protein 

This gene encodes for a cell surface receptor and trans membrane 
precursor protein that is usually cleaved by α, β and γ secretases to 
form a number of peptides. The peptides are overall involved in 
functions relevant to neurite growth, neuronal adhesion and 
axonogenesis. In particular, some of them promote transcriptional 
activation, while others seem to be the basis for amyloid plaques 
formation. In addition, two of the peptides are antimicrobial peptides, 
having been shown to have bactericidal and antifungal activities. 
Mutations in this gene have been implicated in autosomal dominant 
Alzheimer.  

[27,70–73] 

PSEN1 Presenilin 1 This gene encodes for the catalytic subunit of the γ-secretase 
complex, which is involved in the cleavage of integral membrane 
proteins, including APP. It plays a role in Notch and Wnt signaling 
cascades and regulation of downstream processes via its role in 
processing key regulatory proteins. It stimulates cell-cell adhesion 
and is required for normal embryonic brain and skeleton 
development. Alterations of this subunit were correlated with 
autosomal dominant Alzheimer. 

[74] 

PSEN2 Presenilin 2 This gene encodes for the catalytic subunit of the γ-secretase 
complex, which is involved in the cleavage of integral membrane 
proteins, including APP. Two alternatively spliced transcript variants 
encoding different isoforms of PSEN2 have been identified. It 
requires the other members of the γ-secretase complex to have a 
protease activity. It may play a role in intracellular signaling and gene 
expression or in linking chromatin to the nuclear membrane. It may 
function in the cytoplasmic partitioning of proteins. 

[75] 

Continued on next page 
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Gene Name Extended Name Brief summary (exert from genecards.org) References

Genes related to Late Onset Alzheimer’s Disease 

ABCA7 ATP Binding 
Cassette Subfamily 
A Member 7 

This gene encodes for a member of the ABC1 subfamily. Members of 
the ABC1 subfamily comprise the only major ABC subfamily found 
exclusively in multicellular eukaryotes. This transporter is often 
found in myelo-lymphatic tissues. The function of this protein is not 
entirely understood, but it is believed that it may have a role in lipid 
homeostasis in cells of the immune system, and in phagocytosis 
mechanics. 

[76,77] 

ADAM10 ADAM 
Metallopeptidase 
Domain 10 

This gene encodes an ADAM family member whose role is related to 
its cleaving properties. Interact with several proteins, including TNF-
α and E-cadherin. It is also involved with constitutive and regulated 
α-secretase cleavage of APP. Finally, contributes to the normal 
cleavage of the cellular prion protein. 

[78] 

APOE Apolipoprotein E The protein encoded by this gene is a major apoprotein of the 
chylomicron and is essential for the normal catabolism of 
triglyceride-rich lipoprotein constituents. This protein Mediates the 
binding, internalization, and catabolism of lipoprotein particles and 
can serve as a ligand for the LDL (Apo B/E) receptor. Mutations in 
this gene result in an impaired clearance of chylomicron and VLDL 
remnants. Further, several evidences in literature associate specific 
APOE isoforms with an increased risk of Alzheimer disease. 

[79,80] 

BACE1 β -Secretase 1 This gene encodes a member of the peptidase A1 family of aspartic 
proteases. This trans membrane protease catalyzes acts on APP. In 
particular, it leads to the generation and extracellular release of β-
cleaved soluble APP, and a corresponding cell-associated C-terminal 
fragment which is later released by γ-secretase. 

[81,82] 

BIN1 Bridging integrator 
1 

This gene encodes several isoforms of a nucleocytoplasmic adaptor 
protein which are expressed in several different tissues. Of note, 
isoforms expressed in the central nervous system may be involved in 
synaptic vesicle endocytosis. This gene has been identified as one of 
the most relevant risk locus for late onset Alzheimer’s disease 
(LOAD). 

[83–86] 

C9ORF72 Chromosome 9 
Open Reading 
Frame 72 

The protein encoded by this gene plays an important role in the 
regulation of endosomes trafficking. It may regulate autophagy-
related mechanics. Also, it regulates actin dynamics in motor neurons 
by inhibiting the GTP-binding activity of ARF6, leading to ARF6 
inactivation. Positively regulates axon extension and axon growth 
cone size in spinal motor neurons. It plays a role within the 
hematopoietic system in restricting inflammation and the 
development of autoimmunity. 

[87] 

Continued on next page 
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Gene Name Extended Name Brief summary (exert from genecards.org) References

Genes related to Late Onset Alzheimer’s Disease 

CD33 CD33 Molecule 
(Sialic Acid-
Binding Ig-Like 
Lectin 3) 

This gene encodes for a protein associated with Hematopoietic Stem 
Cell Differentiation Pathways and Lineage-specific Markers and 
Innate Immune System. In the immune response, it may act as an 
inhibitory receptor upon ligand induced tyrosine phosphorylation by 
recruiting cytoplasmic phosphatase(s) via their SH2 domain(s) that 
block signal transduction through dephosphorylation of signaling 
molecules. 

[88–90] 

CLU Clusterin  The protein encoded by this gene is a secreted chaperone seemingly 
involved in several basic biological events including cell death, tumor 
progression, and neurodegenerative disorders. Its action inhibits 
formation of amyloid fibrils by APP, APOC2, B2M, CALCA, CSN3, 
SNCA and aggregation-prone LYZ variants. 

[48,91–93] 

CR1 Complement 
Receptor 1 

The gene encodes a monomeric single-pass type I membrane 
glycoprotein. The protein mediates cellular binding to particles and 
immune complexes that have activated complement. 

[94,95] 

FUS FUS RNA Binding 
Protein 

This gene encodes a multifunctional protein component of the 
heterogeneous nuclear ribonucleoprotein (hnRNP) complex which is 
involved in pre-mRNA splicing and the export of fully processed 
mRNA to the cytoplasm. Its action influence gene expression, 
maintenance of genomic integrity and mRNA/microRNA processing. 

[96] 

GRN Progranulin This gene encodes for the 88 kDa precursor protein, progranulin. 
Cleavage of the signal peptide produces mature granulin which can 
be further cleaved into a variety of active, 6 kDa peptides. Granulin 
family members are important in normal development, wound 
healing, and tumorigenesis. Granulins have possible cytokine-like 
activity. They may play a role in inflammation, wound repair, and 
tissue remodeling. 

[97] 

LRRK2 Leucine-rich repeat 
kinase 2 

The protein is present largely in the cytoplasm but also associates 
with the mitochondrial outer membrane. It is mainly involved in 
autophagy related mechanics. Of note, this protein seems to regulate 
neuronal process morphology in the central nervous system. Also, it 
plays a role in synaptic vesicle trafficking. 

[98,99] 

PICALM Phosphatidylinositol 
Binding Clathrin 
Assembly Protein α-
synuclein 

This gene encodes a clathrin assembly protein, which recruits clathrin 
and adaptor protein complex 2 (AP2) to cell membranes at sites of 
coated-pit formation and clathrin-vesicle assembly. Alterations 
within this gene are associated with Alzheimer. 

[100–102] 

SNCA Synuclein Α This gene may serve to integrate presynaptic signaling and membrane 
trafficking, in particular in the regulation of dopamine release and 
transport. It reduces neuronal responsiveness to various apoptotic 
stimuli. It has been found that SNCA peptides are a major component 
of amyloid plaques in the brains of patients with Alzheimer’s disease. 
Also, it seems involved in the fibrillization of microtubule-associated 
protein Tau.  

[103,104] 

Continued on next page 
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Gene Name Extended Name Brief summary (exert from genecards.org) References

Genes related to Late Onset Alzheimer’s Disease 

SORL1 Sortilin Related 
Receptor 1 

This gene encodes protein that belongs to at least two families: the 
vacuolar protein sorting 10 (VPS10) domain-containing receptor 
family, and the low density lipoprotein receptor (LDLR) family. Its 
role is likely related to endocytosis mechanics. SORL1 seems to be 
also associated with Alzheimer endophenotypes such as abstract 
thought, verbal memory, total brain volume, and white matter 
hyperintensities among people AD free. Regarding its mechanics 
SORL1 is believed to act through the regulation of the APP-
containing endocytic vesicles trafficking. 

[86,105–
108] 

MAPT  Microtubule 
Associated Protein 
Tau 

This gene encodes the microtubule-associated protein Tau (MAPT). 
MAPT transcripts are differentially expressed in the nervous system, 
depending on stage of neuronal maturation and neuron type. It 
promotes microtubule assembly and stability, and might be involved 
in the establishment and maintenance of neuronal polarity. MAPT 
gene mutations have been associated with several neurodegenerative 
disorders such as Alzheimer’s disease.  

[109–111] 

TARDBP TAR DNA Binding 
Protein 

This protein is involved in the regulation of CFTR splicing. It seems 
to be related to microRNA biogenesis, apoptosis and cell division. 
Hyperphosphorylation of this protein has recently been described in 
association with cognitive impairment, especially in the context of 
Alzheimer’s disease pathology. 

[112,113] 

TREM2 Triggering Receptor 
Expressed On 
Myeloid Cells 2 

This gene encodes a membrane protein that forms a receptor 
signaling complex with the TYRO protein tyrosine kinase binding 
protein. It is involved in immune response and in chronic 
inflammation. Defects in this gene are a cause of polycystic 
lipomembranous osteodysplasia with sclerosing leukoencephalopathy 
(PLOSL). Inactivating mutations of TREM2 have been associated 
with an autosomal recessive form of early-onset dementia in 
literature. 

[114,115] 

Several other candidates and loci have been identified so far but replication analyses 
encountered some difficulties. Also, their contribute towards AD risk is deemed inferior to the genes 
of Table 1. Of them we want to report HLA-DRB5/DRB1, PTK2B, SLC24A4, RIN3, INPP5D, 
MEF2C, NME8, ZCWPW1, CELF1, FERMT2, CASS4, EPHA1, CD2AP, MS4A, CUGBP2, 
ATP5PD, MTHFD1L, GAB2, MEOX2 and PCDH11X [68,77,83,89,116–124]. 

Finally, Environmental factors like female gender [125], older age [126], low education level [127], 
smoking habit [128], obesity [129] and diabetes mellitus [129] increase the risk of AD. It is 
noteworthy to cite metals’ levels as risk factors of AD. It was pointed out how metal homeostasis 
may be one of the processes which lead to the conformational changes of amyloidogenic proteins in 
AD [130]. Furthermore, while the variation of metals’ concentrations is mainly environmental, 
alterations of protein transporters in the Blood Brain Barrier such as DMT1 or Transferrin may also 
alter metal homeostasis in the brain [131]. 

4. Molecular pathway contribution to AD risk 

The number of genetic factors described are important contributors to AD, but even those 
cannot fully explain the totality of AD cases. Rather than single genes, a better approach would be 
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investigating AD as an event related to alterations affecting entire biological pathways. A plethora of 
mechanisms, including neuroinflammation [132], oxidative stress [133,134], defects in 
mitochondrial dynamics and function [135], cholesterol and fatty acid metabolism as well as glucose 
energetic pathways impairments in the brain [136,137], autophagy failure [138] and other less 
studied mechanisms have been proposed to contribute to AD. In this section we will report a brief 
panoramic discussion on these mechanisms. It has to be noted that while the various processes are 
discussed separately, they are strictly linked with each other and often work in a synergic way in  
the CNS. 

5. Chronic inflammation and immune system 

Among the processes thought to be involved with AD, inflammation is one of the main 
biological mechanisms considered. Inflammation in the brain, is a well-established (acute) process 
which defend the body against infection, toxins and injury. When the delicate equilibrium between 
pro- and anti-inflammatory signaling is disrupted, it results in chronic (neuro)inflammation [139–141]. 

Multiple literature data pointed out that neuro-inflammation (and pruning, as discussed below) 
has a role in the neurodegeneration processes commonly observed in AD [142–146]. 

Although, neuroinflammation is not typically associated to AD onset on its own, it plays a key 
role in increasing the severity of the disease by exacerbating Aβ and Tau pathologies [147]. 

A prolonged neuroinflammation state increases the concentration levels of proinflammatory 
cytokines in the microenvironment. The increase of cytokines triggers several potentially harmful 
effects: it induces mitochondrial stress in neurons, either directly or indirectly, including via Aβ 
signaling. It also increases Oxidative stress [148–150] and Blood-Brain Barrier (BBB) permeability 
which likely influence AD progression [151,152]. Furthermore, increased cytokines levels can 
influence other processes potentially related to AD. For instance, IL-18 increases the levels of Cdk5 
and GSK-3β, which are involved in Tau hyperphosphorylation [153]. Also, the activation of Cdk5 
pathway causes Golgi fragmentation, neuronal and mitochondrial fragmentation. Interestingly, the 
inhibition of Cdk5 was proven to improve AD subjects’ conditions [154–156]. 

Several processes an natural compounds can trigger immune responses and deviate this process 
from its physiological behavior. In particular, there has been a lot of focus recently on the 
complement system. 

The complement system facilitates the immune system’ response. It’s excessive activation 
exacerbates AD symptoms [157], since it influence Aβ, Tau, and APOE4 interaction in AD [158,159] 
(for more details see [160]). Cholesterol also contributes to AD pathogenesis by inducing interleukin 
1β production through cytoplasmic sensor NLRP3 [161]. Strictly related to the immune function, 
viral infections, in particular Herpes Viruses (HSV1, HSV2), are also associated with AD. In 
particular, this type of infection is believed to potentially be an import risk factor for AD onset. 
Indeed, HSV1 (oral herpes) and HSV2 (genital herpes) can trigger Aβ aggregation, and their DNA is 
common in Aβ plaques. HSV1 reactivation is associated with Tau hyperphosphorylation and 
possibly Tau propagation. Recurrent reactivation may produce neuronal damage and AD pathology. 
This data open for a potential viral hypothesis of AD, where an increased risk may follow 
neurotropic infection [162,163]. The main players behind neuroinflammation and immune processes, 
are the non-neuronal cells that populate the brain (Neuroglia) [144,164]. These once “supporting” 
cells were indeed demonstrated to have an important role in the regulation of Brain processes, 
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including protection, neurotransmission and microenvironment homeostasis [165,166]. 
Physiologically, these cells have the ability to phagocytize Aβ proteins, thus acting against AD-
related Aβ accumulation [167]. However, this protective function can be inhibited by increased 
levels of inflammatory cytokines such as IL-1β, TNF-α and IFN-γ [140,168]. Neuroglia is composed 
by different cell types. Box 2 briefly reports their potential role in association with AD. 

Continued on next page 

Box 2. Non-Neuronal Cells 

The continuous research on AD and brain in general, demonstrated how the physiological 

functions of SNC are not linked to neurons functions only. Rather, it was demonstrated that the 

once “supporting” cells types present in SNC have an important role in the regulation of Brain 

processes, including neurotransmission and microenvironment homeostasis [165,166]. Alterations 

of their function may profoundly impact the physiological functions of the brain, and a large 

amount of literature data linked these alteration to several pathological states, including AD.  

Microglia: Microglia are the resident phagocytes and innate immune cells of the brain, protecting 

from SNC from infections and also regulate the homeostasis. Over the past few decades, there has 

been an increased interest in microglia since the discovery of its involvement in synaptic plasticity 

dysfunctions. In particular, an alteration of the physiological functions of the cells has potentially 

harmful consequences for neuronal function, eventually leading to cognitive loss and behavioral 

deficits [169]. Also, synaptic plasticity has been demonstrated to be a key mechanics which is 

intimately linked with Aβ formation and with the long-term potentiation (LTP) pathways in 

AD [170,171]. Recent data support a possible role of microglia in AD risk, and it is now widely 

accepted that clustered populations of reactive microglia are hallmarks of AD. Microglia cells in 

the brain are usually in an inactivated state. In this state they are still able to perform some control 

functions [172–174], but do not seem to influence AD-related processes. Their activation, though, 

can trigger several molecular processes that correlate with an increased risk of AD. In particular. 

when activated microglia may trigger pro-inflammatory (M1 state) or anti-inflammatory (M2 

state) processes [175]. M2 state seems to play a role in neuroprotective-related processes. The 

action of microglial cells in M1 state instead, are linked to AD development since it promotes 

neuroinflammation through the secretion of pro-inflammatory cytokines. As described before, 

neuroinflammation is detrimental for neurons and may lead to neurodegenerative processes. Also, 

cells in M1 state may release ROS, thus increasing the OS in the micro-environment [176]. As 

such, M1 microglia cells may also act as a bridge of different processes both related with AD. 

Several studies have also focused on the existent relationship of microglia with Aβ plaques 

formation and Tau hyper-phosphorylation, evidencing an interesting correlation with the main 

events of AD development [169]. However, little is known about microglial activities in early 

stage AD and in particular, on its role in synaptic dysfunction [169].  
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Box 2. Non-Neuronal Cells 

Astrocytes: like microglia cells, Astrocytes are one of the subtypes composing neuroglia. Once 

believed to carry out only a support function to neurons, it is now known that Astrocytes can 

influence neuronal and vascular function. Accordingly, the functional consequences of astrocyte 

dysfunction in AD can be severe. 

It was evidenced in literature that astrocyte action is important in the onset and development of 

neurodegenerative events, including the ones related to AD pathology [177]. It has to be noted, 

though, that they role is likely secondary to other alterations, since it seems that astrocytes have a 

neuroprotective function in the brain and are activated (reactive astrogliosis) in critical cases in 

order to limit neural damage in the brain [178]. However, chronic activation ultimately lead to 

imbalances “exacerbating cellular pathology and behavioral outcomes” [177]. In particular, 

literature data demonstrated that several events related to AD, like Aβ accumulation, synaptic 

dysfunction, neuronal energy metabolism and neuroinflammation are strictly linked to astrocyte 

action [179]. From this point of view, astrocyte may be considered as another bridge that link 

together the several processes related to AD development. Furthermore, it was evidenced that the 

role of astrocytes in controlling neurovascular interactions may be correlated with brain 

hypoperfusion and/or impaired Functional hyperemia, and both events are commonly observed in 

AD subjects [177]. This suggest an association between AD alterations and neurovascular 

functions. Consistently, it is interesting to note that Aβ accumulation seems to be mainly localized 

in brain areas with reduced cerebral blood flow [180–182]. Still, it has to be noted that the reduced 

vascularization may be a consequence of Aβ accumulation rather than a cause. 

Neutrophils: Recently, some interesting literature data demonstrated neuroglial cells are not the 

only cell types that can be correlated with AD risk. Recent studies observed that the blood 

circulating immune cells, the neutrophils, seems to promote AD pathogenesis by triggering 

neuroinflammation-related AD events [183]. These cells are key regulators of the immune system 

because they communicate and interact with adaptive immune system cells during infections, 

chronic inflammation and autoimmune diseases [184,185]. The mechanics behind the neutrophil-

dependent damage in AD are not entirely understood, especially because they should not be able 

to pass BBB. According to this, their effect should be indirect, through the increase of pro-

inflammatory cytokines, or subordinated to BBB damage. The recently discover of Neurotrophils 

extracellular traps (neutrophils mechanics of defense against infection) [183] in AD models, added 

a new potential way for the cells to influence AD-related mechanics (we recommend to 

consult [183] for further details). 
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6. Oxidative stress 

Oxidative stress (OS) has been widely recognized as a prodromal factor associated to AD [186]. 
Cell control on OS is particularly important to maintain the balanced microenvironment needed for 
multiple biological processes, from bioenergetics to other essential functions such as vesicle 
transport or post-transcriptional modulations [187]. Neurons in particular are very sensible to OS as 
their normal antioxidant content is low and their membranes are rich of polyunsaturated fatty  
acids [188]. 

Multiple causes, mainly related to mitochondrial dysfunctions and energy metabolism 
impairments (as it will be described later in the text) can increase cellular OS. Even the natural 
process of aging is believed to physiologically increase OS with time [189]. At neuronal level, 
oxidative damage related to age [190,191] strongly impairs the synaptic components involved in 
neuronal plasticity [189,192], cytoskeletal dynamics [193] and cellular communication [194], all 
processes known to be impaired in AD. 

According to the current knowledge regarding OS it is not clear if it OS increase could trigger 
AD onset. However, increased OS is often observed in the brain of early-stage AD subjects [195]. 
Further, it seems to have a key role in AD severity and propagation. Indeed, it has been demonstrated 
that Aβ enhances OS, and represents a source of radical oxygen and nitrogen species (ROS, RNS) [186]. 
This process is mainly linked with the function of important proteic mediators of OS, including NOX, 
TGF-β, NF-κB and Nrf2 [196]. The increased OS state in turn triggers several molecular events that 
are strictly linked with AD symptomatology development [197]. 

First of all, elevated ROS and RNS concentrations promote Tau phosphorylation, which in turn 
promotes the destabilization of microtubules. In neurons, microtubules are of primary importance 
since they maintain these cells polarization and intracellular trafficking [189]. Their destabilization 
often translates in a decreased function of synapses [198]. 

ROS can propagate toward the membrane, and then oxidize proteins and nucleic acids, as 
confirmed by post-mortem AD patients’ investigations. In particular, nucleic acid oxidization can 
cause lethal damage to cell (please refer to Mitochondria section) but can also promote protein 
aggregation. Indeed, recent observations indicated that Pre-translational mRNA oxidation synthetize 
peptides that are prone to aggregate [199]. mRNA oxidation seems to be a cytoanatomically selective 
event that hit mRNAs translated by ribosomes that reside tethered to the mitochondrial outer 
membrane [32]. The aggregates heavily impair the physiological cell functions. In neurons this could 
have severe consequences for the normal brain function. 

Further, OS exert its effect on the choline recycling from the synapse processes, leading to ACh 
deficiency [200]. In late stage AD, levels of presynaptic high-affinity choline transporter 1 (CHT1) 
were observed to be decreased in synaptosomes in the hippocampus and neocortex of humans [201]. 
Further, high OS inactivates nAChRs, thus inducing long-term depression of cholinergic 
transmission [202].  

An increased OS state leads to an imbalance between pro- and anti- apoptotic processes [153,203], 
leading to apoptosis and then neurodegeneration  [204]. Interestingly, particularly low ROS 
concentrations may trigger proliferative signals in neurons, which highly reduce these cells 
functionality [204]. 

ROS can also regulate BBB function through enhancing the expression of several metallo-
proteinases, and in particular the 9 isoform (MMP9). MMP9 expression is important in brain micro-
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vascular environment since its alterations are associated with an increased BBB permeability that 
promotes AD progression through the extravasation of inflammatory factors and ROS in the  
brain [205,206]. 

Another effect of ROS is to influence the energy metabolism of the brain: it indirectly regulates 
neuronal cells permeability to glucose, decreasing GLUT-3 expression in AD neurons [207,208] and 
GLUT-1 in BBB [207]. These molecular events lead to a glucose hypometabolism state in the brain, 
which has relevant consequences in cells like neurons, whose physiological roles require high levels 
of energy [186]. 

Finally, excessive ROS inevitably lead to lipid peroxidation [209]. Polyunsaturated fatty acids 
are rich in the brain [210]. They could be degraded into malondialdehyde, which causes DNA 
damage and toxic stress in cells [211]. 

7. Energy metabolism 

Numerous evidences implicate Energy metabolism with AD development [212]. In particular, 
glucose hypometabolism has been detected in the frontal, parietal, temporal, and posterior cingulate 
cortices of AD patients, and interests especially the basal forebrain cholinergic neurons  
degeneration [213]. AD intracellular lesions usually develop in neurons presenting long and thin 
axons compared to the soma [214] and present a reduced or absent myelin sheath. It is interesting to 
note that these type of neurons are the ones with highest energy requirements [215]. From a 
molecular point of view, glucose hypometabolism is likely linked with OS. For instance, it was 
observed that the expression and function of key enzymes in the glycolytic cascade is reduced with 
high ROS levels [32,216,217]. Energy alterations were also linked to a decreased functionality of 
enzymes related to TCA cycle, which lead neurons to a hypometabolic state [200,218–222]. High 
Cerebrospinal fluid pyruvate and lactate has been widely reported in AD patients compared with 
healthy elderly controls [223]. 

Furthermore, chronic treatment with pyruvate could alleviate short and long-term memory 
deficits via other pathogenic pathways without reducing amyloid- and Tau-dependent pathology in 
preclinical AD models [224]. Insulin signaling has been the focus of multiple studies for its 
association with AD [225–228]; Aβ oligomers can bind insulin receptors causing their internalization. 
The sheer increase of these oligomers in AD subjects triggers an inhibition of the insulin signaling 
pathways [229]. In sum, the alteration of insulin signaling (or an increased resistance to insulin) 
ultimately triggers neuroinflammation and neurodegenerative processes through: (1) an increase of 
Aβ concentrations; and (2) a GSK3β-dependent (Glycogen Synthase Kinase 3β) hyper-
phosphorylation of Tau protein [229–231]. The potential role of insulin signaling in AD is supported 
by the observation that insulin-related pathologies, like Diabetes Mellitus, increase AD risk [232]. 

8. Vascular related mechanics 

Cerebrovascular abnormalities are common comorbidity in patients with Alzheimer’s disease 
(AD) [233]. They may concur to the onset of cognitive impairment and dementia. 

Vascular dysfunctions cause altered brain blood flow and pressure at the level of the brain [234]. 
These events are detrimental for the normal cerebral function that would result in disturbed 
homeostasis, but also in blood-brain barrier (BBB) damage and micro-fractures in cerebral vases [235], 
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with increased risk of neuroinflammation [236]. Ultimately, they lead to an increased neuronal death 
rate and eventually cause the onset and the progression of cognitive impairments [137]. 

Vascular dysfunctions also set in motion a chain of metabolic events strictly related to  
AD [237–242], including OS. Studies on animal models linked ROS production to the increased 
concentration levels of the Advanced Glycation Endproducts (AGE) proteins and their receptors 
(RAGE) in the vascular system. These events are linked to the formation of Aβ plaques [243–246]. 
Interestingly, RAGE is also correlated with inflammatory function and innate immunity, since it has 
the ability to recognize specific structural motifs (RAGE is also classified as a pattern recognition 
receptor). A further link with AD events is that brain levels of AGE and RAGE expression have 
increased in AD subjects [244,247]. Their expression also tends to increase naturally with age, 
offering a possible explanation for the increased risk to AD with Age [243,244,247]. 

A chronic hypoperfusion state also promotes the formation of Aβ, through the activation of the 
adaptive response to hypoxia and reduced clearance via perivascular draining [248,249]. 
Consistently, it is interesting to note that Aβ accumulation seems to be mainly localized in brain 
areas with reduced cerebral blood flow [180–182]. Also, the use of angiotensin receptor blockers or 
angiotensin converting enzyme inhibitors and diuretics has a protective effect against AD [250–252]. 
Nevertheless, the use of these compounds in AD treatment is not indicated, since reduced blood 
pressure may also trigger detrimental effects including memory impairments and an overall increased 
risk of AD [253–255]. According to our knowledge, in AD the cerebral vascularization undergoes 
cellular, morphological and structural alterations, which influence the blood flow [235]. However, 
accumulating evidences suggest that dysfunction of the cerebral vasculature may precede AD 
neuropathology, implicating a causal role in the etiology of AD, at least in some cases. Indeed, for 
long time it was believed that some cases of AD may have a vascular origin with neurodegenerative 
consequences [248]. Whether vascular dysfunctions are causative of AD have yet to be determined. 
However it is know that the cardiovascular system strictly interacts with AD neuropathology in 
multiple ways and that the interaction is bidirectional. Making vascular dysfunction an integral part 
of AD pathophysiology. 

9. Neurodevelopment and neurotransmission associated processes 

Neurodevelopmental and Neurotransmission related pathways are likely associated with AD 
development and in particular with its cognitive symptoms [256]. Physiologically, these processes 
consists in the proliferation, differentiation and maturation of neural stem cells (NSC) and the 
modulation of their interactions through synapse- and neurotransmission- related processes.  

Several reports have indicated a significant reduction of 5-HT [257], DA [258] and NE [259] 
levels as well as their receptors in AD brain. In AD, loss of 5-HT results in depression, anxiety and 
agitation [260], dysregulation of DA release leads to reward-mediated memory formation  
deficits [261], and low level of NE impairs spatial memory function [262]. Additionally, the 
cholinergic system, which regulates memory function and behavior via the release of the 
neurotransmitter acetylcholine (ACh) [263], was found to be altered in AD. Accumulation of 
intraneuronal Aβ in AD degenerates basal forebrain cholinergic neurons and reduces ACh  
levels [264], which in turn leads to memory deficits [265]. Further, mitochondrial dysfunctions are 
associated with monoaminergic inactivity through various mechanisms. Higher MAO expression, in 
particular in association with the APOE4, also contributes to a reduced production of monoamines [200]. 
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Further, literature evidences pointed out how pruning pathway becomes aberrantly up-regulated 
in early stages of AD, mediating synaptic loss [266]. Synaptic pruning is regulated by several signals, 
including cytokine TGFβ [267], an inflammation-related factor whose levels have been found to be 
increased in AD [268–270]. 

These processes can be influenced by multiple factors, including OS and inflammation, which 
were already discussed, and novel processes like epigenetic control [271]. 

Recently it was observed that some new molecular cascades were triggered by Aβ. Aβ may act 
through PANX1 expression increase. PANX1 is a protein involved in the modulation of 
neurotransmission, neurogenesis and synaptic plasticity [189,272]. An increase of this protein under 
inflammatory conditions contributes to neuronal death [273]. Aβ can also bind to several postsynaptic 
partners, including NMDAR and type 1 metabotropic glutamate receptor 5(mGluR5) [189]. The 
binding of such receptors cause NMDAR-dependent synaptic depression and spine elimination [274]. 
Recently, the link between Aβ, AD and these processes has been also associated to ryanodine 
receptors (RyR) function [189]. 

RyR is Ca2+ channel present in three different isoforms (with different responses to Ca2+) in the 
brain. It acts as redox sensors modulating different processes such as neuronal development, 
apoptosis, gene transcription, synaptic transmission and neuronal plasticity [275]. In particular, 
Hippocampal RyR has a critical role in many forms of synaptic plasticity [276]. Anomalous RyR 
channel function occurs in AD pathology [277,278]. In particular, it was observed that both Aβ and 
OS would promote aberrant activation of RyR, generating continuous cytoplasmic Ca2+ signals [189]. 
These anomalous Ca2+ signals lead to mitochondrial and NOX2-mediated ROS generation [279] and 
glial activation [280]. 

Glial activation is an important event in AD. Indeed, recent data demonstrated how the 
physiological functions of SNC are not linked to neurons functions only. Rather, it was demonstrated 
that the once “supporting” cells types present in SNC have an important role in the regulation of 
Brain processes, including neurotransmission and microenvironment homeostasis [165,166]. As 
briefly described in Box 2, Microglia modulate synaptogenesis, synapse tagging and elimination or 
synaptic pruning, help repair damage from injury and modulate synaptic transmission through 
cytokines [281] and in particular through complement proteins release [271,282]. 

These elements act as signals activating circulating macrophages that express complement 
receptors (C1qR and CR3) and microglial cells in the brain [267,283,284]. Microglia activation 
triggers synapses removal through phagocytosis or by releasing soluble synaptotoxic factors [285–287]. 
Several complement components are normally down-regulated in CNS [266,283]; their 
overexpression mediates synapse elimination [266,267,283,288]. Interestingly, studies in human and 
mouse brains observed an age-related up-regulation of C1q that deposits in synapses, particularly in 
the hippocampus, one of the most vulnerable regions to synapse loss in AD [289]. C3 has also been 
shown to contribute to synapse loss and dysfunction in the mouse hippocampus during normal  
aging [290]. Also, injection of Aβ oligomers in wild-type mice leads to up-regulation of C3 levels, 
which promote microglial removal of synaptic connections [256]. Further, down-regulating C3 in 
animal models of AD showed a decreased frequency of neurodegenerative phenomena [291,292]. 

Mechanistically, Aβ oligomers increase the expression of C3 in microglia and astrocytes. 
Elevated C3 levels promote microglia recruitment and mark synapses for elimination. It has to be 
noted that synaptic loss may be triggered by different mechanisms; some of them might not 
necessarily follow the trajectory of amyloid buildup [291,293]. 
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Microglia function could be altered by several processes, including ROS generation and 
inflammation [279,280]. In particular, it was observed that glial cells actively release glutamate and 
ATP in presence of Aβ. This process trigger pro-apoptotic cascades in neurons [294]. 

10. Autophagy impairments 

Autophagy is emerging as an important process in the regulation of neuronal and glial cells 
health in AD. Physiologically, Autophagy is an adaptive process induced under different forms of 
stress, including nutrient deprivation, hypoxia, and infection [295]. 

It is a complex process that consists of several sequential steps, sequestration, degradation, and 
amino acid/peptide generation, mediated by a unique organelle called the autophagosome, a vesicle 
that contains cellular material targeted to be degraded (macromolecules and organelles) by an 
intracellular degradation system [296]. 

Although all cell types have the ability to turn on autophagy, a growing body of studies suggest 
the importance of this process, specifically, in neurons [297]. 

Inhibition of autophagy events is causally linked to neurodegeneration, indicating the relevance 
of autophagy in the neuronal homeostasis regulation [298]. Of note, there is substantial evidence that 
deregulation of autophagy occurs in AD patients and AD animal models [186]. In this regard, both 
genetic and environmental factors connect autophagy with AD. For example, Apolipoprotein E4 
(apoE4) overexpression potentially causes an Aβ accumulation in lysosomes, leading to neuronal 
death in the hippocampus [299,300]. Further, emerging evidence indicates that high ROS levels 
inhibit the fusion between autophagosomes and lysosomes [186]. 

Studies on animal models of AD reported that restoring the physiological autophagosomes 
clearance prevents the manifestation of cognitive symptoms [301]. 

In more detail, authophagy could be further classified Macroautophagy and Mitophagy: both are 
somewhat implicated in AD. 

Macroautophagy, is tighly regulated degradative pathway that targets cellular macromolecules 
and eliminates them through proteolytic enzymes in autophagolysosomes [302–304]. Some data 
evidenced how this process is impaired in AD brains [303], where a pathological accumulation of 
autophagosomes can be observed [305]. In details, AD pathogenesis has been linked to through an 
impaired merging processes between the autophagosomal-lysosomal system and the consequent 
reduction/block of protein aggregates turnover [306,307]. Autophagic vacuoles, isolated from a 
variety of tissues, were shown to be enriched in APP, gamma-secretase components, PSEN1 and 
nicastrin, which are required to generate Aβ [308,309]. Interestingly, studies in animal models 
evidenced how abnormalities in this process occur early in AD pathogenesis, way before the 
appearance of neurofibrillary tangles or senile plaques. This indicates that induction of 
macroautophagy is not a consequence of amyloid deposition [306]. According to the authophagic 
hypothesis, the block of this process and the consequent accumulation of autophagosomes trigger 
neuronal degeneration [310] and leads to the release of these vesicles in the extracellular space where 
they form the characteristic AD plaques [306,307]. 

Mitophagy, is the selective autophagic removal of mitochondria. This process is particularly 
important in neurons, where these organelles play a crucial role in cell survival [311]. In 
physiological conditions, dysfunctional mitochondria are removed from cytoplasm through 
mitophagy, an event that in AD disease is suppressed by excessive levels of ROS and Aβ [186]. 
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Generally, initiation of the mitophagy pathway occurs via the relocation of cardiolipin, a 
diphosphatidylglycerol lipid, from the inner mitochondrial membrane to outer mitochondrial 
membrane [312]. Evidence has indicated that two proteins PTEN-induced putative kinase1 (PINK1) 
and parkin can also initiate the mitophagy pathway leading to autophagosome-mediated 
mitochondrial degradation [313]. In AD, high levels of Aβ and Tau inhibit the expression of PINK1 
and parkin, thereby reducing the number of autophagosomes leading to increased dysfunctional 
lysosomes and the severe disease pathology [312,314]. 

11. Protein misfolding and misfolded protein clearance 

AD research is ever increasing, and everyday new suggestive hypotheses are postulated to 
tentatively explain that “over 90% of cases” (LOAD) with a cryptic cause. Other than the above cited 
processes, it has been suggested that AD pathological alterations may be attributed to an incorrect 
folding of proteins [315]. It has been suggested that pathologically misfolded proteins can influence 
properly folded proteins to alter their conformation, thus resulting in the propagation of disease [316]. 
Further, it has been observed that misfolded proteins could also trigger chronic inflammation through 
different activation pathways [317]. 

The possibility of propagation of the misfolded proteins between cells is not impossible: there 
are several processes developed for cell-cell communication, including synaptic transmission, direct 
communication trough gap junction and paracrine signaling [318] as well as vesicle transporting (see 
exosomes section), through which a cell to cell protein exchange takes place. From a cytoanatomical 
point of view protein misfolding is a process that mainly take place in Endoplasmatic reticulum (ER). 
Physiologically, misfolded proteins in this compartment are eliminated through a fine molecular 
cascade (ER-associated degradation or ERAD) that recognizes, ubiquitinates, and retrotranslocates 
misfolded proteins to the cytosolic 26S proteasome [319]. Some studies indicate cross talk between 
ERAD pathways and OS in AD, where the inhibition of some key enzymes correlates with APP 
accumulation and Aβ production [186]. Interestingly, Tau accumulation can trigger a cycle where the 
presence of Tau inhibits ERAD (by binding HRD1): in turn ERAD inhibition leads to an increased 
Tau aggregation (together with other misfolded proteins) [186]. Misfolded protein continue 
accumulation ultimately lead to the activation of the Unfolded Protein Response, which trigger 
apoptosis and, consequently, neurodegeneration [320,321]. For a more in deep discussion on ERAD 
cascade please refer to [186]. 

12. Metal hypothesis 

Metal ions have a significant role in the brain, since they are required to regulate the neuronal 
activity in the synapses and many other biological functions [186]. There is increasing evidence 
suggesting that metal balance impairments, either excess or deficiency of metal ions, are involved in 
a series of processes that can result in neurodegeneration and cell death [322]. These processes are 
the hallmarks of various neurodegenerative diseases, including AD [130]. Metals are important 
elements that effect protein conformation, when their homeostasis is disrupted, several protein 
misfolding events may appear inside the cell [323]. Regarding AD, it was observed that APP play a 
crucial role in metal homeostasis and increases metal concentrations when its function is  
altered [324]. Indeed, their concentrations were significantly increased in AD brain samples [325]. 
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The presence of metal ions (especially for zinc, iron and copper) was detected in Aβ aggregates. In 
particular, it was observed that the amyloidogenic protein and its precursors have the ability to bind 
metals [130]. At the same time, bound metals can force proteins to alter their conformations [326], 
promoting metal-Aβ complexes generation and AD progression [32]. Aβ oligomerization reduces the 
availability of free metal ions. As Cu and Fe are elements needed for the electron transport, their 
chelation could inhibit oxidative phosphorylation. (which equals to impaired energy production and 
ROS production) [204]. Other elements, like Al and Fe, are also important determinants of protein 
conformation. In particular, Al is noteworthy since is a rather strong inducer of Aβ oligomerization 
and Al-aggregated Aβ exhibit tight binding to the surface of neurons and a high predisposition to 
form fibrillar deposits in cellular models [327]. Supporting its role in AD, Al is considered to be an 
environmental risk factor for the disease [327]. Notably, increased Fe levels accompany initial 
aggregation and accumulation of Aβ in specific brain regions like hippocampus [328]. Moreover, Fe 
also promotes Tau aggregation [189,329]. 

The role of metals in the brain is not only limited to protein folding processes. Indeed, they also 
play important roles in SNC physiologic mechanics, including neurotransmitter synthesis, neural 
information processing, and neuronal myelination [330]. It was demonstrated that deficiency of these 
metals produces severe adverse effects on central nervous system functions, especially learning and 
memory, functions intimately linked with AD development. Metal levels increase promote several 
pro-OS reactions and lead to (1) ROS generation through a Fenton-like mechanism [32,189,331,332] 
(2) increased ROS lifetime [333] and (3) oxidative phosphorylation decrease in mitochondria [32]. 

Finally, it was observed that Zn2+ and Cu2+ ions can be secreted into synaptic clefts [334–340] 
and an excess of these metals triggers a cascade of events that lead to hypoperfusion, thus increasing 
the risk of neuronal death [130]. While this is not one of the principal biologic processes investigated 
in AD, the role of metals may be more profound than expected. For a more in depth review regarding 
the role of metals in AD, please refer to [130,322]. 

13. A role for exosomes? 

The detection of Aβ and Tau in AD subjects’ cerebrospinal fluid, evidenced the existence of a 
mechanism to transport these proteins into the extracellular fluid [341]. While it is possible for cell to 
reverse their content into the extracellular environment (exocytosis), it has been demonstrated that 
Tau proteins released into extracellular fluid are cut in their mid-region. This cut prevents Tau 
aggregation which instead is commonly observed in AD [341]; thus, other transport mechanisms 
should exist. 

Exosomes, are small vesicles on the scale of nanometers, which are widely present in 
extracellular fluids [341]. Recent data revealed that these vesicles are involved in cell-cell 
information transfer [341,342], are released by numerous types of cells [343] and carry genetic 
material, various bioactive proteins and lipids [342]. In particular, recent studies evidenced that 
exosomes take part into neuron-glia interaction network and their role likely affect important 
processes [342]. Given, their function, exosomes may contribute to Aß and Tau propagation in AD 
brains [344–348]. 

Supporting this possibility, there are some observations reporting that in the early stage of AD, 
some neurons show morphological changes in their endosome compartment, which seems to increase 
in size; roughly at the same time Aß levels begin to rise [349,350]. It was postulated that the 
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intracellular Aß accumulates in endosomes [351]. Noteworthy, these endosomes also contain 
endocytic multivesicular bodies, whose vesicles are precursors of exosomes [352,353]. Further, Aβ 
is also released to the extracellular environment in association with exosomes in cellular models of 
AD [342,344]. In humans, Aß plaques contains traces of molecular markers of exosomes (flotillin-1 
and Alix proteins) [342] and Aß rich exosomes can be found in the blood of AD subjects [354]. 
Interestingly, injecting exosomes from AD in the cerebrospinal fluid of animal models can induce 
AD symptomatology [341]. Further, exosomes from Aβ-treated astrocytes contain the pro-apoptotic 
PAR-4 protein and these vesicles cause PAR-4 associated apoptosis in naive cultures [355]. 

Finally, some data have demonstrated that mRNA and miRNA species are present in exosomes. 
It is still not known if miRNA levels variation is a cause or consequence of the neurodegenerative 
process. However, several reports evidenced that specific miRNAs, including miR-9, miR-29a/b, 
miR-107, miR-124, miR-128, miR-132, miR-134, miR-137 and miR-212 levels are altered in AD 
and are associated with neurodevelopmental processes [342]. Exosomes, by transporting these 
transcripts, could propagate AD-related damage to other cells. 

As an additional effort to shed some light on Alzheimer background we also enriched our 
literature research with a pathway analysis based on recent genetic findings (see Table 1 and 
supplementary Table 1) in order to evidence functionally organized networks and related biological 
processes. Multiple clusters (a total of 6) were evidenced from the initial selection of genes. Each 
one is linked to different biological processes (Gene Ontology: Biological Processes database—
http://geneontology.org/) [356]. The results are reported as supplementary material. 

14. Mitochondria 

Concluding the discussion on the biological processes, we want to focus on a central organelle 
which may very well occupy a central position in LOAD pathophysiology. Mitochondria are the 
cellular central point for energy-related processes. 

The correlation of Mitochondria with AD is known in literature, supported by both genetic and 
molecular observations and is believed to occupy a relevant position in the pathogenesis of the 
disease [204]. A trend of inheritance do exist in AD cases: children of female AD subjects are at 
higher risk for developing AD than children of male AD subjects [357]. Maternally inherited AD 
may account for over 20% of all LOAD cases [357], supporting a possible involvement of mtDNA 
genes [358–360]. A number of studies have demonstrated that mitochondrial integrity declines with 
age, affecting multiple brain functions such as memory, learning and sensory processes [307,361], 
which are commonly impaired in AD. 

The mitochondrial cascade hypothesis was one of the potential theories advanced to explain AD 
pathogenesis [200,204]. According to this hypothesis, polymorphisms within mtDNA and nuclear 
genes encoding for Electron Transport Chain (ETC) determine the efficiency of mitochondrial 
energy production as well as the accumulation rate of ROS byproducts. ROS production rate is 
strictly related to mtDNA alterations. 

In particular, ROS accumulation rate is a good indicator of mitochondrial life and his energy 
production efficacy, since higher is ROS rate, higher is the accumulation of mtDNA damage. The 
decrease of energy production efficacy is mainly due to alterations of the complexes (I–IV), which 
are one of the most documented changes in AD [200,362]. As observed in the previous section, OS 
also triggers lipid peroxidation and protein oxidation. 
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Interestingly, some recent data pointed on the regulation of nuclear components through ROS 
signaling [363]. In details, mitochondrial ROS can upregulate the expression of assembly factors of I, 
II, III, and IV complexes [364], evidencing the bidirectional talk between mitochondria and  
nucleus [186]. Additionally, miRNAs seem to be implicated in the regulation of ROS signaling [189]. 

With the increase of ROS three different responses are triggered: (1) Aβ production from APP, 
which further increase ROS generation; (2) pro-apoptotic cascade by releasing factor such as 
cytochrome C; (3) hypoxic signaling cascade, which provides a signal for re-entry into mitotic 
cycling (destined to fail in neurons) and with resultant aneuploidy, Tau phosphorylation, 
and neurofibrillary tangle formation [204]. Phosphorylated Tau increases dynamin-related protein 1 
(DRP1) levels, which ultimately cause excessive mitochondrial fragmentation [200]. 

The hypothesis etiologically divides LOAD from EOAD. Focusing on Aβ production, in LOAD 
this may represent a compensatory event occurring in response to the primary mitochondrial 
pathology, while in EOAD Aβ production is strictly a toxic phenomenon.  

This fact was included in a recent redefinition of the mitochondrial hypothesis which was 
distinguished into primary and secondary mitochondrial cascade [200], stressing the distinction 
between mitochondrial dysfunction-induced (primary) and Aβ induced (secondary) AD onset. In the 
latter the dysfunction is merely an intermediated step. 

Either way, Aβ production have harmful effects on mitochondria. According to literature data, 
Aβ contributes to OS [365,366]. In addition, Aβ promotes mitochondria fragmentation through S-
nitrosylation of Drp1 and consequent augmented GTPase activity [307]. It also inhibits 
transmembrane translocase on mitochondria through cyclophylin D interactions, increases 
mitochondrial fission and permeability and downregulates mitochondrial fusion [200]. 

Mitochondria are essential organelles in every human cell type since play a key role in cell 
survival or death, regulating both energy metabolism and apoptotic pathways. However, their role in 
neurons is more than that, since these cells have high energy demands, in particular for neuronal 
synaptic activity [367] and neurotransmission processes in general [200]. In high OS conditions, 
mitochondria has a limited serotoninergic efficiency caused by membrane permeabilization and 
altered serotoninergic metabolism. Monoaminergic activity in general is reduced by mitochondria 
dysfunction [200]. Finally, some recent literature data indicated that mitochondria actively interact 
with ER through localized subdomain named mitochondria-associated ER membranes. The activity 
within these areas is increased in AD cells [368]. Notably, this data may infer to a possible bridge 
between mitochondria functions and cells protein production, including potential protein misfolding-
related processes. 

15. The impact of the different biological contributors toward the risk 

With the exception of around 5% of autosomal dominant AD mutations (EOAD), a number of 
other biological processes contribute to AD cases world-wide. As introduced in the previous sections 
it is unlikely that a single factor (or mechanics) is responsible for synaptic dysfunctions and the other 
pathological changes that occur in AD subjects’ brain. In this paragraph, we want to briefly 
illustrates how the several pathways discussed, may be linked through transduction signaling 
cascades. While the latter may be not directly causative of AD, they undoubtedly have a key role in 
AD propagation and symptoms manifestation. 
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As discussed in the Mitochondria section, whether Aβ production is the causative event (EOAD) 
or caused by other processes, including mitochondria dysfunction, its cytoxicity is primarily exerted 
on mitochondria. The two main consequences are an increased OS and a reduced (aerobic) energy 
production. ROS acts on lipids promoting their peroxidation and perturbing their homeostasis. 
Physiologically, the latter are used not only for energy production but also as secondary  
messengers [369]. Several genes involved in lipid homeostasis, including APOE, CLU, SORL1 and 
ABCA7 were correlated with AD [370]. Polyunsaturated fatty acids could participate in myriad 
signal transduction within the brain directly or after enzymatic conversion to a series of mediators. 
For example, Activated sphingolipids are signaling molecules that serve as intracellular second 
messengers [371]. Their shortage has a potentiation effect on Aβ secretion [342], thus causing its 
accumulation (and plaques formation). Literature data indicates that this shortage is often observed in 
AD brains, especially in the inferior temporal and middle frontal gyri [369]. Further, Cholesterol and 
its esters low concentration correlate with increased of Aβ production [370]. 

Cellular Ca2+ signals regulate several important processes in neurons [372,373]. Literature 
evidences indicate that its dyshomeostasis may play a key role in the pathogenesis of AD [374,375]. 
Interestingly, there is ample some data reports that Ca2+ dysregulation may even precede the 
formation of Aβ plaques and neurofibrillary tangles in AD brain, suggesting disruption in 
cytoplasmic Ca2+ is an earlier event [372,376]. 

Intracellular Ca2+ is usually stored in the ER. Its release in the cytosol is controlled by RyRs and 
inositol 1,4,5-trisphosphate receptors (InsP3R) [377]. Ca2+ intake from extracellular compartment is 
controlled by store-operated Ca2+ entry (SOCE) pathway and, by voltage-gated Ca2+ channels 
(VGCC) in neurons. Also, it has been shown Ca2+ influx through the CALHM1 channel or NMDAR 
stimulates α-secretase processing of APP [375], thus protecting from Aβ accumulation. It was 
observed that high OS state and Aβ aggregates can interfere with Ca2+ homeostasis as they can 
trigger Ca2+ release from ER stores through the InsP3R and RyR [375,378]. Increased Ca2+ levels in 
the cells interferes with the physiological function of VGCCs, thus impairing neurotransmission [373]. 
Imbalanced cellular Ca2+ also contributes to pathophysiological conditions such as accumulation of 
Aβ plaques and neurofibrillary tangles, protein misfolding, necrosis, apoptosis, autophagy deficits, 
and degeneration [375,379–381]. Finally, excess cytosolic Ca2+ exacerbates mitochondria 
dysfunction and dysregulates KIF5-Miro-Trak-mediated mitochondrial transport to synapses [200]. 
For a more detailed discussion on Ca2+ please refer to [375,381]. 

G protein–coupled receptors (GPCRs) regulate cell responses to external molecules, like 
neurotransmitters [382,383] and it was demonstrated that their action is involved in both long- and 
short-term memory biological processes [384], known to be impaired in AD. 

GPCRs can control genetic expression through their interaction with the extracellular signal-
regulated kinases (ERKs or ERK1/2). ERKs is involved in a wide array of signals and signal 
transduction pathways, including the ones involved in the formation of memory traces [385,386] and 
the ones involved in the regulation of neuronal plasticity (both protein synthesis and protein 
phosphorylation in dendrites) [387,388]. Interestingly, G-GPCRs produce the secondary messenger 
inositol 1,4,5-triphosphate (IP3) which binds to IP3R on ER and efflux the Ca2+ into cytoplasm [381]. 

Dysfunction of the mammalian target of rapamycin (mTOR) pathway has been implicated in 
both neurodevelopmental and neurodegenerative diseases, including AD [389–392]. Numerous 
studies have demonstrated mTOR hyperactivation in AD brain [393]. Physiologically, mTOR is a 
regulator of survival, differentiation, and development of neurons [394]. It was observed that Aβ 
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accumulation activates mTOR pathway through phosphorylation of mTOR inhibitor PRAS40 [390]. 
Further, hypoenergetic states seems also to trigger this pathway [395]. The aberrant activation of the 
mTOR pathway leads to an alteration of protein synthesis and autophagy’s mechanisms which in 
turn are related to the accumulation of inclusion bodies, a common feature of AD ([391,392,395] and 
references therein). During neural development, mTOR regulates neuronal growth, differentiation 
and interconnectivity [396–398]. It regulates homeostasis by directly influencing gene transcription, 
protein and lipid synthesis and organelle biogenesis and maintenance [391]. This pathway appears to 
be influenced by ERKs and GPCRs action [399]. In turn mTOR pathway inhibits PI3K/Akt signaling, 
thus triggering GSK-3β activation [394]. Accumulating evidence also supports a correlation between 
alterations in mTOR signaling and aging [400]. Finally, cell cultures from animal models of AD 
interestingly display a reduced mTOR signaling [401]. Alterations of this pathway may be linked to 
the excessive burden of misfolded proteins [399]. 

The balance of pro- and anti-apoptotic Bcl-2 family proteins (i.e. Bcl-2, Bad, Bim and Bax) has 
been known to have a role in neuronal cell death [402]. The levels of these proteins are altered in AD 
brains neurons [402]. Although the exact molecular details are not completely described, it is 
believed that Aβ is able to increase Bim and decrease Bcl-2 levels [402]. The pro-apoptotic protein 
(Bim) and anti-apoptotic protein (Bcl-2) are known to exert their activity through 
heterodimerizxation with Bax protein [403]. Bax is usually localized in the cytosol or associated with 
the membranes of mitochondria and/or ER [404]. Upon activation, Bax changes conformation and 
dwells into mitochondrial membranes where it promotes the release of cytochrome C and triggers 
apoptosis [405,406]. With the presence Aβ, Bim overexpression leads to the activation of Bax which 
triggers neuronal cell death [402]. The activation of this cascade is strictly correlated with the 
neurodegenerative events associated with AD. 

The increase of Aβ production negatively impact survivability of neurons. In physiological 
conditions, it has been observed that the predominant APP-cleaved fragment (sAPPα) interacts with 
IGF1 and insulin receptor. This interaction together with different neurotropins (NGF, BDNF) 
mediates the activation of the PI3K/Akt pathway. This action promotes neuronal survival, possibly 
through phosphorylation and inhibition of glycogen synthase kinase-3β (GSK-3β) [395]. The 
accumulation of Aβ directly compete with the effects mediated by the different neurotropins, 
downregulating PI3K/Akt pathway and ultimately overactivating GSK-3β [395]. The activation of 
GSK-3β accounts for several features of AD such as increased Aβ production and plaque 
accumulation [407], reduced memory performance, neurogenesis and synaptogenesis (astroglial-
related) [395,408], as well as increased Tau phosphorylation, Inflammation (microglia) and 
neurodegeneration (mitochondrial intrinsic apoptotic and the death receptor-mediated extrinsic 
apoptotic pathways) [409]. Additionally, Aβ direct competition with insulin for its receptor, 
increases the latter levels in the brain microenvironment. High insulin levels promote inflammatory 
responses in the brain, based on increased TNFα, interleukin 1β and 6 (IL1β and IL6) [395]. 

Following the progression of AD, brain neurons find themselves in a status of reduced energy 
production and the microenvironment has elevated pro-inflammatory cytokines (see previous 
sections). In these conditions Notch signaling is upregulated [410]. Physiologically, Notch signaling 
has an essential role in vascular development and (neuro) angiogenesis through the modulation of 
VEGFR2 [411]. It is also associated with synaptic plasticity, and glial cell activation [412,413]. 
Recently, some data hypothesized that Notch signaling may be implicated AD as Notch1 is often 
found in Aβ plaques [410,414]. 
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Despite its physiological role, it has been observed that chronic activation of Notch1 negatively 
impact the brain microenvironment, in particular the delicate connection of the brain with 
cardiovascular system. Indeed, Notch signaling, in association with VEGF, has been demonstrated to 
cause impaired blood flow, further reducing the nutrients intake by neurons (worsening the already 
weak energetic state). Notch also induce BBB leakages which has severe impact on the brain and may 
accelerate Aβ accumulation [410]. Finally, Notch is involved in regulating APP proteolysis [410]. 
Despite the still lacking data, Notch signaling, is a potential candidate that links various AD related 
processes with vascular impairments and may explain how they interact. 

Aβ accumulation in AD is strictly linked with the upregulation of DKK1 gene [415,416]. The 
translated protein is an inhibitor of Wnt (canonical) pathway. Physiologically, Wnt signaling has 
important functions linked to plasticity and cognition. Among these, it promotes the endocytosis, the 
recycle of vesicles and modulate neurotransmitter release [417] and receptor transcription [418]. It 
also facilitates the induction of LTP [419]. 

Wnt signaling has three major cascades: the canonical Wnt/ß-catenin, planar cell polarity (PCP), 
and Wnt/Ca2+ pathways. Interestingly, Wnt/ß-catenin and Wnt/PCP modulate synapse maturation; 
specifically, Wnt/ß-catenin promotes synapses stability, while Wnt/PCP promotes synapse retraction [420]. 
With, the over expression of DKK1 by Aβ, the canonical pathway is suppressed skewing the balance 
toward the non-canonical PCP pathway. This event accelerates synaptic damage [420] and 
participate to the progression of cognitive symptoms of AD. Further, canonical Wnt/ß-catenin 
pathway promotes the phosphorylation (and inactivation) of GSK-3β [419]. Thus, its inhibition 
produces similar effects to the ones described in PI3K/Akt signaling. The diagram in Figure 1 reports 
a simplified view of the pathways connections discussed. 

16. Methods 

The main aim of literature research was to extrapolate biological pathways potentially involved 
with the etiopathogenesis of Alzheimer disease. Phase (1) A preliminary research was done selecting 
reviews (from 2013 to 2018) on PubMed using the keywords: Alzheimer AND (Genetics OR 
Biological cascades) in order to prepare a background for the paper. At the time of the research, 1427 
elements were obtained. Data were screened for genes association and molecular cascades. Phase (2) 
Genes with multiple references of association with AD plus the ones extracted from Alzgene.org 
dataset were grouped and clustered (using Gene Ontology Database for gene-gene correlations). 
Cluster data from phase 2 was also used to perform pathway analyses (see exploratory data for 
details, and Supplementary Figure 1 for a summary). The data obtained was used as criteria for 
pathway selection. Phase (3) Data from phase 1 and phase 2 were used to a more detailed research: 
each pathway was used as keyword (Alzheimer AND Pathway name) for a refined literature research 
on PubMed and Google scholar. A total of 2204 (Immune System), 3836 (Inflammation), 4653 
(Oxidative Stress), 2792 (Energy Metabolism), 746 (Autophagy), 130 (Exosomes-mechanics), 469 
(Vascular-Related Mechanics), 4150 (Signal Transduction) and 169 (Neurodevelopment and 
Neurotransmission) works, partially overlapping, were obtained. Starting from the most recent ones, 
literature findings were filtered and screened for information. 
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Figure 1. Graphical view of pathways connections. 

17. Conclusive remarks 

AD is one of the principal causes of disability and decreased quality of life among the elderly. 
Despite the active research on the field, many fundamental questions remain regarding the molecular 
background of this disease. 

The old theories linking AD to the genes directly related to Aβ formation and Tau hyper-
phosphorylation cannot explain the complexity of AD and neither give a definite target for treatment. 
Indeed, the conventional treatments based on the Aβ hypothesis have failed to treat or prevent AD. 
Around 99.6% of drug candidates targeting amyloid pathways, including β secretase inhibitors, γ 
secretase inhibitors, and Aβ itself, do not have a significant therapeutic effect on AD subjects [9]. 

Recent studies and the new hypotheses for AD have indicated many new potential targets [421–424] 
even though we are still far from a definitive solution. The evidences derived from the study of the 
disease and its treatment, together with the current concept of AD as “multifactorial pathology”, 
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clearly indicates the necessity to consider wider approaches which include the complex interactions 
between different pathways. Part of these biological processes was introduced and described in  
this review. 

Other than the familial form-associated genes (PSEN1, PSEN2, APP) and the high risk variants 
of APOe, the AD background is obscure. Its complexity is not to be underestimated and it is likely 
that multiple factor may trigger AD pathological changes in the brain. From what it was discussed, 
whether the etiological cause, AD progression hit Mitochondria at some point. The central role of 
this organelle is plausible, considering its importance in neurons. It’s destabilization could arise 
following Aβ accumulation (EOAD main etiological cause), reduced intake of nutrients (which 
makes mitochondria sensible to vascular impairments). Even aging itself (accumulation of damage 
on mtDNA) slowly decrease mitochondria efficiency. However, mitochondria dysfunction alone is 
not enough to explain why the damage is mainly restricted on neurons. Additionally, all the 
propagation mechanics remain elusive and the molecular cascades behind the propagation path (see 
Box 1) is not completely understood. 

The key to further deepen the studies of AD understands how these processes interact with each 
other. Thereby, a focus on multiple pathways or functional cascades may be useful to pinpoint novel 
potential target for AD treatment. 
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