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Abstract: Neuronal networks have fluctuating characteristics, unlike the stable characteristics seen 

in computers. The underlying mechanisms that drive reliable communication among neuronal 

networks and their ability to perform intelligible tasks remain unknown. Recently, in an attempt to 

resolve this issue, we showed that stimulated neurons communicate via spikes that propagate 

temporally, in the form of spike trains. We named this phenomenon “spike wave propagation”. In 

these previous studies, using neural networks cultured from rat hippocampal neurons, we found 

that multiple neurons, e.g., 3 neurons, correlate to identify various spike wave propagations in a 

cultured neuronal network. Specifically, the number of classifiable neurons in the neuronal 

network increased through correlation of spike trains between current and adjacent neurons. 

Although we previously obtained similar findings through stimulation, here we report these 

observations on a physiological level. Considering that individual spike wave propagation 

corresponds to individual communication, a correlation between some adjacent neurons to improve 

the quality of communication classification in a neuronal network, similar to a diversity antenna, 

which is used to improve the quality of communication in artificial data communication systems, 

is suggested. 
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1. Introduction 

The brain is a well-known large neuronal network assembled through spike propagation (action 

potentials) through synapses [1–5]. How can neuronal networks comprising neurons with fluctuating 

characteristics reliably communicate (transmit information)? Many previous studies have attempted 

to answer this question, using spike-coding metrics [6], spatiotemporal coding models [7–13], and 

synchronous action models [14–18]. Since neuronal networks are considered spatiotemporal spike 

propagation fields and since the spatiotemporal form of spike activity is considered the fundamental 

generator of intelligence in the brain, these studies primarily aimed to investigate the principles of 

spike propagation in detail; however, these studies could not elucidate the basic means of 

communication between neurons. Therefore, the mechanisms underlying communication in the brain 

remain unknown. 

In our previous studies attempting to resolve this issue, we reported that spikes propagating 

from stimulated neurons are received by afferent neurons as random-like sequences in simulated and 

natural asynchronous neuronal networks [19–24]. This phenomenon is similar to radio wave 

propagation in artificial data communication systems; hence, this phenomenon was referred to as 

“spike wave propagation.” In these studies, we showed that stimulated neurons were able to identify 

various spatiotemporal patterns of spike wave propagation in specific areas (receiving area) of the 

neuronal network. From the viewpoint of communication, individual spike waves propagating from 

specific neurons are regarded as individual communication, thereby suggesting that distinct 

communications occur in multiple brain neuronal networks. In addition, certain adjacent neurons 

correlate to classify communications, in simulated neuronal networks [23]. 

On in-depth investigation, numerous neurons seem involved in communication, e.g., 3 

neurons in the receiving area, and result in smooth and stable spike propagation, whereas fewer 

neurons make communication more difficult. This suggests a correlation between some adjacent 

neurons to improve the classification quality of communication in neuronal networks, similar to 

diversity antennae, used to improve the quality of communication in artificial data communication 

systems [25]. 

Although this observation was exclusive to simulation studies, remarkable similarities in the 

manner of correlation in some adjacent neurons for intelligence activity have been observed [26]. If 

these similarities hold true, they could provide evidence to determine the mechanism underlying 

communication in the brain. To accomplish this, we need to investigate whether the same 

phenomenon is observed physiologically as with simulation. Thus, this study aimed to investigate 

this phenomenon in a cultured neuronal network and determine if its physiological correlates are in 

line with those demonstrated in previous simulation studies. 

2. Materials and method 

2.1. Coding spike trains from a cultured neuronal network 
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Hippocampal neurons were dissected from Wistar rats on embryonic day 18. The procedure 

conformed to the protocols approved by the Institutional Animal Care and Use Committee of the 

National Institute of Advanced Industrial Science and Technology. Cell culturing, stimulated spike 

recording, and coding spike trains were performed as described previously [24]. Figure 1 depicts the 

deposition of an electrode in microelectrode array (MEA) dishes with 64 (8 × 8) planar 

microelectrodes (channels). In this study, we cultured 5 samples of neuronal networks named 

cultures 01, 02, 03 planted on MED-P515A (spacing between electrodes, 150 μm) and cultures 04 

and 05 planted on MED-P545A (spacing between electrodes, 450 μm). Two channels in each culture 

were selected as stimulation channels and 5–20 recordings were obtained from them. In this study, 

the stimulated channels are referred to as StimA and StimB. This experiment aimed to classify the 

StimA and B in accordance with time sequence data based on spike trains in specific neurons 

(current channels) and their adjacent neurons. The difference in stimulation channel was regarded as 

the difference of spike wave propagation [24]. 

2.2. Time sequence data with spike timing lag from adjacent channel 

To estimate improvement in the classification quality of communication through correlation of 

adjacent neurons, as shown in Figure 2, we constructed time sequence data which linked the spike 

train interval of current channels (ch) with the time lag in spike train intervals between current and 

adjacent channels. Although Figure 2 shows only one adjacent channel for simplicity, several 

adjacent channels were actually referred. We compared the time sequence based on three types of 

adjacent channel locations, as shown in Figure 3. Moreover, time differences from the current 

channel are signs of delayed (+1) or preceding (−1) spike trains; however, this figure shows only 

delayed spike trains. Further, the encoded time sequence was generated from these time sequence 

data for the back propagation of neuronal networks (BPN) method described below in detail. These 

procedures were performed for all 64 channels in each culture. 

 

Figure 1. Deposition of electrodes in a microelectrode array. The size and spacing 

between electrodes were 50 × 50 μm
2
 and 150 μm (MED-P515A) or 450 μm 

(MED-P545A), respectively. Each electrode corresponds to a channel of spike recording. 

The number indicates the electrode (channel) number. 

 

 1 2 3 4 5 6 7 8 

9 10  11 12  13  14  15  16  

17 18  19  20  21  22  23  24  

25  26 27  28  29  30  31  32  

33  34  35 36  37  38  39  40 

41  42  43  44 45  46  47  48  

57  58  59  60  61  62  63  64  

49  50  51  52  53  54  55  56  
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Figure 2. Procedure of generating time sequence data. The dashed color lines represent 

spike intervals in the current channel. Solid color lines are spike timing lags between the 

current and their adjacent neurons. The sequence data are spike train intervals in the 

current channel followed by the time lag in spike train intervals between current and 

adjacent channels. These time sequence data are encoded for the BPN method. 

2.3. Classification by BPN method 

On fluctuating conditions in neuronal networks, e.g., synaptic weight, refractory period, and 

others, spatiotemporal patterns of spike wave propagations were not the same even if they were 

stimulated at the same channel in the same culture. Therefore, identifying the stimulated channels by 

only observing wave propagation is not easy. In our previous study, we used our original simple 

learning algorithm based on the arithmetic mean method for classification [24]. However, the 

resolution was not adequate to classify spike wave propagations completely. Thus, we believe that 

the BPN method has moderately strong pattern recognition ability [27] and could hence be applied to 

show the feasibility of classifying spatiotemporal patterns of spike wave propagation in neuronal 

networks, in this study. 

Round–Robin learning and the test procedure for the BPN method are depicted in Figure 4. This 

figure depicts the example of the encoded data number and stimulation channel (stim ch) number in 

the case of culture 01 (stim ch 13 vs 54). 
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Figure 3. Location of adjacent channel. a: Without adjacent channels (only current 

channel) named Single; b: With right and left adjacent neurons named Multi 3; c: With 

right, left, upper, and lower adjacent neurons named Multi 5. 

2.4. Estimation of the classification quality 

To estimate the effect of correlation between current and adjacent channels and the 

classification quality, we calculated the rate of test data wherein the stimulation channel was detected 

correctly at the current channel in the BPN procedure; this was called “success rate ch” and the rate 

of test data wherein the stimulation channel was detected incorrectly (for example, in culture 01, the 

detection result was st54 when the real stimulating channel was channel 13) at current channel called 

fail rate ch. The equations for determining the success rate ch and fail rate ch are as follows: 

               
            

        
         

(1) 

            
        

        
         (2) 

In these equations, dtcablenumch is the number of test data when the stimulation channel 

was detected correctly at the current channel, test num is the number of test data (5 to 10), 

eronumch is the number of test data when the stimulation channel was detected incorrectly. In this 

study, we considered the success ratech > 60% as the classifiable channel. In other words, two 

different stimulations could correctly identify the classifiable channel. Furthermore, we regarded 

fail ratech > 60% as the miss-classifiable channel. 
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Figure 4. Round-Robin learning and test procedure for back propagation of neuronal 

networks (in culture 01). The example depicted here is of the encoded data number and 

stimulation channel (stim ch) number in the case of culture 01 (stim ch 13 vs 54). Twenty 

raster plot data (10 raster plot data stimulated from channel ch13 and 10 raster plot data 

stimulated from channel ch54) are encoded by the procedure shown in Figure 2; among 

them, two encoded data were selected for Test Flow and another 18 data were used for 

Learning Flow. Finally, all data were tested using the Round-Robin method. 

3. Results and discussion 

Figure 5 shows the number of classifiable channels and miss-classifiable channels in 64 

channels in each culture in Single, Multi3, and Multi5 (Figure 3). Though, in some cases, the number 

of classifiable channels is smaller in Multi than in Single, contrary to our assumption similar to that 

in Culture 03, we could confirm that the mean number of classifiable channels in all experiments in 

Multi3 and Multi5 was significantly larger than that in Single (p < 0.05). However, the difference 

between Multi 5 and Multi 3 was not significant; furthermore, Multi 5 tended to be worse than Multi 

3. Meanwhile, the number of miss-classifiable channels tended to be larger in Multi than in Single; 

however, in reality, they were fewer than the number of classifiable channels. These results show 

that the time lag in spike trains between adjacent neurons may effectively improve the quality of 

communication. 

In these experiments, we could confirm the increase in the rate of classification through the 

schematic correlation of adjacent neurons. However, it remained unclear which neurons are 

classifiable by correlating adjacent neurons. Hence, we compared the distribution of classifiable 

channels in neuronal networks in Single and mul3 in Culture 1 and 3, as examples (Figure 6). We 

found that in culture 1, some unclassifiable channels in Single were classifiable in Multi3 (indicated 

by yellow lattices in Figure 6). Moreover, these channels tended to concentrate in specific areas of 

the neuronal network. These tendencies were also observed in culture 3 despite the number of 

classifiable channels in Multi3 being no more than that in Single, as shown in Figure 5(d). However, 
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channels that classified only in Single (indicated by sky blue lattices in Figure 6) were also observed 

at similar numbers to that of the classifiable channels only in Multi3 in culture 03. In contrast, in 

culture 01, the number of channels which classified only in Single was lower than those that became 

classifiable in Multi3. The difference between these results in Figure 5(a) and (d) corresponded to 

this. However, spacing between electrodes did not affect the experimental results (150 μm: culture 

01, 02, and 03; 450 μm: culture 04 and 05). 

 

a.  

b.  

c.  
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d.  

e.  

f.  

Classifiable channels the stimulated neuron was detected correctly in 60%–80% of probability. 

Classifiable channels the stimulated neuron was detected correctly in 80% of probability or more. 

Miss-Classifiable channels the stimulated neuron was detected incorrectly in 60%–80% of probability. 

Miss-Classifiable channels the stimulated neuron was detected incorrectly in 80% of probability or more.  

Figure 5. The number of classifiable channels in 64 channels in each culture.a: Culture 01 

stimulation channel 13 vs 54; b: Culture 01 stimulation channel 30 vs 54; c: Culture 02 

stimulation channel 04 vs 28; d: Culture 03 stimulation channel 04 vs 38; e: Culture 04 

stimulation channel 10 vs 22; f: Culture 05 stimulation channel 2 vs 62. Vertical axis: 

Number of classifiable channels (positive) and miss-classifiable channels (negative); St: 

Stimulating channel. 
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st13 vs st54                           st54 vs st13 

 

st04 vs st38                           st38 vs st04 

  Classified in Multi3 only   Classified in Single only   Classified in both Single and Multi3 

Figure 6. Distribution of classifiable channels. Each lattice and lattice number indicate a 

channel and channel number, respectively. Lattice numbers written in colored (red/blue) 

bold italic type indicate stimulating neurons. 

 

We considered the following reasons for these results. If various spike interval trains of trials 

are large even in the same stimulation channel, it is difficult to detect the stimulation channel of only 

the spike interval train in the current channel. However, if the time lag in the spike trains between the 

current channel and the adjacent channel does not display variety, stimulated neurons could only be 

detected from the train of the time lag. The image so obtained is shown in Figure 7. In this case, the 

stimulation channel is detectable from the difference in spike timing between the current channel and 

the adjacent channel. When spike interval trains in all experiments in the current channel did not 

display variety, only the spike train intervals in the current channel were adequate to detect the 

stimulation channel. The image so obtained is shown in Figure 8. In this case, it is possible that the 

rate of classification is worse based on the variety of spike trains in the adjacent channel. 
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Figure 7. A case wherein correlating the adjacent neuron was effective. The meaning of 

the culler horizonal line and dashed culler horizonal line is the same as that in Figure 2. 

 

Figure 8. A case wherein correlating the adjacent neuron was not effective. The meaning 

of the culler horizonal line and dashed culler horizonal line is same as that in Figure 2. 

To substantiate these assumptions, we decorrelated the current channel and adjacent channel by 

channel shuffling for all cultured samples; the procedure followed is shown in Figure 9. Thereafter, 

we performed the same experiments for the shuffled data, as for the original data. 

 

Figure 9. Channel shuffling. The row of channels was shuffled randomly, retaining the 

spike trains in each channel. 
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Figure 10 shows the number of classifiable channels and miss-classifiable channels, and Figure 11 

depicts the example of the distribution of classifiable channels in neuronal networks in Single and Multi3 

for channel shuffled data of culture 01. Although data from other cultures are not shown owing to lack of 

space, results from these cultures were similar to those from culture 01, as described below. In this 

experiment, the detection of classifiable channels was performed only with Multi3, since it is adequate to 

determine the effect of neurons if this effect is observable in Multi3 or Multi5; however, it is considered 

that the results after channel shuffling remain the same as before channel shuffling in Single. 

 

 

 

 

 

 

 

 

Figure 10. The number of detectable channels in 64 channels after ch shuffling in culture 01. 

Vertical axis: Number of classifiable channels (positive) and miss-classifiable channels 

(negative). st: Stimulating channel. 

Multi3 mean values were remarkably lower than those of Single; however, there was no significant 

difference between their mean values in all cultures. 

 

a. Classifiable st13 (vs st54)                  b. Classifiable st54 (vs st13) 

Classified in Multi3 only    Classified in Single only    Classified in both Single and Multi3 

Figure 11. Distribution of classifiable channels after ch shuffling in culture 01(st13 vs 

54). Each lattice and lattice number indicates the channel and channel number, 

respectively. Lattice numbers written in colored (red/blue) bold italic type indicate 

stimulating neurons. 

 

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Single        Multi3  
Single        Multi3  
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Based on the results from all cultures in this experiment, we could confirm that the number of 

classifiable channels in the shuffled data was significantly (p < 0.05) lower than that in the original 

data in Multi3 (Cf. Figure 10 vs Figure 5(a), and Figure 11 vs Figure 6(a)). However, the difference 

between Multi3 and Single was not significant in the shuffled data, although the values in Multi3 

were lower than those in Single in several cultures including culture 01 (Figure 10), against those in 

the original data. 

In summary, we could confirm the effect of spike timing lag between the current and their 

adjacent neurons. The higher number of classifiable channels in Multi3,5 than in Single was not a 

chance event. Considering that individual stimulation channels correspond to individual 

communication, in this study, although the classification quality of communications was not always 

improved, various communications could be characterized by the correlating spike trains of adjacent 

neurons even when they could not be characterized by only the current neuron. 

4. Conclusion 

In our recent study, we showed that stimulated neurons could identify various spatiotemporal 

patterns of spike wave propagation in particular areas of neuronal networks. From the viewpoint of 

communication, this essentially suggests that distinct communications occur via multiple 

communicating links in the brain. Here, we showed that the quality of communication classification 

tends to improve via correlation of spike trains in current and their adjacent neurons. This shows that 

neighboring neurons work in harmony to identify communication. Assuming a communication path 

is a type of memory, it seems that the present results are concurrent with previous ones, indicating 

that some adjacent neurons work in harmony; however, this requires more detailed investigation. 
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