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Abstract: Background: Lung cancer is a deadly disease. An early diagnosis can significantly improve 
the patient survival and quality of life. One potential solution is using deep learning (DL) algorithms 
to automate the diagnosis using patient computed tomography (CT) scans. However, the limited 
availability of training data and the computational complexity of existing algorithms, as well as their 
reliance on high-performance systems, limit the potential of DL algorithms. To improve early lung 
cancer diagnoses, this study proposes a low-cost convolutional neural network (CNN) that uses a 
Mavage pooling technique to diagnose lung cancers. Methods: The DL-based model uses five 
convolution layers with two residual connections and Mavage pooling layers. We trained the CNN 
using two publicly available datasets comprised of the IQ_OTH/NCCD dataset and the chest CT scan 
dataset. Additionally, we integrated the Mavage pooling in the AlexNet, ResNet-50, and GoogLeNet 
architectures to analyze the datasets. We evaluated the performance of the models based on accuracy 
and the area under the receiver operating characteristic curve (AUROC). Results: The CNN model 
achieved a 99.70% accuracy and a 99.66% AUROC when the scans were classified as either cancerous 
or non-cancerous. It achieved a 90.24% accuracy and a 94.63% AUROC when the scans were 
classified as containing either normal, benign, or malignant nodules. It achieved a 95.56% accuracy 
and a 99.37% AUROC when lung cancers were classified. Additionally, the results indicated that the 
diagnostic abilities of AlexNet, ResNet-50, and GoogLeNet were improved with the introduction of 
the Mavage pooling technique. Conclusions: This study shows that a low-cost CNN can effectively 
diagnose lung cancers from patient CT scans. Utilizing Mavage pooling technique significantly 
improves the CNN diagnostic capabilities.  

The code is available at: https://github.com/Saintcodded/Mavage-Pooling.git 
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1. Introduction 

Lung cancer is the leading cause of cancer-related deaths across all genders [1,2]. The statistics 
on lung cancer incidences reveal that the disease has an average 5-year survival rate [3]. An early 
diagnosis is critical for a favorable prognosis and an improved quality of life for patients [4]. Medical 
images such as chest computed tomography (CT) scans provide doctors with vital tools for early lung 
cancer diagnoses; however, the onset of the disease may present patterns that are not visible to the 
human eye [5,6]. This could result in crucial information being missed and may lead to       
misdiagnoses [7,8]. Moreover, the manual analysis of medical images is time-consuming, requires 
years of clinical experience, and can overburden radiologists, thus resulting in prolonged patient 
hospital waiting times [9–12]. 

Recent advancements in improving the early diagnosis of lung cancer have focused on automatic 
detection systems that use computer algorithms to detect malignancies in patient CT scans [13,14]. 
Deep learning (DL) is a branch of machine learning (ML) that uses artificial neural networks to 
automatically extract higher-level features from input data in a hierarchical manner; moreover, it is 
currently at the forefront of research efforts and has shown potential in the early diagnosis of lung 
cancer [15]. DL methods have been deployed for the automated detection, classification, and 
segmentation of pulmonary nodules from CT scans [16–18]. Moreover, the results of myriad studies 
have demonstrated that DL models can surpass CT image-visualizations by radiologist [17,19]. 

Despite these successes, there remains a gap between research and clinical applications [20]. The 
computational complexities of existing algorithms and their reliance on high-performance systems, as 
well as the limited availability of training data, are major drawbacks that hinder the effectiveness of 
DL algorithms in lung cancer diagnoses [21–23]. Researchers have employed various interventions to 
improve the performance of DL algorithms for lung cancer diagnoses. These include the use of state-
of-the-art convolutional neural network (CNN) models with transfer learning, data augmentation, 
regularization techniques, and the use of customized CNN models [24,25]. The customized models 
have demonstrated superior performances compared to the state-of-the-art CNN models in areas such 
as pulmonary nodule detection and the classification of lung cancer across various datasets [26]. These 
findings indicate that the implementation of customized CNN models capable of effectively modeling 
CT datasets may lead to improvements in lung cancer diagnoses. 

This study aims to improve the early diagnosis of lung cancer by introducing a low-cost CNN 
that utilizes the Mavage pooling technique. Additionally, the study evaluates the effectiveness of the 
Mavage-pooling technique when incorporated into state-of-the-art CNN models for diagnosing        
lung cancer. 

2. Review of related literature 

2.1. Cancer diagnosis using deep learning 

In 2012, computer vision technologies significantly advanced when Alex Krizhevsky trained a 
deep learning model using a CNN to categorize approximately 1.2 million images in the ImageNet 
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LSVRC-2010 contest into 1000 classes [27]. This success sparked interest among researchers to extend 
its application to the medical field, particularly in cancer diagnoses. In 2015, Hua et al. [28] 
successfully used a CNN trained on the Lung Image Database Consortium dataset to classify 
pulmonary nodules, thus achieving a 73.3% sensitivity and a 78.7% specificity. In the same year, 
Ronneberger et al. [29] proposed a DL Unet model that surpassed previous approaches for biomedical 
image segmentation. In 2016, Gulshan et al. [30] demonstrated that DL algorithms can achieve over a 
90% sensitivity and specificity when detecting diabetic retinopathies and macular edemas in retinal 
fundus photographs. In 2017, the U.S. Food and Drug Administration approved Arterys, a cloud-based 
DL application. Arterys’s CardioAI was launched and analyzed cardiac Magnetic Resonance Imaging 
(MRI) images within seconds [31]. In the same year, Esteva et al. [32], classified skin lesions using a 
CNN which was trained using a dataset of 129,450 clinical images consisting of 2032 different diseases 
and reported a dermatologist-level accuracy. Saouli et al. [33] and Lorenzo et al. [34], performed 
automated tumor segmentation from MRI images in 2018 and 2019, respectively. In 2019, Moitra and 
Mandal performed the staging of non-small cell lung cancers using a CNN [35]. 

Since 2020, there have been significant improvements in DL algorithms for cancer diagnoses. 
Several studies have been conducted in which DL algorithms were used to diagnose various types of 
cancers that affected the skeletal, digestive, urinary, muscular, endocrine, lymphatic, respiratory, 
integumentary, cardiovascular, nervous, and reproductive systems [31,36–40]. Currently, DL 
algorithms can be used to effectively detect lesions in medical images, segment tumor regions, 
generate diagnosis reports, propose treatment options, predict disease progression, and forecast patient 
survival outcomes. 

2.2. Pooling in convolutional neural networks 

Pooling is a non-linear process commonly used in CNNs to reduce the spatial dimension of a 
feature map while retaining important information [41]. The application of pooling to a feature map 
can potentially improve the CNN’s performance [42]. Additionally, pooling reduces the memory 
consumption by decreasing the resolution of the input, thus resulting in faster learning [43]. Two 
commonly used pooling methods in CNNs are local pooling and global pooling [44]. Local pooling 
involves pooling data from small local regions, which is achieved by using a pooling window that 
divides the overall data into multiple local regions [45]. On the other hand, global pooling is used to 
create a single value representation of every activation present in the feature map [46]. The Max 
Pooling and Average Pooling techniques are commonly used in CNNs to achieve pooling. 

2.3. Max Pooling and Average Pooling 

Max Pooling is used to select the most prominent feature of the data within a defined pooling 
window [27,47]. Eliminating non-maximal elements within the data can potentially help a model to 
generalize faster and prevent vanishing gradients in subsequent layers after the pooling layer [48]. On 
the other hand, Average Pooling computes the mean of the values within a defined pooling window, 
thus providing a generalized feature representation of the input [49]. Average Pooling helps a model 
by providing a smoother representation of the feature map, which can prevent outliers and reduce the 
risk of overfitting [50]. The approach is particularly useful when working with limited data or noisy 
inputs that could negatively impact the performance [45]. 
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2.4. Drawbacks of Max Pooling and Average Pooling in CNN 

While the Max Pooling and Average Pooling techniques are both commonly used in CNNs, they 
do have some potential drawbacks [46]. For instance, using Max Pooling on feature maps with a wide 
range might confuse a model and limit its performance [44]. Moreover, Max Pooling may be less 
effective when there is a lot of noise in the data [51]. Using Average Pooling for features with values 
closer to zero could potentially lead to the vanishing gradient problem within the network [52]. 
Additionally, Average Pooling may result in the model learning noise in the data because all the 
elements within the pooling window are considered, thus potentially resulting in an unstable       
network [44]. To tackle these challenges, pooling techniques that incorporate both Max Pooling and 
Average Pooling may present a potential solution [53,54]. 

2.5. Related works 

Kareem et al. [55] developed a ML model using the IQ_OTH/NCCD dataset [56] to classify CT 
images into three classes: normal, benign, and malignant scans. They applied Gaussian filters, erosion, 
and an outlining algorithm to enhance the images and create borders around the lungs. Otsu’s 
thresholding technique was used to segment the potential lung nodules from the lung parenchyma. A 
feature extraction module that consisted of a Gabor filter and a Gray Level Co-occurrence Matrix 
(GLCM) was employed to analyze the contrast, homogeneity, entropy, energy, and correlation. A 
support vector machine (SVM) classification module with three kernels was used to classify the CT 
images. The authors found that combining the Gabor filter and the GLCM with a polynomial kernel 
resulted in the best classification accuracy. Additionally, they conducted a train/test split of 7:3 and 
achieved an overall best accuracy of 89.8876%, with a 97.143% sensitivity and a 97.500% specificity. 

AL-Huseiny et al. [24] utilized transfer learning with a modified GoogLeNet to detect lung 
malignancies by retraining it with the IQ_OTH/NCCD dataset. The dataset consisted of two classes of 
images: malignant and non-malignant. The images were preprocessed by centering, normalizing, and 
segmenting using techniques such thresholding using Gabor filter, image dilation, and erosion. 
Bounding boxes were drawn around the segmented lungs to create a rectangular region of interest, 
which was then passed to the CNN model. The pre-trained GoogLeNet’s later layers were fine-tuned 
to learn deep features from the dataset, and the final layer was modified to perform a binary 
classification task to predict if an image contained a malignant nodule. After training for 12 epochs, 
the modified GoogLeNet achieved a 94.38% classification accuracy, a 93.7% specificity, and a 95.08% 
sensitivity on a total of 249 test images. 

In a study by Mamun et al. [26], a custom CNN with 3 convolution layers and Max Pooling was 
used to classify lung cancers using the Chest CT-Scan images dataset [57]. The authors applied image 
preprocessing techniques, including resizing the images to a 64 × 64-pixel size, image denoising, 
image segmentation, and edge smoothing. They used a batch size of 13, employed the Adam 
optimization function, and trained the CNN for 50 epochs. The authors reported that the CNN achieved 
a 92.00% accuracy and a 98.21% AUC. Additionally, the authors analyzed the Chest CT-Scan images 
dataset using the ResNet-50, Xception, and Inception_V3 CNN models and reported accuracies of 
84.13%, 82.10%, and 84.13%, respectively. 
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3. Materials and methods 

3.1. IQ-OTH/NCCD dataset 

Publicly available lung cancer data from the Iraq-Oncology Teaching Hospital/National Center 
for Cancer Diseases (IQ-OTH/NCCD) was used. It consists of 1097 CT images from 110 cases during 
2019 [56]. The dataset includes JPG CT images of healthy individuals and those of lung cancer patients 
with various demographic characteristics. The oncologists and radiologists at the IQ-OTH/NCCD 
categorized the images into benign, malignant, and normal cases: 15 cases were classified as benign 
and contained a total of 120 images; 40 cases were classified as malignant and contained 416 images; 
and 55 cases were classified as normal and contained 561 images. 

3.2. Chest CT-scan images dataset 

The Chest CT scan dataset is a publicly available dataset on Kaggle [57]. It consists of 1000 lung 
CT scans of patients with three different types of lung cancers alongside scans of healthy individuals, 
all in the JPG format. The identified lung cancer types were adenocarcinoma, squamous cell carcinoma, 
and large cell carcinoma. The images were divided into training, testing, and validation sets for         
each category. 

3.3. Mavage Pooling technique 

The Mavage Pooling technique is derived from a combination of both the Max Pooling and 
Average Pooling techniques. While it shares similarities with the two techniques, it significantly differs. 
For any input feature, the Mavage Pooling techniques first makes a copy of the input feature to attain 
two independent features “A” and “B”. Thereafter, a pooling window of size “n × m” and stride “s” is 
defined. To perform downsampling, the pooling window is first employed to select the maximum 
activation of the first input feature “A” using the stride. Second, the pooling window selects the average 
values of the activation of the second input feature “B” using the stride. Finally, the two downsampled 
feature maps are summed to attain a single feature map that is passed onto the next layer of the network. 
Figure 1 describes our approach and how it differs from both Max Pooling and Average Pooling. 
Similar to Max and Average Pooling, Mavage pooling also allows for padding of the input feature. 

3.4. Data pre-processing and data augmentation 

We pre-processed the images in the datasets by adjusting their values to have a mean and standard 
deviation of 0.5, and then resized them to 512 × 512 pixels. To prevent overfitting of the model due to 
the limited data size, we performed the data augmentation by randomly erasing pixels within a patient 
CT scan and replacing them with random values. Additionally, we randomly split and concatenated 
the images along various dimensions to create multiple variations of the original image. We addressed 
the class imbalance in the benign class within the IQ-OTH/NCCD dataset by oversampling the images. 
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Figure 1. Pooling techniques using a 2 × 2 pooling window and a stride of 2: (a) is input 
data, (b) is Max pooling, (c) is Average pooling and (d) is Mavage pooling. 

3.5. Proposed CNN architecture 

The CNN architecture proposed, named AutoLungCADetector, consists of a five-layered CNN, 
as illustrated in Figure 2. All convolution layers use a 3 × 3 kernel size with a stride and padding of 1. 
The Batch Normalization and ReLU activation functions are applied after each convolution layer. 
Mavage pooling with a 4 × 4 kernel size and stride of 1 is used at each layer, except at the fifth layer, 
where Mavage pooling with a 2 × 2 kernel size and stride of 1 is applied. Furthermore, residual 
connections [58] are introduced between the second and third layers and the fourth and fifth layers to 
enhance the network’s robustness. Then, the output of the fifth layer is flattened and passed on to two 
fully connected layers. 

 

Figure 2. Proposed CNN Architecture for Lung Cancer Diagnosis (AutoLungCADetector). 
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3.6. Experiment design 

We examined the impact of the Mavage pooling technique using AutoLungCADetector. Our 
study involved training a CNN model on the IQ-OTH/NCCD and Chest CT-Scan image datasets. The 
IQ-OTH/NCCD dataset was used to detect pulmonary nodules in CT scans, while the Chest CT-Scan 
data was utilized to identify different types of lung cancers. The Chest CT-Scan images were initially 
divided into training, validation, and test datasets. We trained the model using the training set and then 
tested it on the test set. On the other hand, the IQ-OTH/NCCD dataset was initially sorted into benign, 
malignant, and normal CT scans. We serially grouped the images instead of randomizing to ensure 
that the same patient’s scans were not included in both the training and test datasets using a train/test 
split of 7:3. We conducted experiments using both Max and Average Pooling in the 
AutoLungCADetector model. To validate our approach, we integrated Average Pooling into three 
cutting-edge CNN models—AlexNet [27], ResNet-50 [58], and GoogLeNet [59]—and compared the 
results with the traditional pooling for each selected network. We evaluated the models’ performance 
based on the accuracy and the area under the receiver operating characteristic curve (AUROC). 

3.7. Experiment settings 

Our experiments were conducted using Python, version 3.12.2, and PyTorch, version 2.2.2+cu118, 
within a Jupyter Notebook, version 7.0.8, running on an NVIDIA QUADRO RTX-3000 GPU. We 
employed the Adam optimization function, the CrossEntropyLoss function, a batch size of 16, and a 
learning rate set at 1 × 10−4. We used the stepLR scheduler with a step size of 10 [60]. The networks 
underwent training for 50 epochs, beyond which overfitting negatively impacted the model’s performance. 

4. Results 

4.1. Pulmonary nodule detection 

To identify pulmonary nodules in the patient CT scans, we utilized AutoLungCADetector that 
was trained on the IQ-OTH/NCCD dataset. The results revealed that AutoLungCADetector with 
Mavage Pooling achieved a 99.70 % accuracy and a 99.53% AUROC when the patients CT scans were 
classified as either normal or cancerous. It achieved an accuracy of 88.11% and an AUROC of 92.54% 
when the patients CT scans were classified as either containing benign, malignant, or normal nodules. 
Furthermore, we substituted the Mavage Pooling layers with Max Pooling and Average Pooling layers. 
The results indicated that AutoLungCADetector with Max Pooling attained a similar accuracy with 
Mavage Pooling but recorded an improved AUROC of 0.13% when the patients CT scans were 
classified as either normal or cancerous. Additionally, it achieved an improved accuracy of 2.13% and 
an AUROC of 2.09% when the patients CT scans as either containing benign, malignant or normal 
nodules. However, the Mavage Pooling surpassed the Average Pooling by a 0.31% accuracy when the 
patients CT scans were classified as either normal or cancerous and a 1.22% accuracy and a 2.49% 
AUROC when the patients CT scans were classified as either containing benign, malignant, or normal 
nodules. The detailed results are provided in Table 1. 
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Table 1. Performance of AutoLungCADetector in detecting Pulmonary nodule from 
patient CT scans using the IQ-OTH/NCCD dataset with different Pooling techniques. 

Number of classes Pooling technique Accuracy (%) AUROC (%) Number of parameters

2 Average pool 99.39 99.64 7 Millions 

Max pool 99.70 99.66 7 Millions 

Mavage pool 99.70 99.53 7 Millions 

3 Average pool 86.89 90.05 7 Millions 

Max pool 90.24 94.63 7 Millions 

Mavage pool 88.11 92.54 7 Millions 

4.2. Lung cancer classification 

We implemented AutoLungCADetector to identify lung cancer in patient CT scans using the 
chest CT scans dataset. Our results showed that AutoLungCADetector with Mavage Pooling achieved 
the highest classification accuracy of 95.56% and an AUROC of 99.37%, surpassing 
AutoLungCADetector with Max Pooling by margins of a 3.50% accuracy and a 0.70% AUROC. 
Additionally, it outperformed AutoLungCADetector with Average Pooling by margins of a 9.21% 
accuracy and a 1.39% AUROC. The results are presented in Table 2. 

Table 2. Performance of AutoLungCADetector in classifying lung cancers in patient CT 
scans using the chest CT scan dataset with different Pooling techniques. 

Pooling technique Accuracy (%) AUROC (%) Number of parameters 

Average pool 86.35 97.98 7 Millions 

Max pool 92.06 98.67 7 Millions 

Mavage pool 95.56 99.37 7 Millions 

4.3. The effects of Mavage Pooling on State-of-the-Art CNN models in diagnosing lung cancers 

We replaced the local pooling layers in three state-of-the-art CNN models, namely AlexNet, 
ResNet-50, and GoogLeNet, with Mavage Pooling. We trained the networks on both the IQ-
OTH/NCCD and the chest CT scan dataset. The results showed that Mavage Pooling improved the 
performance of all CNN models. It improved the accuracy and AUROC of AlexNet by 0.62% and 
0.17%, ResNet-50 by 0.31% and 1.20%, and GoogLeNet by 0.61% and 0.74%, respectively, when 
using the IQ-OTH/NCCD dataset. Furthermore, Mavage Pooling improved the accuracy and AUROC 
of AlexNet by 4.45% and 2.81, ResNet-50 by 6.03% and 2.45%, and GoogLeNet by 1.9% and 0.67%, 
respectively, when using the chest CT scan dataset. The results showed that GoogLeNet with Mavage 
Pool achieved the highest classification accuracy of 89.94% and an AUROC of 95.29% when detecting 
pulmonary nodules in CT scans, and a 93.65% accuracy and a 98.99% AUROC when classifying lung 
cancers. The results are presented in Table 3. 
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Table 3. Performance of AlexNet, ResNet-50 and GoogLeNet in the analysis of the IQ-
OTH/NCCD and Chest CT scan datasets with and without Mavage Pooling technique. 

Dataset Technique Accuracy (%) AUROC (%) Number of 
parameters 

IQ-OTH/NCCD AlexNet 86.28 91.47 57 Millions 

AlexNet + Mavage pool 86.90 91.64 57 Millions 

ResNet-50 87.80 92.80 23 Millions 

ResNet-50 + Mavage pool 88.11 94.00 23 Millions 

GoogLeNet 89.33 94.55 6 Millions 

GoogLeNet + Mavage pool 89.94 95.29 6 Millions 

Chest CT scan AlexNet 67.30 86.59 57 Millions 

AlexNet + Mavage pool 71.75 89.40 57 Millions 

ResNet-50 82.86 95.84 23 Millions 

ResNet-50 + Mavage pool 88.89 98.29 23 Millions 

GoogLeNet 91.75 98.32 6 Millions 

GoogLeNet + Mavage pool 93.65 98.99 6 Millions 

4.4. Comparison of AutoLungCADetector with previous works 

We conducted a performance comparison of AutoLungCADetector with previous studies that 
analyzed the IQ-OTH/NCCD and Chest CT scan datasets. The results demonstrated that 
AutoLungCADetector outperformed the previous approaches. It surpassed the approach proposed by 
AL-Huseiny et al. [24] by 5.32% and surpassed the approached proposed by Kareem et al. [42] by 
0.35% on the IQ-OTH/NCCD dataset; moreover, it surpassed the approach by Mamun et al. [26] by 
3.56% on the chest CT scan dataset. The detailed comparison is presented in Table 4. 

Table 4. Comparison of AutoLungCADetector with previously proposed models in 
detecting pulmonary nodules and classifying lung cancers in patient CT scans using the 
IQ-OTH/NCCD and chest CT scan dataset. 

Author Dataset Accuracy (%) Number of classes 

AL-Huseiny et al. [24] IQ-OTH/NCCD 94.38 2 

Ours IQ-OTH/NCCD 99.70 

Kareem et al. [42] IQ-OTH/NCCD 89.89 3 

Ours IQ-OTH/NCCD 90.24 

Mamun et al. [26] Chest CT scan  92.00 4 

Ours Chest CT scan  95.56 

5. Discussion 

Lung cancer is a deadly disease that often goes undiagnosed until later stages, which limits 
survival outcomes [2]. An early diagnosis can greatly improve the prognosis and quality of life for 
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affected individuals [4]. Artificial intelligence, particularly DL using CNNs shows promise in 
automating the early diagnoses of lung cancer through the analyses of patient CT scans [13–19]. This 
study utilized a customized CNN (AutoLungCADetector) with a Mavage pooling layer to analyze 
publicly available lung CT datasets, including the IQ-OTH/NCCD and Chest CT Scan datasets. The 
approach was validated using three state-of-the-art CNN models. 

AutoLungCADetector is comprised of about 7 million parameters. It possesses significantly 
fewer parameters and demonstrates an improved performance compared to state-of-the-art CNN 
models like AlexNet [27] and ResNet-50 [58]. The reduced number of parameters led to shorter 
training times and lower computational costs. The study’s findings indicate that AutoLungCADetector 
is effective in diagnosing lung cancer in patient CT scans. These results corroborate prior studies that 
utilized customized CNNs to analyze patient chest CT data and reported a superior performance 
compared to available state-of-the-art CNN models [15,16,26]. These results may be due to the original 
design of state-of-the-art CNNs, which were intended to model large-scale non-medical datasets with 
varying resolutions. Moreover, chest CT data are limited, and training on large models with deeper 
layers may lead to underfitting, which can negatively impact the performance [58,59]. 

Pooling is a technique used in CNNs to reduce the resolution of an image while preserving 
important features [44]. AutoLungCADetector incorporated various pooling techniques, including 
Max Pooling, Average Pooling, and Mavage Pooling. The study results demonstrated that the 
AutoLungCADetector that utilized Mavage Pooling achieved an improved performance compared to 
Max Pooling and Average Pooling. Additionally, Mavage Pooling was found to enhance the 
performance of three state-of-the-art CNNs: AlexNet, ResNet-50, and GoogLeNet, thus indicating its 
effectiveness as a downsampling technique in providing a more accurate representation of the 
convolved feature map at each layer of the network compared to Max Pooling and Average Pooling. 
Furthermore, the results of the study showed that the Mavage Pooling technique is beneficial for 
models with deeper architectures (Table 3) and may help overcome issues such as vanishing gradients. 

6. Conclusions 

CNNs are effective tools for the early diagnosis of lung cancers. A low-cost CNN has the potential 
for the effective diagnosis of lung cancer from patient CT scans. Utilizing the Mavage Pooling 
technique as a feature extraction and downsampling technique can significantly improve the CNN 
diagnostic capabilities. In the future, we shall investigate the effectiveness of the Mavage Pooling 
when used to diagnose other types of cancers and expand our approach to utilize alternate imaging 
techniques such as positron emission tomography and magnetic resonance imaging scans. 
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