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Abstract: Non-linear behavior in building frame structures is inevitable and expected in moderate to 
severe seismic events. This behavior tends to be concentrated at the ends of beams and columns of 
moment-resisting frames. These critical regions, where plastic hinges form, are important for the 
global stability of the structural system. Depending on the available ductility, these mechanisms are 
responsible for the permanent deformations that the structure undergoes, leaving the remaining parts 
of the structural elements in the elastic regime, and hence in the safe zone. The importance of these 
mechanisms led to the search for an adequate model capable of well-capturing the non-linearity 
phenomena involved. The development of versatile hysteresis models with degradation features has 
been the aim of different studies. Hence, this paper presents a parametric study based on a smooth 
hysteresis model, a further modification to the well-known Bouc-Wen model, developed by 
Sivaselvan and Reinhorn, with a physical interpretation appropriate to the study of the non-linear 
behavior of civil engineering structures, particularly, building structures. Furthermore, an 
optimization procedure is implemented to calibrate the mentioned model’s parameters, attempting to 
replicate the actual cyclic response of a reinforced concrete frame structure. The effect of each 
parameter in the hysteresis response will help on the understanding and on the possibilities of this 
kind of model in simulating different types of structural systems or different materials. 
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1. Introduction 

Nonlinearities of hysteresis are present in several phenomena of science and technology, such as 
physics (e.g. plasticity, friction, ferromagnetism, ferroelectricity, superconductivity, adsorption, and 
desorption, etc.), chemistry, biology, mechanics, even economics and experimental psychology, but 
particularly in the present scope, in civil engineering [1,2]. 

According to Visintin [2], hysteresis is regarded as a rate-independent memory effect. Rate 
independence requires that the couple (input and output) is invariant to any increasing time 
homeomorphism, meaning that at any instant of time, the output only depends on the range of the 
restriction of the input and on the order in which values have been attained, being independent of the 
derivatives of the input, which may even fail to exist. Hysteresis is then a phenomenological concept 
that is based on experimental data relating to the aforementioned couple. 

In reality, the response of structural systems depends always on the rate of the applied load, and 
when this needs to be considered, viscosity will be introduced. Although generally in seismic 
response of structures viscosity and hysteresis contribute to the overall energy dissipated by the 
structure, if the load is applied at a very low rate, the viscosity phenomena can be neglected [3]. 

Hysteresis models represent constitutive relationships of a structural system or element. These 
represent a relationship between a couple of two physical quantities, that in the present scope can be 
resistance-deformation or stress-strain, shear-distortion, force-displacement, and moment-curvature. 
More realistic hysteresis models are essential to accurately characterize an inelastic response analysis 
of a structural system subjected to dynamic loads, such as seismic excitations. 

Several hysteresis models were created and studied over the years. These models were 
developed based on how a certain structural system composed of a certain material behaves under 
lateral cyclic loading. The characterization of the mechanical non-linear behavior of structural 
components, e.g., structural elements and connections, and the assessment of the seismic response of 
structural systems (moment frames, braced frames, and shear and masonry walls) constitute the main 
purpose in the development of these hysteresis models [4]. 

The non-linear or inelastic behavior that a structural system exhibits when subjected to a 
dynamic excitation, can be simulated using a special kind of hysteresis model, an empirical 
hysteresis model. This kind of model, as the name suggests, is based on a phenomenological 
approach. The hysteresis characteristics observed in experimental tests of a certain structural system 
are idealized in a hysteresis model capable of expressing the resistance-deformation relations under 
any loading history with load reversals [5]. 

The early models in this context were mainly developed based on experimental observations of 
reinforced concrete (RC) and steel structural members’ behavior. The later and recent hysteresis 
models are focused on more versatile models capable of simulating different structural systems and 
different materials under diverse loading conditions. Recent works have presented model 
formulations capable of accurately simulating complex hysteretic phenomena in rate-independent 
mechanical systems and materials [6,7], and the complex hysteretic response of elastomeric isolation 
bearings for seismic isolation [8]. Other studies have presented hysteretic models capable of 
reproducing damage of structural systems and components presenting stiffness and strength 
degradation [9,10]. 

Depending on the loading conditions of a structural member, its behavior can be dominated by 
flexure, shear, or axial deformation. The interaction between these behaviors can be complex and 
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must be taken into account to obtain more reliable simulations. 
These models can be generally divided into two types, polygonal hysteresis models (PHMs) and 

smooth hysteresis models (SHMs) [11]. 
The PHMs are based on piecewise linear behavior and driven by real behavioral stages of an 

element or structure, such as initial or elastic, cracking, yielding, stiffness and strength degradation 
stages, and crack and gap closures [11]. Many PHMs were developed over the years mostly to 
simulate the flexure-dominance behavior of structural members (e.g. elastic-perfectly-plastic bilinear 
model, strength-hardening bilinear model, Clough’s model [12], degrading bilinear model [13], 
modified Clough’s model [14], trilinear degrading model [15], Takeda’s model [16,17]. Additionally, 
to account for shear interaction other models have been developed simulating the pinching effect (e.g. 
slip-type Takeda’s model [18], Kabeyasawa et al. model [19], Three-parameter model [20], Costa 
and Costa model [21], Rodrigues et al. [22]. 

Smooth hysteresis models present continuous stiffness changes due to yielding but with sharp 
changes due to unloading and deteriorating behavior [11]. Different SHMs were developed over the 
years, although the most popular ones are the Bouc-Wen models, which are a set of models including 
the original and its further modifications. With proper mathematical manipulations, this constitutive 
model can represent many different empirical behaviors in a phenomenological way, i.e., 
softening/hardening and smoothly varying hysteresis curves, e.g., stiffness and strength degradation 
and the pinching effect. 

Bouc-Wen models’ can be considered as “semi-physical” models since they come from a 
combination of some physical understanding of the hysteresis system along with some kind of 
black-box modeling rather than a detailed analysis of the physical behavior of the systems with 
hysteresis [23]. This model essentially consists of a first-order non-linear differential equation 
relating an input displacement and an output restoring force in a hysteresis form. With the proper 
choice/tuning of parameters, it is possible to replicate the response of the model regarding real 
hysteresis behavior. 

One example of the set of Bouc-Wen models is the Sivaselvan and Reinhorn smooth hysteresis 
model [11,24]. This model was developed based on previous models, viz., Bouc [25], Wen [26,27], 
Baber and Noori [28], Foliente [29], and Reinhorn et al. [30]. It is a versatile model that carries a 
physical interpretation that is appropriate to model the non-linear behavior of structural systems and 
structural components. 

In this paper a parametric variation of a smooth hysteresis model based on the works of 
Sivaselvan and Reinhorn’s [11,24] is performed, to evaluate the role of each parameter for further 
calibration, attempting to emulate the global cyclic behavior of an experimental RC frame structure 
using a macro model developed in MATLAB [31]. 

2. Parametric study 

2.1. Characteristics of the experimental frame structure 

To study the cyclic response of RC frame structures with or without infill masonry walls an 
experimental campaign was performed at Laboratório Nacional de Engenharia Civil (LNEC) [32]. 

The RC bare frame structure used in this experimental study is represented in Figure 1a. A 
constant vertical load of 100 kN is applied at each column, and the structure is submitted to an 
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increasing cyclical load/displacement pattern, as represented in Figure 1b, at the beam’s center level. 
The materials used in the experimental frame structure were concrete of the class C20/25, 

longitudinal steel reinforcement of S400, and transverse reinforcement (stirrups) of S500. 
At the critical regions, i.e., location of the expected plastic hinges, near the extremities of the 

structural members (Figure 1c), adequate concrete confinement is provided by tightening the spacing 
between the stirrups as detailed in Figure 1d. 

 

Figure 1. Reinforced concrete frame structure and respective confinement of the critical 
regions [33]. 

The experimental model was cyclically loaded in a quasi-statical way by displacement control, 
according to the displacement law in Figure 1b. Hence, the equation of motion will only comprise 
the restoring force, which will be further divided into the elastic and inelastic components. Having 
the displacement that the structure is subjected to and the structure’s stiffness, the restoring force can 
be determined. 

The following parametric variation will make use of the structural properties and loading 
conditions of the described experimental frame structure and testing, presenting all or only specific 
hysteresis cycles according to the current parameter under study. 

2.2. Brief description of the smooth hysteresis model considered 

Sivaselvan and Reinhorn developed a polygonal and a smooth hysteresis model [11,24] with 
degradation features. As mentioned, this modification to the original Bouc-Wen model offers a more 
physical understanding than preceding modifications since the parameters are selected in a way to 



903 

AIMS Materials Science  Volume 8, Issue 6, 899–916. 

have physical meaning. A brief description of the model used in this study is outlined below based  
on [11]. 

The model considered herein comprises three different springs (Figure 2): a post-yielding spring 
(Spring 1); a hysteresis spring (Spring 2), and a slip-lock spring (Spring 3).  

 

Figure 2. Springs set of the Sivaselvan and Reinhorn’s smooth hysteresis model. 

MATLAB was used to develop an algorithm to apply the aforementioned model. The 
differential equation that computes the hysteretic force is given in rate-dependent form as follows [11],  

   0 1 21
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     (1)

in which F* and F*Y are the hysteretic force and respective yielding force, x is the total displacement, 
k0 is the initial elastic stiffness, kH is the total non-linear stiffness, khyst is the hysteretic stiffness, a is 
the post-yielding to initial stiffness ratio, N is the parameter controlling the smoothness transition 
from the elastic to the post-yielding range, and η1 and η2 are parameters controlling the shape of the 
unloading path. RK is related to stiffness degradation, having a positive decreasing value, [11] 

0

* *
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F +αF
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 (2)

where α controls the degree of stiffness degradation. In addition, stiffness degradation of the elastic 
spring, i.e., the post-yielding stiffness kpost-yield = ak0, can also be considered, as used by other  
authors [3,34], by the following modification in the elastic spring 

max

ult

1
+/ -

post- yield,deg post- yield d +/ -

x
k = k - η

x

  
  
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 (3)

The slip lock stiffness, kslip-lock, translated by Spring 3 is thus implemented in the model in series 
with the hysteresis spring to simulate pinching behavior. The combined stiffness can thus be obtained 
by the following expression [11] 
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where s is the slip length, Rs controls the slip length, σ controls the fraction of the yield force beyond 
which slip will not occur, and λ defines the part of yield force about which slip will occur. 

The deterioration of the strength capacity can be simulated by using a rule based on continuous 
energy degradation and backbone degradation due to the exceeded maximum deformation. This rule 
can be given by the following expression [11] 
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 (5)

where FY
+/– and FY0

+/– are the yield force and the initial yield force, respectively, xmax
+/– is the 

maximum displacement, xult
+/– = xY × µult

+/– is the ultimate displacement (product between the yield 
displacement and the ultimate ductility factor), and β1 and β2 are parameters based on ductility and 
energy demands, respectively. The hysteresis energy can be given in incremental form as follows [11]: 
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and the ultimate hysteretic energy under monotonic loading until the ultimate deformation without 
degradation can be computed by the following expression 

 0
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Y Y
h Y Y

F x
E = + F x - x  (7)

Asymmetric yielding can also be considered by using the following expression [11]: 
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The experimental model was loaded in a quasi-static cyclic way. Hence, Eq 1 is rewritten for 
quasi-statically loaded systems, eliminating dt and noting that sgn(ẋ) = sgn(dx) [30], considering now 
the motion independent of time, 
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and the non-linear equation is solved using a numerical solver such as functions, fzero, fsolve, or 
vpasolve [31]. 

2.3. Model parameters variation 

The following parametric variation investigates the meaning and the influence of each 
parameter in the above-presented model. The first graph of Figures 3–13 corresponds to the 18th 
cycle for different parameter values, and the second plot is the complete hysteretic response for 
specific parameters’ values. 

2.3.1. Parameter N 

Figure 3 presents the variation of parameter N, controlling the smoothness transition from pre- 
to the post-yielding range. As can be observed the model becomes approximately bilinear from N = 15, 
showing very little variation between this value and the last one considered (N = 250). 

 

Figure 3. Variation of parameter N (Rs = 0, σ = 1, λ = 0, α = 50, η = 0.5, ηd = 0, a = 0.025, β1 = β2 = 0). 

2.3.2. Parameters η1 and η2 

These two parameters can be reduced to one, η, if one considers the following operation: η1 + η2 
= 1, leading to [11]: 

   0 1 1
N*

* * *
hyst K *

Y

F
F = k x F = x R - a k - ηsgn F x +η -

F

      
  

     (10)

This is the result of prior studies [35,36], that suggest parameter A (in the original model [26]) is 
equal to one (Eq 1 and 10) due to redundancies in the model and for mathematical consistency, 
restoring the physical significance of the initial stiffness; and the previous operation (η1 + η2 = 1) is 
considered for compatibility with plasticity, i.e., returns the physical meaning of the yield force. It 
should be referred that these values correspond, respectively, to β and γ in the original model [26]. 

Variation of parameter η is presented in Figure 4 as combinations of η1 and η2. It can be verified 
that this parameter or parameters control the shape of the unloading path, i.e., the variation of the 
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unloading stiffness, as well as the size of the hysteresis loop, in terms of area and shape. Parameter η 
will take only positive real values, which corresponds to positive real values for η1 and positive or 
negative real values for η2. When η < 0.5 the discharge path is linear. For η < 0.5 the unloading path 
is non-linear, compressing the loop area, and thus reducing the energy dissipation. For η > 0.5 the 
unloading path is also non-linear, although the loop area increases by slightly enlarging the cycle. 

 

Figure 4. Variation of parameter η (Rs = 0; σ = 1; λ = 0; α = 100; N = 5; ηd = 0; a = 0.025; β1 = β2 = 0). 

Other parametric studies [36,37] revealed that if parameters η1 and η2 are allowed to vary 
independently in the context of the original Bouc-Wen model, softening and hardening hysteresis 
behavior can be obtained for larger and smaller values of η1, respectively. 

2.3.3. Parameters a and ηd 

Figures 5 and 6 show, respectively, the variation of the values of parameters a and ηd, while 
fixing the remaining parameters. 

 

Figure 5. Variation of parameter a (Rs = 0, σ = 1, λ = 0, N = 5, η = 0.5, ηd = 0, α = 100, β1 = β2 = 0). 
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Figure 6. Variation of parameter ηd (Rs = 0, σ = 1, λ = 0, N = 5, η = 0.5, α = 100, a = 0.025, 
β1 = β2 = 0). 

As mentioned, parameter a accounts for the value of stiffness after yielding, i.e., in the plastic 
range. This parameter may be seen as a percentage of the initial elastic stiffness. 

Recent studies [38,39] proposed the use of negative values for this parameter, resulting in a 
strain-softening behavior after yielding. Hence, this variation also accounts for negative values of a. 

The effect of a negative value of parameter a leads to a clockwise rotation of the hysteresis 
loops, which allied to the softening behavior results in an increase of strength capacity at the end of 
the reloading phase, since this model is a Masing type hysteresis model. 

The degradation of the post-yielding stiffness can also be implemented in the model [3,34] 
using the degradation parameter ηd, whose effect presented in Figure 6 reveals higher degradation for 
larger values of the maximum displacement and parameter ηd. 

2.3.4. Parameter α 

Hysteresis stiffness degradation is regulated by parameter α, which takes positive real values. 
This parameter is implemented in the pivot rule [20], leading to a positive decreasing function, Rk 
(Eq 2), with the unity as its initial and maximum value. 

From Figure 7 it is evident that for larger values of α the less stiffness degradation occurs. For 
values of α between 50 and 250, stiffness degradation is almost inexistent. Despite the influence in 
the stiffness of the unloading path, an obvious correlation with the hysteresis energy dissipation is 
seen by observing the reduced area of the hysteresis loops. 

Severe stiffness degradation can be verified for values below α = 5. Values of α below 0.5 may 
not represent results with physical significance. 
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Figure 7. Variation of parameter α (Rs = 0, σ = 1, λ = 0, N = 5, η = 0.5, ηd = 0, a = 0.025, β1 = β2 = 0). 

2.3.5. Parameters β1 and β2 

Figures 8 and 9 show the variation of the parameters controlling the strength deterioration in 
terms of ductility and energy demands, respectively, β1 and β2. 

 

Figure 8. Variation of parameter β1 (Rs = 0, σ = 1, λ = 0, N = 5, α = 100, η = 0.5, ηd = 0, a 
= 0.025, β2 = 0). 

 

Figure 9. Variation of parameter β2 (Rs = 0; σ = 1; λ = 0; N = 5; α = 100, η = 0.5; ηd = 0; 
a = 0.025; β1 = 0). 
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Parameter β1 depends on the maximum displacement achieved as can be verified by the second 
term of Eq 5. Hence, whenever a maximum displacement is attained, degradation of the strength 
capacity occurs by reducing the backbone curve’s ordinate. Figure 8 shows severe strength 
degradation for values between 0.4 and 0.6, and minor strength deterioration for values below 0.1. 

Different from β1, parameter β2 exhibits continuous resistance degradation based on the 
incremental energy dissipation. This leads to greater degrees of deterioration for smaller values of β2 
compared with β1. As can be observed severe resistance degradation can be verified for values of β2 
above 0.15. Values above 0.3 led to numerical instabilities for this case under study. 

2.3.6. Parameters Rs, σ, and λ 

In this subsection variation of the parameters’ values related to the pinching effect is carried out, 
viz., parameters Rs, σ and λ. 

The slip length s (Figure 2) is regulated by parameter Rs that possess positive real values. The 
higher the value of Rs the more pronounced the pinching effect is as can be observed by Figure 10. 
The severe pinching effect can be verified for values bigger than Rs = 0.4, and minor pinching effect 
for very small values of this parameter. 

 

Figure 10. Variation of parameter Rs (σ = 0.75, λ = 0, N = 5, α = 100, η = 0.5, ηd = 0, a = 
0.025, β1 = β2 = 0). 

The effect of parameter σ is clear by the observation of Figure 11, focusing the pinching effect 
in a smaller region near the center for smaller values of σ. Slip or the pinching effect will not occur 
beyond the fraction defined by σ. A value of σ near the unity leads to an almost uniform distribution 
of the pinching effect in the loading/reloading and unloading branches. Numerical instabilities occur 
for values of σ very close to zero. 
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Figure 11. Variation of parameter σ (Rs = 0.1, λ = 0, N = 5, α = 100, η = 0.5, ηd = 0, a = 
0.025, β1 = β2 = 0). 

Parameter λ defines the location around which slip will occur. It can take positive or negative 
real values, and has the positive or negative unity as its maximum or minimum value, respectively. A 
value different from zero introduces an asymmetric pinching effect in the numerical model. A null 
value for this parameter means that the structural element or the structure is symmetric. Figure 12 
shows the effect of this parameter, which becomes more pronounced for values close to positive or 
negative one. 

 

Figure 12. Variation of parameter λ (Rs = 0.25, σ = 0.25, N = 5, α = 50, η = 0.5, ηd = 0, a 
= 0.025, β1 = β2 = 0). 

2.3.7. Asymmetric yielding 

Asymmetric yielding can be considered by the use of Eq 8. Figure 13 shows this feature by 
varying the yield force in the negative direction to have lower and higher yielding levels than in the 
positive direction. This feature is important since structural systems are not perfect or ideal, and 
yielding will possibly have different values in opposite directions. 
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Figure 13. Variation of the yield force in the negative direction (Rs = 0.1, σ = 0.25, λ = 0, 
N = 5, α = 5, η = 0.5, ηd = 0, a = 0.025, β1 = β2 = 0). 

3. Calibration of model parameters 

The cyclic response of the RC experimental bare frame is presented in Figure 14a. It can be 
verified a smooth evolution with a subsequent maximum before concrete cracking at the top and 
bottom ends of the columns. Then, a gradual stiffness decrease occurs without collapse, although 
with substantial damage, strength deterioration, and inelastic hinge spread in the columns. 

 

Figure 14. Cyclic response and corresponding backbone curve of the RC frame structure. 
(a) Experimental, (b) numerical. 

Based on the previous parametric study that investigated the influence and effect of each 
parameter in the hysteresis response, an optimization procedure is carried out to search for the 
parameters’ values that provide the best fit to the experimental data. 

The optimal parameters’ values defining the smooth hysteresis model that provide the best 
fitting to the experimental data are obtained by following the procedure illustrated in Figure 15 
through a flowchart. The procedure starts with a manual calibration to obtain a starting point      
or initial guess of the hysteretic parameters for the implementation of function lsqcurvefit in 
MATLAB [31]. This function aims to minimize the sum of squares error between the numerical and 
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experimental results of the restoring force. The optimized results with this function are then used as 
an initial guess for the use of function, fminsearchbnd [40], based on the fminsearch function 
algorithm [31] that follows the Nelder-Mead simplex algorithm, although with bound constraints 
applied to the parameters. This function aims to minimize the root mean square error (RMSE) of the 
same results mentioned, with emphasis given to the points belonging to the cyclic backbone curve 
through the use of weighting factors. This error was further normalized (NRMSE) with the range of 
the experimental restoring force and converted to a percentage. The stopping criteria considered for a 
converged solution were an NRMSE less than 5% and a tolerance less than 1 × 10−4 for the 
difference between two subsequent iterations on the calculation of the NRMSE. 

 

Figure 15. Flowchart of the optimization procedure undertaken in the present study. 

The initial stiffness and the yielding force in both directions were also considered in the 
optimization procedure, verifying that the optimum values are relatively close to the actual values. 
Figure 14b presents the outcome of the optimization with the following optimized parameters:     
N = 2.07, a = −0.061, ηd = 0, η = 0.81, α = 1.33, β1 = 0.03, β2 = 0.005, Rs = 0.17, σ = 0.40, λ = 0.004, 
k0 = 3.567 × 106 N/m, F+

Y0 = 4.8203 × 104 N, F-
Y0 = 4.9907 × 104 N, µ+

ult = 7.85, µ-
ult = 14.85. The 

model can reasonably estimate the cyclic backbone curve as well as the global hysteretic cycles. The 
model presents some setbacks in the estimation of the experimental unloading branches and 
transitions from elastic to plastic range. In addition, further improvements may be applied in the 
model for the present purpose, viz., in the strength degradation parameters, whose influence and 
numerical values seem to not correspond to the level of deterioration in the experimental model, 
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taking very small values. However, the small values of these parameters might be explained by the 
high degree of stiffness degradation and pinching effect. 

The functions used for optimization gave satisfactory results, though a large number of 
variables were used, exceeding their limit of good performance. As a future development, an 
optimization procedure should be created to verify if a better solution exists to fit the experimental 
data. 

4. Conclusions 

The parametric study performed herein highlighted the importance of each parameter in the 
hysteresis model investigated. The knowledge of the effect of each parameter in the model provides 
the necessary insight into the possibilities of the model to estimate real behavior, in the present scope, 
the non-linear cyclic behavior of RC frame structures. 

Based on the parametric study carried out, the calibration of the model’s parameters was 
performed using an optimization procedure to replicate the cyclic behavior of an experimental RC 
bare frame structure. Satisfactory results were obtained, though a large number of variables were 
used in the process of optimization, which may compromise the good performance of the 
implemented functions. Hence, a different optimization approach should be considered to support the 
current and future solutions. 

Further improvements may be carried out for the present purpose, namely, to the strength 
deterioration formulation to better predict the experimental response, since the values obtained for 
the corresponding parameters are very small, which may not represent the actual behavior of 
deterioration. Nevertheless, the level of stiffness degradation and the pinching effect may also 
explain such low values of the strength deterioration parameters. 

Future investigations may comprise validation of the studied hysteresis model with more 
experimental data considering different hysteretic configurations. 
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