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Abstract: Day by day laser welding (LW) is gaining industrial importance. Good quality of weld 
joints can be realized through this process. Because this process yields low distortion and small weld 
bead. Aerospace, nuclear, automotive, and biomedical industries are opting for the lightweight and 
corrosion resistance titanium alloys. This paper deals with the generation of optimal weld bead 
profiles in the conduction mode laser beam welding (LBW) of thin Ti–6Al–4V alloy sheets. Laser 
beam diameter, power and welding speed are the 3 LBW parameters, whereas, bead width, depth of 
penetration, heat affected zone and maximum temperature are the performance indicators (PIs).    
3 levels are set for each LBW parameter. Taguchi’s L9 OA (orthogonal array) is selected to minimize 
the numerical simulations. ANSYS Fluent V16.0 with Vc++ code is used to develop a generic 
model. %Contribution of each process variable on the PIs is assessed performing ANOVA analysis. 
The range of PIs is assessed adopting the modified Taguchi approach. A set of optimal LBW 
parameters are identified considering a multi-objective optimization technique. For these optimal 
LBW parameters weld bead width is minimum, and the depth of penetration is maximum. Empirical 
relations for PIs are developed and validated with simulations. Utilizing the Taguchi’s design of 
experiments, empirical relations are developed for the performance indicators in laser beam welding 
(LBW) simulations performing few trial runs and identified the optimal LBW process parameters. 

Keywords: ANSYS Fluent; power; welding speed; bead width; depth of penetration; laser beam 
diameter 
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1. Introduction 

Because of small fusion zone and low distortion, laser welding (LW) is gaining industrial 
importance day by day. Weld quality depends on the weld bead geometry [1–3]. Titanium alloys are 
treated as good corrosion resistance and lightweight materials. They are of great demand in 
automotive, aerospace, nuclear and biomedical industries [4]. Researchers are in the continuous 
process of developing models to simplify the time-consuming simulations. For welding of titanium 
alloys, laser beam welding (LBW) is opted due to its versatility, high specific heat input, and 
flexibility. For optimal process conditions, its weld strength is close to that of parent material. 
However, the potential weldability issues are low elongation, corrosion resistance and inferior 
fatigue properties [5]. 

Denney and Metzobower have made an interesting discussion on LBW of titanium [6]. Du et al. 
have carried out LBW (laser beam welding) simulations and presented fully penetrated weld bead 
geometry profiles [7]. Benyounis et al. have adopted RSM (response surface methodology) and 
examined the influence of focal position, speed and laser power on the weld bead geometry of 
medium steel carbon steel [8]. Liao and Yu have examined the weld bead profiles of thin stainless 
steel sheets performing pulse laser welding by varying the laser energy and incident angle [9]. 
Akman et al. have examined the effect of pulse duration and energy on DOP (depth of penetration) 
by analyzing microstructures and strength properties [10]. ANN (artificial neural network) approach 
is adopted for investigating the weld geometry [11]. Yamashita et al. and Takemori et al. have 
performed simulations on LW process [12,13]. 

Sathiya et al. have followed the Taguchi approach and found the optimal LW parameters for 
alloy 904L [14]. Shanmugam et al. have utilized ANSYS and performed FEA (finite element analysis) 
for generating weld bead profiles of AISI 304 varying beam power, incident angle and exposure  
time [15]. Squillace et al. have examined the influence of LBW parameters on morphology, tensile 
and fatigue properties [16]. Cherepanov et al. have performed simulations on the thermo-physical 
processes at LW of alloys possessing refractory nanoparticles [17]. Cao et al. have made 
investigations on the porosities in the LBW of butt joints [18]. Song et al. have analyzed the residual 
stress distribution in titanium welds [19]. Akbari et al. have performed simulations on pulsed LW of 
Ti–6Al–4V alloy and observed 2% to 17% deviation in temperature distribution and melt pool 
geometry [20]. Gao et al. have examined the influence of LW parameters on porosity formation [21]. 
Gao et al. have achieved better titanium alloy strength properties with medium OLF (overlapping 
factor) [22]. The shapes of the molten pool from numerical simulations of Azizpour et al. are 
comparable with measured data [23]. Akbari et al. have adopted an ANN approach and performed 
simulations for temperature distribution and melt pool geometry [24]. Zhan et al. have made 
investigations on invar 36 alloy conducting MIG welding and hybrid laser-MIG welding [25]. Zhan 
et al. have made consistent assessments with experiments on the microstructure of 
Ti–6Al–2Zr–1Mo–1V LBW joints [26]. Oliveira et al. have made a survey on the joining of NiTi 
shape memory alloys [27]. LW of NiTi and Ti6Al4V utilizing niobium interlayer is examined in [28]. 
High quality of weld joints can be produced through fiber LW of AA6061-T6 [29]. Gursel et al. have 
observed crack risk in Nd:YAG laser welding [30]. Caiazzo et al. have made investigations on LW of 
3 mm thick Ti6Al4V alloy plates and recommended optimal LW parameters to lower the undercut 
and porosity [31]. Kumar et al. have reported the effect of the scanning speed and beam power on the 
fiber LW of Ti6Al4V alloy [32]. Kumar et al. have performed simulations and LBW tests on 1 mm 
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thick Ti–6Al–4V alloy sheets varying welding speed and laser power [33]. Samples annealed at  
980 ºС yield tensile strength of 1048 MPa, which is above 4% to that of conventional weld samples. 
Auwal et al. have discussed the effect of LW parameters weld defects [34]. Kumar et al. have 
reported optimal parameters, which yielded high tensile strength in pulsed Nd:YAG LW of    
Monel 400 and Hastelloy C276 sheets [35]. Jiang et al. have carried out simulations and experiments 
on LW of Ti–6Al–4V alloy varying average power, beam diameter and pulse energy [36]. Kumar and 
Sinha have made investigations on pulsed Nd:YAG LW of Ti6Al4V alloy varying heat input and 
presented bead profile, micro-hardness and tensile strength [37]. 

LBW process will be generally either in conduction or in keyhole mode [38]. Welding in 
conduction mode is carried out above melting and below vaporization of materials. Thermal 
convection due to Marangoni flow will be there in addition to heat conduction. In keyhole welding, the 
surface temperature is above the threshold of boiling point. A hole will be formed in the weld pool after 
vaporization. Defects (like spatter and blowholes) are introduced upon creation of strong recoil 
pressure on the melt in the keyhole welding process. Conduction welding is a stable process. It is 
possible to achieve high quality welds free of pores and spatter [39]. To perform good quality of 
welding, there is a need for reliable simulation tools and weld equipment’s [40,41]. Numerical 
simulations are required to minimize the cost and time-consuming trial tests, which provide the 
temperature field and the weld bead geometry. High-speed video recording is required to examine 
the process on the weld pool surface.  

This paper adopts the Taguchi’s L9 OA (orthogonal array) in the numerical simulations to obtain 
optimal LBW process parameters for thin Ti–6Al–4V alloy sheets. By utilizing the Taguchi’s design 
of experiments, empirical relations are developed for performance indicators in LBW simulations 
performing few trial runs. Narrow weld bead width with full depth of penetration is arrived by 
varying the LBW parameters. Empirical relations represent the weld bead profile. A set of optimal 
LBW parameters is finalized adopting a multi-objective optimization procedure. 

2. Materials and methods 

Thermal history in the weld is essential for assessing the strength of weld joint. To improve the 
quality of weld, selection of optimal LBW parameters plays an important role. The time-consuming 
trial and error-based methods are expensive. A CFD Model is required for carrying out thermo-fluid 
analysis to generate the weld bead profile. A 3D model for LBW is developed (incorporating 
buoyancy and Marnangoni stress). ANSYS Fluent embodied with VC++ code is utilized to assess the 
generic nature of the model by comparing the measured weld bead profiles of different materials 
(viz., SS304L, carbon steel, zircoly-4 and Zr-1%Nb) [42–47]. In the present study, 2 mm thick 
Ti–6Al–4V alloy plates (having 50mm length and 20mm width) are considered to perform LBW 
simulations. Figure 1 shows the LBW parameters and performance indicators. For the 3 LBW 
process parameters with 3 levels, full factorial design of experiments requires 27 tests, whereas     
9 tests are needed as per the Taguchi’s L9 OA. 



701 

AIMS Materials Science  Volume 8, Issue 5, 698–715. 

 

Figure 1. LBW process parameters and the performance indicators. 

Numerical simulations are performed by varying 8 to 12 m/s welding speed; 150 to 250 W 
power; and 0.5 to 1.5 mm laser beam diameter. As in [43], the simulations are based on the solution 
of N–S (Navier–Stokes) equations, k-𝜀 equation in the regions of mushy zone and weld pool. The 
temperature dependent properties of Ti–6Al–4V alloy are considered [48]. Specific heat of solid is 
670 J/(kgꞏK), whereas in case liquids it is 730 J/(kgꞏK). Viscosity of liquid is 0.005 kg/(mꞏs). Melting 
heat is 370000 J/kg. Solidus temperature (Ts) is 1878 K. Liquidus temperature (TL) is 1928 K. 

Density, ρ (kg/m3) in terms of temperature, T (K) is Eq 1. 

𝜌 ൌ 4466.2 െ 0.154 𝑇         𝑓𝑜𝑟   𝑇 ൏ 1878 𝐾
                     ൌ 31.34 𝑇 െ 18467           𝑓𝑜𝑟   1878 ൏ 𝑇 ൏ 1928 𝐾

     ൌ 5076.8 െ 0.68 𝑇            𝑓𝑜𝑟  𝑇 ൐ 1928 𝐾
      (1) 

The source term (or momentum frictional dissipation) in the mushy zone is Eq 2 [49,50]. 

𝑆௪  ൌ   10ଷ 𝑤ሬሬ⃗   𝐴௠௨௦௛        𝑓𝑜𝑟    𝑇 ൏ 1878 𝐾
         ൌ ሼሺ0.02𝑇 െ 37.56ሻଷ ൅ 10ିଷሽିଵ ൈ ሺ38.56 െ 0.02ሻଶ𝐴௠௨௦௛   𝑓𝑜𝑟  1878 ൏ 𝑇 ൏ 1928 𝐾

ൌ   0             𝑓𝑜𝑟    𝑇 ൐ 1928 𝐾          
 (2) 

Here 𝑤ሬሬ⃗  is the pull velocity and Amush is a constant of the mushy zone. 
Thermal conductivity, 𝜅 (Wꞏm−1ꞏK−1) in terms of T (K) is Eq 3. 

𝜅 ൌ െ0.32 ൅ 1.46 ൈ 10ିଶ 𝑇     𝑓𝑜𝑟  1400 ൏ 𝑇 ൏ 1850 𝐾
     ൌ െ6.66 ൅ 1.83 ൈ 10ିଶ 𝑇     𝑓𝑜𝑟  1950 ൏ 𝑇 ൏ 2700 𝐾 

      (3) 

Following the welding process simulations [42–47] and considering the Ti–6Al–4V alloy 
properties, weld pool cross-section is generated specifying the welding speed (A), power (B) and the 
laser beam diameter (C) as per Taguchi’s L9 OA. Details on the identification of optimal LBW 
parameters are presented in the next section. 

3. Results 

Taguchi method is useful to design with few welding experiments for the process variables and 
the assigned levels. Analysis of variance (ANOVA) results will be helpful in identifying the optimal 
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welding parameters. From the experimental data, it is possible to generate the data for the full 
factorial design of experiments. A simple statistical approach, known as the Taguchi method [51] 
recommends an orthogonal array (OA) to perform few tests for obtaining performance indicators 
(PIs). From these tests, it is possible to generate PIs for all combinations of the levels of input 
process variables. That is the possibility of generating data for the full factorial design of 
experiments. Obviously, this approach minimizes the cost as well as the time-consuming trial and 
error-based tests. A few of the successfully solved engineering/industrial optimization problems are 
damages due to drilling of composites [52–55], stage and satellite separation problems in space 
vehicles [56–58], performance of heat exchangers [59], design of planetary gears [60,61], welding 
process [62–67], machining process [68–73], and fuel engine performance [74–77]. 

Taguchi method [51] recommends L9 OA for LBW process variables, npv = 3 with levels, nvl = 3. 
The minimum test runs (Ntests) required is Eq 4. 

𝑁௧௘௦௧௦ ൌ 1 ൅ 𝑛௣௩ ൈ ሺ𝑛௩௟ െ 1ሻ ൌ 1 ൅ 3 ൈ ሺ3 െ 1ሻ ൌ 7               (4) 

This could be the reason why Taguchi method [51] recommends L9 OA. Tables 1 and 2,  
Figure 2 present numerical simulations of the PIs (viz., width of fusion zone, α (mm), depth of weld, 
β (mm), heat affected zone, γ (mm) and maximum temperature, δ (K)) and the simulated weld bead 
profiles for the nine test runs. Substituting Ntests = 9 and nvl = 3 in Eq 4, one gets npv = 4, which 
indicates the possibility of accommodating 4 process variables in 9 test runs. Modelling and 
Numerical simulations (utilizing ANSYS Fluent V16.0 with Vc++ code) are validated by comparing 
the measured weld bead profiles of different materials (viz., SS304L, carbon steel, zircoly-4 and 
Zr-1%Nb) [42–47]. As in [43], Table 1 introduces a fictitious parameter (D). ANOVA (analysis of 
variance) results are presented in Table 3. %Contribution of B is significant on the grand mean value 
of both α and β. %Contribution of A, B and C on α are 8.3%, 88.5% and 2.6% respectively, whereas 
26.8%, 52.7% and 19.4% are respectively on β. Sum of the %Contributions of A, B and C on α and β 
are 99.5% and 99%. Hence, the %Contribution of D on both α and β are 0.5% and 1%, which are 
nothing but the error (%). 

From ANOVA Table 3, the optimal LBW process variables to achieve minimum α (width of 
fusion zone) are A3B1C3, in which subscripts denote the levels of the process variables. The optimal 
LBW process variables to achieve maximum β (depth of weld) are A1B3C1. These two sets of optimal 
LBW process variables are found to be different for achieving minimum α and maximum β. If the set 
of LBW process variables is not in L9 OA of Table 2, then confirmation tests to obtain the PIs are 
mandatory. 

Table 1. Levels of LBW parameters for Ti–6Al–4V alloy. 

LBW parameters Designation Level-1 Level-2 Level-3 

Welding speed (mm/sec) A 8 10 12 

Power (W) B 150 200 250 

Laser beam diameter (mm) C 0.5 1.0 1.5 

Fictitious D d1 d2 d3 
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Table 2. Performance indicators as per Taguchi’s L9 OA. 

Test S. No. LBW parameters (levels) Performance indicators 

A B C D α (mm) β (mm) γ (mm) δ (K) 

1 1 1 1 1 2.062 1.597 1.545 2887 

2 1 2 2 2 2.796 2.000 1.489 2889 

3 1 3 3 3 3.438 2.000 1.491 2591 

4 2 1 2 3 1.651 1.090 1.227 2443 

5 2 2 3 1 2.218 1.186 1.257 2415 

6 2 3 1 2 3.390 2.000 1.454 3617 

7 3 1 3 2 1.454 0.696 1.058 2197 

8 3 2 1 3 2.458 1.684 1.397 3330 

9 3 3 2 1 3.008 1.681 1.344 2895 

Figure 2. Simulated weld bead profiles for the L9 OA of test runs. 

Table 3. %Contribution of LBW parameters through ANOVA. 

LBW parameters 1 – Mean 2 − Mean 3 – Mean Sum of squares %Contribution 

Width of fusion zone, 

α (mm): grand mean = 

2.497 

A 2.765 2.420 2.307 0.343 8.3 

B 1.722 2.491 3.279 3.633 88.5 

C 2.637 2.485 2.370 0.107 2.6 

D 2.429 2.547 2.516 0.022 0.5 

Depth of weld 

penetration, β (mm): 

grand mean = 1.548 

A 1.886 1.425 1.354 0.461 26.8 

B 1.128 1.623 1.894 0.906 52.7 

C 1.760 1.590 1.294 0.334 19.4 

D 1.488 1.565 1.591 0.017 1.0 

Heat affected zone, γ 

(mm): grand mean = 

1.362 

A 1.508 1.313 1.266 0.099 50.0 

B 1.277 1.381 1.430 0.037 18.5 

C 1.465 1.353 1.269 0.058 29.5 

D 1.382 1.334 1.372 0.004 2.0 

Maximum 

Temperature, δ (K): 

grand mean = 2807.1 

A 2789 2825 2807 1944 0.1 

B 2509 2878 3034 436576 26.4 

C 3278 2742 2401 1172576 70.8 

D 2732 2901 2788 44316 2.7 



704 

AIMS Materials Science  Volume 8, Issue 5, 698–715. 

Utilizing the additive law [51], estimates of PIs from the results of ANOVA Table 3 obtained are as 
follows. Let 𝛹 be the PI and 𝛹෡  is its estimate for the process variables (Ai, Bj, Ck, Dl) in which the 
levels are indicated by subscripts i, j, k, l varying from 1 to 3. Designating Ψ(Ai), Ψ(Bj), Ψ(Ck) and 
Ψ(Dl) as mean values of Ψ corresponding to the levels of the respective process variables. Ψmean, is the 
grand mean of the PI for nine test runs. As per the additive law [51], estimate 𝛹෡  for the specified (Ai, 
Bj, Ck, Dl) is Eq 5. 

𝛹෡ ൌ 𝛹൫𝐴௜, 𝐵௝, 𝐶௞, 𝐷௟൯ ൌ 𝛹௠௘௔௡ ൅ ሺ𝛹ሺ𝐴௜ሻ െ 𝛹௠௘௔௡ሻ ൅ ൫𝛹൫𝐵௝൯ െ 𝛹௠௘௔௡൯
                                                    ൅ ሺ𝛹ሺ𝐶௞ሻ െ 𝛹௠௘௔௡ሻ ൅ ሺ𝛹ሺ𝐷௟ሻ െ 𝛹௠௘௔௡ሻ

   (5) 

In case of 3 input variables (Ai, Bj, Ck), Eq 5 reduces to Eq 6. 

𝛹෡ ൌ 𝛹൫𝐴௜, 𝐵௝, 𝐶௞, ൯ ൌ 𝛹௠௘௔௡ ൅ ሺ𝛹ሺ𝐴௜ሻ െ 𝛹௠௘௔௡ሻ ൅ ൫𝛹൫𝐵௝൯ െ 𝛹௠௘௔௡൯
  ൅ ሺ𝛹ሺ𝐶௞ሻ െ 𝛹௠௘௔௡ሻ    

(6) 

The deviation of the estimates from Eqs 5 and 6 is Ψ(Dl) − Ψmean. For 3 levels (l = 1, 2, 3),     
3 deviations are obtained. As in [43], the range of estimates is obtained through superposition of the 
minimum and maximum deviations to the estimates of Eq 6. Numerical simulations of α, β, γ and δ in 
Tables 4–7 are within the range of estimates. The minimum and maximum deviations for α, β, γ and δ 
are (−0.07, 0.05), (−0.06, 0.04), (−0.029, 0.02) and (−74.8, 98.9) respectively. 

Table 4. Width of fusion zone, α (mm) from the additive law. 

Test S. No. Simulation Eq 6 (npv = 3) RE (%) Eq 5 (npv = 4) Range of estimates 

From To 

1 2.062 2.130 −3.3 2.062 2.062 2.179 

2 2.796 2.747 1.8 2.796 2.679 2.796 

3 3.438 3.420 0.5 3.438 3.352 3.469 

4 1.651 1.633 1.1 1.651 1.565 1.682 

5 2.218 2.286 −3.1 2.218 2.218 2.335 

6 3.390 3.341 1.4 3.390 3.273 3.390 

7 1.454 1.405 3.4 1.454 1.337 1.454 

8 2.458 2.440 0.7 2.458 2.372 2.489 

9 3.008 3.076 −2.3 3.008 3.008 3.125 
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Table 5. Depth of penetration, β (mm) from additive law. 

Test S. No. Simulation Eq 6 (npv = 3) RE (%) Eq 5 (npv = 4) Range of estimates 

From To 

1 1.597 1.66 −3.9 1.597 1.597 1.700 

2 2.000 1.98 1.0 2.000 1.923 2.026 

3 2.000 1.96 2.0 2.000 1.897 2.000 

4 1.090 1.05 3.7 1.090 0.987 1.090 

5 1.186 1.25 −5.4 1.186 1.186 1.289 

6 2.000 1.98 1.0 2.000 1.923 2.026 

7 0.696 0.68 2.3 0.696 0.619 0.722 

8 1.684 1.64 2.6 1.684 1.581 1.684 

9 1.681 1.74 −3.5 1.681 1.681 1.784 

Table 6. Heat affected zone, γ (mm) from the additive law. 

Test S. No. Simulation Eq 6 (npv = 3) RE (%) Eq 5 (npv = 4) Range of estimates 

From To 

1 1.545 1.525 1.3 1.545 1.497 1.545 

2 1.489 1.518 −1.9 1.489 1.489 1.537 

3 1.491 1.482 0.6 1.491 1.453 1.501 

4 1.227 1.218 0.7 1.227 1.189 1.237 

5 1.257 1.237 1.6 1.257 1.209 1.257 

6 1.454 1.483 −2.0 1.454 1.454 1.502 

7 1.058 1.087 −2.7 1.058 1.058 1.106 

8 1.397 1.388 0.6 1.397 1.359 1.407 

9 1.344 1.324 1.5 1.344 1.296 1.344 

Table 7. Maximum temperature, δ (K) from the additive law. 

Test S. No. Simulation Eq 6 (npv = 3) RE (%) Eq 5 (npv = 4) Range of estimates 

From To 

1 2887 2961 −2.6 2887 2887 3055 

2 2889 2795 3.2 2889 2720 2889 

3 2591 2610 −0.7 2591 2535 2704 

4 2443 2462 −0.8 2443 2387 2556 

5 2415 2490 −3.1 2415 2415 2583 

6 3617 3523 2.6 3617 3448 3617 

7 2197 2103 4.3 2197 2028 2197 

8 3330 3349 −0.6 3330 3274 3443 

9 2895 2970 −2.6 2895 2895 3063 
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Following the concept of additive law, empirical relations for the PIs (α, β, γ and δ) are 
developed (from the results of ANOVA Table 3) in the form Eqs 7–10. 

𝛼 ൌ 2.401 െ 0.229𝜉ଵ ൅ 0.116𝜉ଵ
ଶ ൅ 0.778𝜉ଶ ൅ 0.01𝜉ଶ

ଶ െ 0.133𝜉ଷ ൅ 0.018𝜉ଷ
ଶ    (7) 

𝛽 ൌ 1.543 െ 0.256𝜉ଵ ൅ 0.184𝜉ଵ
ଶ ൅ 0.383𝜉ଶ െ 0.113𝜉ଶ

ଶ െ 0.233𝜉ଷ െ 0.063𝜉ଷ
ଶ   (8) 

𝛾 ൌ 1.322 െ 0.121𝜉ଵ ൅ 0.075𝜉ଵ
ଶ ൅ 0.077𝜉ଶ െ 0.028𝜉ଶ

ଶ െ 0.098𝜉ଷ ൅ 0.014𝜉ଷ
ଶ   (9) 

𝛿 ൌ 2831 ൅ 9.17𝜉ଵ െ 26.83𝜉ଵ
ଶ ൅ 262.67𝜉ଶ െ 106.33𝜉ଶ

ଶ െ 438.5𝜉ଷ ൅ 97.17𝜉ଷ
ଶ   (10) 

Here ζ1 = 0.5A − 5; ζ2 = 0.02B − 4; and ζ3 = 2C – 2. The range of estimates for PIs (α, β, γ and δ) 
from empirical relations Eqs 7–10 is obtained by superimposing the respective minimum and 
maximum deviations. Figures 3–6 show the estimates of α, β, γ and δ for all possible 27 combinations 
((((AiBjCk), k = 1, 2, 3), j = 1, 2, 3), i = 1, 2, 3) of LBW parameters. Numerical simulations in Table 2 
for the test runs in these Figures 3–6 are within the expected range (that is within lower and upper 
bounds). 

 

Figure 3. Width of fusion zone from the empirical relation Eq 7. 



707 

AIMS Materials Science  Volume 8, Issue 5, 698–715. 

 

Figure 4. Depth of penetration from the empirical relation Eq 8. 

 

Figure 5. Heat affected zone from the empirical relation Eq 9. 
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Figure 6. Maximum temperature from empirical relation Eq 10. 

4. Results and discussion 

(A3B1C3) and (A1B3C1) are two different sets of input process variables identified for minimum α 
and maximum β. To select a set of input process variables, a multi-objective optimization    
technique [64,65] is followed here by constructing a single objective function (ζ) in terms of α and β 
(after normalizing with αmax and βmax) and introducing weighing factors ω1 ∈ [0, 1] and ω2 = 1 − ω1. 

The single objective function (ζ) is Eq 11. 

𝜁 ൌ 𝜔ଵ 𝜁ଵ ൅ 𝜔ଶ 𝜁ଶ = 𝜔ଵ ቀ ఈ

ఈౣ౗౮
ቁ ൅ 𝜔ଶ ቀఉౣ౗౮

ఉ
െ 1ቁ     (11) 

Minimization of ζ implies maximization of β and minimization of α for a set of input process 
variables. Table 8 presents the data for ζ generated from Table 8 consider equal weighting (𝜔ଵ= 

𝜔ଶ ൌ ଵ

ଶ
). ANOVA results are also presented in Table 8. The optimal input variables selected for the 

minimum ζ are A1B2C1. These correspond to welding speed = 8 mm/s; power = 200 W and laser 
beam diameter = 0.5 mm. The PIs for these input variables are not in the Taguchi L9 OA of Table 1. 
Hence, numerical simulations are performed by specifying the identified optimal input variables for 
obtaining the weld bead profile. Table 9 gives weld bead profiles for the single and multiple 
objective optimization problems. Numerical simulations are comparable to the range of PIs estimated 
from empirical relations Eqs 7–10. Figures 7–9 show the weld bead profile for max depth of weld, 
minimum bead width and optimum depth and width. 
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Table 8. ANOVA results on the optimization function (ζ) for the simulated PIs in Table 1. 
(αmax = 3.438 mm, βmax = 2.00 mm, ω1 = ω2 = 1/2). 

Test S. No. LBW parameters 
𝜁ଵ ൬ൌ

𝛼
𝛼୫ୟ୶

൰ 𝜁ଶ ൬
𝛽୫ୟ୶

𝛽
െ 1൰ ζ (= 𝜔ଵζଵ + 𝜔ଶζଶ) Eq 11 

A (mm/s) B (W) C (mm) 

1 8 150 0.5 0.600 0.252 0.426 

2 8 200 1.0 0.813 0 0.407 

3 8 250 1.5 1.000 0 0.500 

4 10 150 1.0 0.480 0.835 0.658 

5 10 200 1.5 0.645 0.686 0.666 

6 10 250 0.5 0.986 0.000 0.493 

7 12 150 1.5 0.423 1.874 1.148 

8 12 200 0.5 0.715 0.188 0.451 

9 12 250 1.0 0.875 0.190 0.532 

ANOVA results on ζ 

1 − Mean 0.4443 0.7440 0.4567 - - - 

2 − Mean 0.6057 0.5080 0.5323 - - - 

3 − Mean 0.7103 0.5083 0.7713 - - - 

Table 9. Simulation results with estimates for the specific optimal LBW parameters. 

Optimum LBW 

parameters 

Approach Width of fusion 

zone, α (mm) 

Depth of weld, 

β (mm) 

Size of HAZ, γ 

(mm) 

Maximum 

temperature, δ (mm) 

Maximum depth of 

weld: A1B3C1 (ω1 = 

0, ω2 = 1) 

Simulations 4.02 2 1.602 3445 

Additive law 3.686 2.42 1.678 3487 

Expected range 3.618–3.736 2.363–2.466 1.650–1.698 3412–3581 

Minimum width: 

A3B1C3 (ω1 = 1, ω2 = 

0) 

Simulations 1.454 0.696 1.058 2197 

Additive law 1.405 0.680 1.087 2103 

Expected range 1.337–1.454 0.619–0.722 1.058–1.106 2028–2197 

Optimum depth and 

width: A1B2C1 (ω1 = 

ω2 = 0.5) 

Simulations 3.048 2 1.576 3194 

Additive law 2.898 2.15 1.630 3330 

Expected range 2.830–2.948 2.093–2.196 1.601–1.649 3256–3424 

 

Figure 7. Wed bead profile for maximum depth of weld (ω1 = 0, ω2 = 1). 
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Figure 8. Wed bead profile for minimum bead width (ω1 = 1, ω2 = 0). 

 

Figure 9. Wed bead profile for optimum depth and width (ω1 = ω2 = 0.5). 

5. Conclusions 

Numerical simulations are performed on the laser beam welding (LBW) of 2 mm thick 
Ti–6Al–4V alloy sheets. Taguchi’s design of experiments is followed to conduct few simulations. 
Following the concept of additive law in Taguchi’s approach, the performance indicators (PIs), 
namely, width of fusion zone (α) and depth of penetration (β) are estimated and validated with 
simulation results for the input process variables in each test run of the Taguchi’s L9 OA (orthogonal 
array). 
 Empirical relations are developed for PIs. 
 Modified Taguchi approach provides the range of estimates for PIs. 
 Optimal LBW process parameters are identified through a multi-objective optimization. 
 Numerical simulations for the optimal LBW parameters are within the range of estimates. 
 Incorporation of Taguchi approach in numerical simulations minimizes the trial and error-based 

test runs thereby reduction in computational time in selecting the optimal LBW parameters. 
Future work is directed towards experimentation for investigating the microstructures and 

formation of defects in welding of Ti–6Al–4V with different welding processes (viz., electron beam 
welding, laser beam welding, plasma arc welding and TIG welding), and their influence on the 
properties. 
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