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Abstract: Finite element model updating (FEMU) is a technique to improve the analytical finite 
element (FE) model of any structure from its experimental modal test data. The main purpose to 
apply FEMU on structures is to remove the uncertainties or errors present in the analytical FE model. 
The main objective of this paper is to present a review on the various FEMU techniques which can 
be applied to remove the uncertainties present in the FE model of the actual engineering structures. 
Applications of various FEMU techniques on the metallic and the composite structures have been 
discussed in this review paper. FEMU is applied on the metallic and the composite structures to 
remove the error present in their FE models. The main objective of the FEMU is to accurately predict 
the modal analysis characteristics such as the spatial-model, modal-model and the response model of 
the structures. The uncertainties present in the analytical or simulated FE model of any structure may 
be due to its material properties, dimensions and most probably due to the uncertainties present in the 
boundary conditions of the structure. However, to provide a sufficient strength to this review paper, 
the different updating methods are applied on the three degree of freedom spring mass system, on a 
1-D aluminum beam, 2-D aluminum panel and on a graphite-epoxy composite material laminate. It is 
found that the updating algorithms are fast and reliable enough to remove error present in the 
numerical or simulated FE model of the structures and deliver the accurate estimation of the 
spatial-model, modal-model and response model of the different material structures. 

Keywords: finite element model updating; direct updating method; composite structures; 
uncertainties; modal analysis; spatial-model 
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1. Introduction 

The finite element (FE) method has a very wide variety of applications in engineering practice 
such as structural analysis and structural damage detection. It is not necessary that the numerical 
model of any engineering structure will represent all the actual physical and geometrical aspects of 
the actually built structure. Due to which, a significant difference may exist between the results 
obtained by the constructed FE model and the results obtained from the modal testing on the actual 
structure. In order to improve the correlation between the numerical predictions and measured data, 
there is a need to update or correct the developed FE model so that these discrepancies/uncertainties 
may be reduced. This can be achieved by using the various methods available for the finite element 
model updating. The existing model updating methods using vibration measurements generally can 
be classified into two categories, first is response-based methods and second is modal based methods 
[1]. In response-based methods, for the updating of the finite element numerical models, the 
measured frequency response function (FRF) data are directly employed. By minimizing the error 
between FE numerical and experimental input forces or output responses, structural parameters such 
as stiffness and mass can be easily obtained. The response-based methods provide more accurate 
results in low frequency range but these methods are not suitable for higher frequency range. 

Second category of FE model updating methods includes modal-based methods. In modal-based 
methods modal data, such as natural frequencies and mode shapes are utilized in the structural 
parameter updating process. To update the structural parameters of the FE model often by modal 
based methods, an optimization process will be required. For this analysis the Eigen solutions and 
associated sensitivity matrices of the FE model will be used. Performance of the modal based 
methods affected by the selections of an objective function and constraints, structural updating 
parameters and optimization techniques. These methods require significant computational efforts in 
the model updating process. However, in this regard, the main objective of this paper is to present a 
review on the application of different methods of finite element model updating on various metallic 
and composite structures. Figure 1 represents the methodology that can be used to update or correct 
the analytical FE model through updating techniques. First the test is performed on the actual 
structure then its FE model is constructed. Then results will be compared and the errors and source of 
uncertainties will be identified. In next step updating of FE model is done and we continue until our 
results don’t match with the experimental results.  
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Figure 1. Methodology for the finite element model updating (FEMU) of metallic and 
composite structures. 

2. Literature review on finite element model updating of metallic structures 

In this section, the detailed literature survey regarding finite element model updating of metallic 
structures is carried out first. Chen et al. [2] proposed a direct identification procedure by using the 
test measured eigenvalues and eigenvectors so that mass and stiffness matrices can be obtained. This 
method is quite simple so one can use it in real time operation during the structural testing quite 
easily. Cornwell et al. [3] studied the application of the strain energy damage detection method to 
plate like structures. Stubbs et al. [4] proposed an extension of this method. Authors proposed 
utilization of the mode shapes before and after damage. The original formulation presented can only 
be used for structures characterized by one-dimensional curvature. The method is applied and 
generalized for plate-like structures also. To analyze the limitations of the method, it is applied to 
several sets of simulated data and comparisons are drawn between the original formulation on a 
series of slices of the structure and the true two-dimensional formulation. Modak et al. [5] proposed 
the use of an updated finite element model for dynamic design. Authors applied FE model updating 
on F-shape structure. An updated model is obtained by employing a method of model updating based 
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on constrained optimization proposed recently [6]. The model updating method using constrained 
optimization is based on minimizing an objective function representing a norm-based error between 
the measured and the analytical versions of the natural frequencies and the mode shapes. This 
objective function subjected to constraints is minimized using non-linear optimization. With this 
purpose the structural modifications in the form of mass and beam modifications have been 
considered. Modak et al. [7] carried out the comparative study of model updating methods using 
simulated experimental data. The inverse eigensensitivity method (IEM) and the response function 
method (RFM) are relatively more popular and successful methods for improving analytical model. 
The objective was to study the convergence of these methods and the accuracy with which they 
predict the corrections required in a finite element model. The test cases of complete, incomplete and 
noisy experimental data along with the effect of the amount of experimental data used on the quality 
of an updated model is studied. The updated models are compared using some error indices that are 
developed to quantify error in the predicted natural frequencies, mode shapes and response functions. 

Lee and Kim [8] proposed a method based on identification of damping matrices from measured 
frequency response functions. In this paper, a new theoretical procedure for the damping 
identification is discussed. Hybrid modeling has been used in this analysis. In hybrid modeling for 
the formulation of mass and stiffness matrices finite element method is used but for damping 
matrices experimental method is preferred. A simple three degree-of-freedom lumped parameter 
system has been used for the experiment. The effect of the noise in the measured FRFs is also studied 
using this example. To confirm its effectiveness in real engineering problems this method is then 
applied on a thin beam with clamped boundary condition with two damping configurations. Bais et al. 
[9] proposed a method to study the dynamic design of drilling machine by constructing updated FE 
models and using analytical and experimental results. Consequences of the structural dynamic 
modifications on vibration characteristics of the drilling machine can be predicted by using the 
updated FE models. Two studies have been carried out on the machine wherein the first study 
involved modal tests performed on a drilling machine in which an impact hammer has been used for 
the excitation. Also, method of modal identification has been used. A computer program has been 
developed for the FE modeling of the machine. Then a comparison has been made among the results 
obtained by FEM and the experimental studies by using mode shapes and modal assurance criterion 
(MAC) values. Analytical FE model has been updated by using direct methods of model updating. In 
the second study, modal testing has been performed by using random noise generator and modal 
exciter. Analytical FE modeling has been done using I-DEAS software. FEM software has been used 
for the prediction of correlation of FE results with the experimental ones.  

Steenackers and Guillaume [10] studied FEMU by taking into account the uncertainty on the 
modal parameters estimates. The focus of this paper is on statistically derived response surface 
models. These methods can be used for both linear and nonlinear problems. In the case of response 
surface meta-models, design of experiments methods (often called response surface methods) are 
employed using which one can determine the location of the sampling points. There are several 
versions for design of experiments available in literature [11,12]. After choosing the data points 
carefully, meta-models then can be fitted by using the standard multiple regression methods to get 
polynomial model. This polynomial model will relate the input parameters to output features. These 
models are empirical in nature but the efficient use of these models depend on the expertise of the 
experimenter i.e. how accurately he assigns the model input parameters and choice of appropriate 
output features. In this analysis the influence of the mesh also has been discussed briefly. For the 
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measurement of Frequency response function (FRF), an aluminum test plate has been used. A FE 
model has been developed for the test plate and used as a function of one or more modeling 
parameters. 

Lin and Zhu [13] studied the FEMU using vibration test data under base excitation. Frequency 
response function (FRF) data is used to update analytical models. The proposed method involved the 
developing of mathematical formulations to identify mass and stiffness modeling errors. The method 
presented was applied on a cantilever beam as well as a practical GARTEUR structure. The method 
was observed to have noise-resisting ability when the measured response function data are 
contaminated by certain level measurement noise. Arora et al. [14] studied the FEMU with damping 
identification. For accurate prediction of complex FRFs, it is necessary to employ the damping 
matrices also during the FEMU. Finite element model updating procedure is proposed which also 
include the effect of damping on the structures. The proposed FEMU procedure with damping 
basically consists of two steps. In the first step, mass and stiffness matrices are updated using FRF 
data. Second step involves the use of updated mass and stiffness matrices obtained in last step so that 
we can estimate the updated damping matrix. Study was carried on a fixed-fixed beam and F shape 
test structure. Collins et al. [15] studied the eigen-data sensitivity for analytical model updating in an 
iterative framework. Lin and Ewins [16] proposed a method in which measured FRF data has been 
used to update an analytical model. 

Pradhan and Modak [17] proposed a method for damping matrix identification using frequency 
response data. Authors proposed a method which allows us to separate updating of the damping 
matrix from that of updating of the stiffness and the mass matrix. The concept of normal frequency 
response functions (FRFs) has been used during this updating method. The method is formulated in 
such a way so that the difference between the complex FRFs can be reduced. Then from the 
measurement of complex FRFs we can estimate the normal FRFs. The proposed method is applied 
on a beam structure. Effect of noise is also investigated during this analysis. Yuan [18] proposed 
proximal-point method for finite element model updating problem. The problem of finding the 
optimal approximation to analytical stiffness matrix modeled by the finite element method is 
considered in this paper. Desired matrix properties, symmetry, positive semi definiteness and 
physical connectivity are the constraints which have been used in this minimization problem. Partial 
Lagrangian multipliers technique is used to convert the optimization problem into a matrix linear 
variation inequality. The results of numerical examples show that this method can also be used for 
incomplete measured data. The analysis has been carried on a spring mass system and then on two 
sides fixed plate.  

Seifi and Abbasi [19] proposed a method for Friction coefficient estimation in shaft/bush 
interference using FEMU. The model updating method is applied on the interference joint of a shaft 
and bush. Model updating is used to estimate and update the friction coefficient in the contact surface 
of interference shaft and bush joints. Dongying et al. [20] studied the safety evaluation of marine 
derrick steel structures based on dynamic measurement and updated finite element model. This 
method can be used for forecasting the safety loading capacity of marine derrick steel structures. 
Modal parameters identified from vibration measurement and updated FE model with optimization 
are two important bases of this method. For judgment criterion the safety assessment theory has been 
used. In first step the analysis of the design feature and the shock excitation mode of marine derrick 
steel structures have been carried out so that the formulas can be obtained for identifying modal 
parameters. In second step the dynamic model for the updating finite element model theory is 
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established with optimization. The frequency and modal shape are the two important indicators used 
in this step. In third step, safety judgment criterion is obtained which depends on the specifications. 
In last step, safety evaluation of the marine derrick steel structures has been carried out.  

Fu et al. [21] studied damage identification in plate using FEMU in time domain. For 
identifying the local damages in isotropic plate structures, response sensitivity based approach is 
used by measuring the structural dynamic responses. The local damage has been simulated by 
reduction in the Young’s modulus of the plate. For the identification of the damage, a penalty 
function method with Tikhonov regularization has been used. For the detection of damages, a 
mathematical model of the structure along with the experimental modal parameters of the structure 
has to be used. Changes in the natural frequencies [22–25], mode shapes and their       
derivatives [26–29], measured dynamic flexibility [30–32] or frequency response function [33–36], 
these three are the basis for the identification approach. It is easy to measure the natural frequency 
with great precision, and it is also the most common used dynamic parameter for damage detection. 
But to avoid the problem of non-uniqueness in the solution of damage identification due to the 
structural symmetry, mode shapes are used. Li et al. [37] presented a strain mode technique for 
damage identification in plate-like structures. Yam et al. [38] conducted a sensitivity analysis on 
static and dynamic response parameters used for damage identification in plate-like structures. Wu 
and Law [39] showed damage identification in plate structures based on changes in uniform load 
surface. For the formation of the FE model of plate structures, Reissner-Mindlin plate element is 
used. The effect of transverse shear deformation is also considered during this analysis. During this 
analysis the effects of simulated measurement noise, measurement point and measurement time 
duration on the results have also been observed. This indicates that the proposed method could be 
applied for the practical applications. 

Chen and Maung [40] proposed a method based on Regularized FEMU using measured 
incomplete modal data. This method can directly adopt measured incomplete modal data. Hence, the 
proposed methods do not require the sensitivity analysis and development of an objective function. 
The structural parameters which we want to update are properly chosen so that they can characterize 
the modifications of structural parameters i.e. differences in stiffness and mass matrices between the 
finite element model and tested structure, at element or critical point level. To determine the chosen 
structural updating parameters in the least squares sense, without the use of any optimization 
technique, iterative solution method along with simplified direct method has been used. Min et al. [41] 
used Sensitivity-based FEMU with natural frequencies and zero frequencies for damped beam 
structures. Adhikari and Woodhouse [42] studied a viscous damping system for which they analyzed 
that only the complex natural frequencies and complex mode shapes were needed to obtain a 
damping matrix. An identification method was suggested which was based on the constrained error 
minimization approach. Ozgen and Kim [43] proposed the theory of direct experimental 
identification of damping matrix by using the dynamic stiffness matrix method and also introduced 
the concept of hybrid modeling. The proposed method has been applied on a real cantilever beam 
attached damping material on one side. Modak [44] proposed a method which was based on model 
updating using uncorrelated modes. There may be various situations in which not all of the modes 
identified through an experiment can be correlated with certainty with those predicted by the FE 
model and some experimental modes may be left uncorrelated. Author proposes a new method of FE 
model updating which includes both correlated as well as uncorrelated modes for updating. To check 
the effectiveness of this method, it is applied on a beam structure and a more complex F shape 
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structure. The robustness of the method in the presence of simulated noise is also studied.  
Sehgal and Kumar [45] presented a review of structural dynamic model updating techniques. To 

remove the uncertainties, present in the analytical FE model, FEMU techniques have been used. 
These techniques may be classified as direct updating techniques and Iterative updating techniques. 
Direct updating techniques provides the solution in single step by updating the incorrect FE model. 
There is no problem of divergence and it reproduces the measured data accurately. In iterative 
techniques the difference between the experimental results and FE results are reduced in all iterations. 
These techniques are also called as gradient based techniques. Iterative techniques provide 
symmetric and positive definite updated system matrices, which can be easily understood on a 
physical basis but this is not possible in case of direct updating techniques. The basic experimental 
setup for the modal testing is shown in Figure 2.  

 

Figure 2. Experimental setup for finite element model updating. 

This input force is applied by using a shaker, or an impulse hammer. Excitation may be random, 
sinusoidal or impulse depending upon the applications. Output of the experimental set-up is based 
upon their characteristics such as mass, sensitivity, frequency range, operating temperature range and 
temperature sensitivity, and power supply. Signal from accelerometer is then conditioned using a 
signal conditioner. Most commonly used accelerometer is piezoelectric accelerometer. Conditioned 
signal is then sent to Fast Fourier Transform analyzers. FFT will convert the time domain signal to 
frequency domain so that we can extract more information easily. Park et al. [46] studied FEMU 
considering boundary conditions using neural networks. Author proposed a technique based on the 
concept of neural networks which is used to evaluate the bridge boundary condition. Consideration 
of the behaviors of boundary conditions allows us to predict more accurate finite element model. In 
the proposed method for the representation of the aging and constraining effect of the boundary 
conditions, an artificial rotational spring at each support is used. The proposed method was verified 
through laboratory and field tests that were performed on a steel girder bridge. This analysis allows 
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us to estimate the bridge boundary conditions directly from the actual behaviors of bridge supports. 
Kang et al. [47] studied the model updating for rotor-discs system and its application in dynamic 
coefficients identification of journal bearings. Particle swarm optimization (PSO) algorithm is used 
to update the system mass and stiffness matrices. For the selection of appropriate variables to be 
optimized, sensitivity analysis is carried out. The FE model of a dual rotor-discs system was updated 
to check the validity of the method. An experiment was conducted on the flexible rotor test rig for 
the validation of updated model and to identify the dynamic coefficients. The results obtained shows 
that the updated model has higher accuracy than the original model, especially for the system under 
critical speed.  

3. Finite element model updating of a three degree of freedom spring-mass system 

Finite element model updating of the three degree of freedom spring-mass system, 1-D beam, 
2-D plate and a composite laminate is carried out. A method known as a direct updating method 
(DUM) has been developed to update the mass and the stiffness matrices of the structures by using 
the measured Eigen values and the eigenvectors of the structures [48]. The direct updating method is 
used to remove the error present in the simulated FE model. There are two approaches of direct 
updating of mass and stiffness matrices of any structure. One is to modify the mass matrix and then 
modify the stiffness matrix based on the modified mass matrix. This method satisfies the 
orthogonality constraints. Eq 1 gives the updated mass matrix: 

            
1 T

u a a e a a e aM M M M I M M


                             (1) 

Where, [Mu] is an updated mass matrix, [Ma] is an analytical mass matrix, [𝜙e] is an experimental 

mode shape matrix and [I] is an identity matrix. Also:     T

a e a eM M      .
 

An updated stiffness matrix is presented in Eq 2 as below: 

                                T T T T T

u a a e e u u e e a u e e a e e u u e e e uK K K M M K M K M M M                   
(2) 

where [Ku] is an updated stiffness matrix, [Ka] is an analytical mass matrix, [𝜙e] is an experimental 
mode shape matrix, [Mu] is an updated mass matrix and ሾ𝜆e] represents experimental eigen values, 
Second approach is to modify the stiffness matrix and then modify the mass matrix based on the 
modified stiffness matrix and is given as below. 

Eq 3 presents an updated stiffness matrix: 

 
(3)

 

where [Ku] is an updated stiffness matrix, [Ka] is an analytical stiffness matrix, [𝜙 e] is an 
experimental mode shape matrix and ሾ𝜆e] represents experimental eigen values. 
An updated mass matrix will be given according to Eq 4 as below: 

             
1 1 T
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 

               

    T

a e a eK K     
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(4)

 

where [Mu] is an updated mass matrix, [Ma] is an analytical mass matrix, [𝜙e] is an experimental 
mode shape matrix, ሾ𝜆e] represents experimental eigen values and [Ku] is an updated stiffness matrix. 

The simplest problem of a three degree of freedom spring-mass system is carried out first to 
remove the uncertainties present in the elastic properties of the spring stiffness’s. Figure 3 shows the 
three degree of freedom spring-mass system.  

 

Figure 3. Three degree of freedom spring-mass system. 

For simulated model:  
M1 = 5 Kg, M2 = 5 Kg, M3 = 5 Kg, K1 = 1500 N/m, K2 = 3000 N/m and K3 = 3000 N/m. 
For simulated-experimental model:  
M1 = 5 Kg, M2 = 5 Kg, M3 = 5 Kg, K1 = 3000 N/m, K2 = 3000 N/m and K3 = 3000 N/m. 

It is assumed that the error is present in the simulated model, a spring that is connected to the 
boundary. The percentage of the error is 50. Table 1 represents the comparison of the natural 
frequencies between simulated and simulated-experimental model. It is observed that there is an 
error between the natural frequencies predicted from the simulated model. The maximum error is 
20.0% due to the variation in the spring stiffness. So, there is a need to correct or update the 
simulated model. Now, the algorithm of direct updating method is used to remove the error between 
both the models. Table 2 presents the natural frequencies of updated simulated model and 
simulated-experimental model. It is observed that after applying the direct updating method on this 
three degree of freedom spring-mass system, the error becomes zero. 

Table 1. Comparison of natural frequencies between simulated and simulated-experimental model. 

S. No. Natural frequencies (Hz) Error 

fx – fa 

Error (%) 

(fx – fa) × 100/fx Simulated model fa Simulated-experimental model fx 

1 1.3878 1.7350 0.3472 20.0011 

2 4.3978 4.8613 0.4635 9.5344 

3 6.8648 7.0248 0.1600 2.2776 

 

                       1 T 1 T 1

u a a e e e u u e e e a u e eM M M K K M K
             

              1 T T 1 T

e e u e a e e eK M
       
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Table 2. Comparison of natural frequencies between updated simulated and 
simulated-experimental model. 

S. No. Natural frequencies (Hz) Error 

fx – fu 

Error (%) 

(fx – fu) × 100/fxSimulated updated FE model  

fu 

Simulated-experimental FE model  

fx 

1 1.7350 1.7350 0.0000 0.0000 

2 4.8613 4.8613 0.0000 0.0000 

3 7.0248 7.0248 0.0000 0.0000 

Figure 4 shows the frequency response function (FRF) curve among the simulated model, 
simulated-experimental model and updated simulated model. It is a point frequency response 
function curve. It is clearly visible from the figure that there is a considerable difference between the 
natural frequencies predicted by the simulated model and the simulated-experimental model. 
However, after doing the updating using the direct updating method, the updated simulated FRF 
curve overlaps the simulated-experimental model response. It is also observed that the 
updated-simulated FRF completely follows the simulated-experimental model FRF at resonance as 
well as at anti-resonant frequencies. Figure 5 shows the modal assurance criterion (MAC) values. It 
represents the correlation between the mode shapes predicted from the updated-simulated and 
simulated-experimental model. The maximum value of the MAC is 1.0. It means that there is a good 
correlation between the eigenvectors of the updated simulated and simulated-experimental model. It 
is concluded from the above results that the direct updating method can be used successfully on 
multi-degree of freedom system. It not only removes the error but also improves the simulated 
model. 

 

Figure 4. Overlay of different frequency response function (FRF) curves. 
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Figure 5. Modal assurance criterion (MAC) values. 

4. Finite element model updating of metallic structures 

In this section, the finite element model updating of the aluminum material beam (1-D) and 
plate (2-D) is carried out. The direct updating method (DUM) has been compared with the response 
function method (RFM) in the past to accurate the FE model of the F-shape structure [49]. It was 
found that the RFM updating method is more accurate as compared to the DUM. The regularized 
algorithms have been used effectively to improve the effectiveness of the direct updating method. 
Authors found that the proposed method gave the accurate prediction of the relationship between the 
perturbation of structural parameters such as the stiffness and the modal properties of the actual 
tested dynamic structure. The direct updating method is used to improve the FE model of a steel 
plate backed by a 3-D acoustic cavity. It was found that the application of the direct updating method 
accurately updates the FE model of the vibro-acoustic cavity in the frequency range of interest.  

4.1. One dimensional beam 

In this section, the finite element model updating of an isotropic cantilever beam is carried out 
by using direct updating method. Figure 6 represents the cantilever beam that is taken in this 
numerical study. The length (L), width (W) and the thickness (t) of the beam is 0.5 m × 0.02 m × 
0.005 m respectively.  
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Figure 6. One-dimensional aluminum cantilever beam. 

A 1-D beam element is used to make the finite element model of the beam. The elemental mass 
and stiffness matrices are written as below [50]. Eq 5 presents the elemental mass matrix of the 
beam: 

 (5)

where [Me] is an elemental mass matrix of beam, eL is length of beam element, eA  is 

cross-sectional area of beam and  is density of beam material. The elemental stiffness matrix of the 

beam is decribed as given in Eq 6 below:  

 (6)

where [Ke] is elemental stiffness matrix of beam, E is Young’s modulus of elasticity, I is moment of 

inertia and eL is length of beam element. 

For simulated FE model, the material of the beam is aluminum, the young’s modulus of 
elasticity is 65 GPa, the density of the beam is 2700 kg/m3, the beam is divided into 10 finite number 
of elements. For simulated-experimental FE model, the material of the beam is aluminum, the 
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young’s modulus of elasticity is 71 GPa, the density of the beam is 2700 kg/m3, the beam is divided 
into 10 finite number of elements. It is assumed that the error is present in the simulated FE model. 
The size (dimensions), the mass (weight, density) of the aluminum beam can be measured accurately. 
So, the chances of uncertainty in the dimensions as well as in the density of the beam are less. 
However, it is very difficult to measure the exact value of the young’s modulus of elasticity of the 
beam. In this regard, the uncertainty is assumed in the elastic properties of the beam that are used to 
develop the simulated FE model. The elastic properties used in the simulated-experimental FE model 
are assumed to be correct and represents the actual elastic values. The global mass and global 
stiffness matrices are developed by assembling the elemental matrices.  

Table 3 presents the comparison between the natural frequencies predicted from the simulated 
and simulated-experimental FE model. It is observed that due to uncertainty present in the simulated 
FE model there is an error between the natural frequencies. The predicted natural frequencies from 
the simulated model are not matching with the simulated-experimental FE model. The maximum 
percentage error is 5.88. So, there is a need to correct the simulated FE model.  

Table 3. Comparison of natural frequencies between simulated and 
simulated-experimental FE model.  

S. No. Natural frequencies (Hz) Error (Hz) 

fx − fa 

Error (%) 

(fx − fa) × 100/fx Simulated FE model 

fa 

Simulated experimental FE model 

fx 

1 16 17 1 5.88 

2 99 104 5 4.80 

3 278 291 13 4.46 

4 546 570 24 4.21 

5 903 944 41 4.34 

Now, the direct updating method is used to correct or update the simulated FE model. The 
global mass and global stiffness matrices of the cantilever beam are updated and then eigenvalue 
problem is solved to predict the natural frequencies of the beam. Table 4 shows the comparison of 
the natural frequencies predicted from the updated simulated FE model and simulated-experimental 
model. It is clearly visible that after using the direct updating method the error between the natural 
frequencies is zero. It means that the updated simulated FE model exactly represents the 
simulated-experimental FE model. In this regard, the updated simulated model can be used to predict 
the dynamics of the real structure. 
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Table 4. Comparison of the natural frequencies between updated simulated and 
simulated-experimental FE model. 

S. No. Natural frequencies (Hz) Error (Hz) 

fx − fu 

Error (%) 

(fx − fu) × 

100/fx 
Updated simulated FE model  

fu 

Simulated experimental FE model 

fx 

1 17 17 0 0.00 

2 104 104 0 0.00 

3 291 291 0 0.00 

4 570 570 0 0.00 

5 944 944 0 0.00 

Figures 7 and 8 present the overlay of the point and transfer frequency response function (FRFs)  
curves. In the case of point FRF (∝ଵଵ), the excitation is applied at node number 1 (x = 0.05 m) and 
the response is predicted at the same node (x = 0.05 m) from the fixed end of the beam. However, in 
the case of transfer FRF (∝ଵହ), the excitation is applied at node number 5 (x = 0.2 m), but response is 
recored at node number 1 (x = 0.05 m).  

 

Figure 7. Overlay of frequency response function curves of all responses (point FRF). 
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Figure 8. Overlay of frequency response function curves of all responses (cross/transfer FRF). 

It is clearly visible that there is a significant gap between the simulated response and 
simulated-experimental response. This is due to the error present in the young’s modulus of elasticity 
of the beam in the simulated FE model. But, after applying the direct updating algorithm on the 
simulated FE model, the response of the updated simulated FE model overlaps with the 
simulated-experimental model. The overlap between them is at resonance, anti-resonance as well as 
at minima of the FRF curve. It is concluded from the above results that the direct updating method 
can be used to correct the uncertain simulated FE model of the metallic beam. 

4.2. Two-dimensional isotropic plate 

In this section, the finite element model updating of an isotropic rectangular aluminum plate is 
carried out (Figure 9). A four nodded rectangular bending element with straight edges is used to 
make the finite element model of the plate. The elemental mass matrix of the plate is given according 
to Eq 7, however Eq 8 presents the elemental stiffness maytrix of the plate as below [51]:   

 
(7)

 
(8)

where [Me] is an elemental mass matrix of plate,  is density of plate material, h is thickness of the 

plate, 𝑎 is Length of the plate, 𝑏 is width of the plate,  &  are dimensionless coordinates, [Ke] 

is an elemental stiffness matrix of plate, Iz is moment of inertia of the plate and [D] is a material 
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property matrix. 
For simulated FE model, the material of the plate is aluminum, the young’s modulus of the 

elasticity is 65 GPa, the density of the plate is 2700 kg/m3, the size of the plate is 0.414 m × 0.314 m 
× 0.001 m respectively, the plate is fixed at all the edges and divided into 16 × 16 finite number of 
elements, and the Poisson’s ratio is 0.35. For simulated-experimental FE model, the material of   
the plate is aluminum, the young’s modulus of the elasticity is 71 GPa, the density of the plate is 
2700 kg/m3, the size of the plate is 0.414 m × 0.314 m × 0.001 m respectively, the plate is 
clamped-clamped and divided into 16 × 16 finite number of elements, and the Poisson’s ratio is 0.35. 

 

Figure 9. Two-dimensional aluminum plate. 

It is assumed that the error is present in the simulated FE model of the plate. The size 
(dimensions), the mass (weight, density) of the aluminum plate can be measured accurately. The 
uncertainty is assumed in the elastic properties of the plate that are used to develop the simulated FE 
model. The elastic properties used in the simulated-experimental FE model are assumed to be correct 
and represents the actual elastic values. The natural frequencies predicted by simulated-experimental 
FE model by solving eigenvalue problem using MATLAB software exactly matches with the natural 
frequencies as reported in the past [51]. Table 5 represents the comparison between the natural 
frequencies predicted from the simulated and simulated-experimental FE model of the 
clamped-clamped plate. It is observed that due to uncertainty present in the simulated FE model there 
is an error between the predicted natural frequencies. The predicted natural frequencies from the 
simulated model do not exactly match with the simulated-experimental FE model. The maximum 
percentage error is 4.83. So, there is a need to correct the simulated FE model.  
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Table 5. Comparison of the natural frequencies between simulated and 
simulated-experimental FE model. 

S. No. Natural frequencies (Hz) Error (Hz) 

fx − fa 

Error (%) 

(fx − fa) × 100/fx Simulated FE model 

fa 

Simulated experimental FE model [50] 

fx 

1 70 73 3 4.10 
2 118 124 6 4.83 
3 164 172 8 4.65 
4 198 207 9 4.34 
5 208 217 9 4.14 
6 281 294 13 4.42 
7 307 321 14 4.36 
8 308 322 14 4.34 
9 348 363 15 4.13 

Now, the direct updating method is used to correct or update the simulated FE model of the 
aluminum plate. The global mass and global stiffness matrices of the plate are updated and then 
eigenvalue problem (EVP) is solved to predict the natural frequencies of the clamped-clamped plate. 
Table 6 shows the comparison of the natural frequencies predicted from the updated-simulated FE 
model and simulated-experimental model. It is clearly visible that after using the direct updating 
method the error between the natural frequencies is zero. It means that the updated-simulated FE 
model exactly represents the simulated-experimental FE model. In this regard, the updated simulated 
model can be used to predict the dynamics of the real plate like structures. 

Table 6. Comparison of the natural frequencies between updated simulated and 
simulated-experimental FE model. 

S. 

No. 

Natural frequencies (Hz) Error (Hz) 

fx − fu 

Error (%) 

(fx − fu) × 100/fxUpdated simulated FE mode  

fu 

Simulated experimental FE model 

fx 

1 73 73 0 0.00 

2 124 124 0 0.00 

3 172 172 0 0.00 

4 207 207 0 0.00 

5 217 217 0 0.00 

6 294 294 0 0.00 

7 321 321 0 0.00 

8 322 322 0 0.00 

9 363 363 0 0.00 

Figure 10 presents the overlay of the point frequency response function (FRF) curve. In the case 
of point FRF, the excitation is applied at node number 73 (x = 0.103 m, y = 0.0785 m) and the 
response is predicted at the same node from the origin of the plate (x = 0.00 m, y = 0.00 m). It is 
clearly visible that there is a significant gap between the simulated response and 
simulated-experimental response. This is due to the error present in the young’s modulus of elasticity 
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of the plate in the simulated FE model. But, after applying the direct updating algorithm on the 
simulated FE model, the response of the updated-simulated FE model overlaps with the 
simulated-experimental model at resonant and anti-resonant frequencies.  

 

Figure 10. Overlay of frequency response function curves of all responses (point FRF).  

5. Finite element model updating of composite structures 

Composite materials are mainly used in aerospace, automotive, construction, mining and marine 
industry etc. In this regard, the experimental modal analysis of the composite materials at different 
loadings is required to measure its spatial-model (mass and stiffness matrices), modal-model (natural 
frequencies, mode shapes and damping coefficients), and response model (time and frequency 
response functions). To overcome the complexity of the experimental modal testing of the complex 
structures, mostly, the numerical or simulated models are developed to predict the mechanical or 
vibrational behavior of the materials. FE modeling is an important numerical tool that is mostly used 
for this purpose [52–58]. During the process to develop the FE model of the composite structures the 
various parameters are assumed. The parameters may be the in-plane material properties, fiber 
orientation, dimensions and the boundary conditions of the composite structure. Due to these 
uncertain parameters or assumptions in the simulated FE model, the developed model is unable to 
predict the exact or real behavior of the composite structure at different loadings or excitations. So, 
there is a need to correct or update the simulated FE model of the composite structures. In this regard, 
the FEMU is an important numerical tool that can be used to identify and estimate the uncertain 
parameters of the simulated finite element model by taking the advantage of the experimental testing 
outputs such as Eigen values and Eigen-vectors of the real structure [59]. Then, the updated 
simulated FE model can be used to predict the response or behavior of the real structures. The 
application of the finite element model updating on the composite structures has been presented in 
past [60]. FEMU technique such as inverse Eigen-sensitivity method (IESM) can be used to predict 
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the stiffness properties of the composite materials. The important parameters such as generalized 
mass errors, optimal location of the transducers and approximate reanalysis of Eigen-solutions are 
addressed while doing model updating of the composite structures. 

A multi-model updating technique is used to predict the stiffness properties of the individual 
layers of the layered composite materials [61]. The main purpose to use the multi-model updating 
technique is to update the developed FE model from the experimental testing so that the in-plane 
elastic properties of the individual layers of the laminated plate can be predicted analytically. The 
three important steps on which the success of the implementation of the FEMU for the structures 
depends has been investigated in past [62]. Those are a correct objective function, the correct 
selection of the updating parameters and the selection of the robust optimization algorithm. They 
proposed to use a multi-objective optimization technique in the FEMU procedure. Regularized 
model updating technique has been developed to accurately identify the mechanical properties of the 
various constituents of the composite materials [63]. It was found that the developed Regularized 
model updating (RMU) technique can handle the random noise present in the measurements very 
well as compared to the conventional FEMU technique. Inverse Eigen-sensitivity algorithm (IEM) is 
used to update the developed FE model of the composite plate so that at the constituent level the 
fiber and matrix elastic properties can be identified accurately [64]. A new gradient based step size 
controlled inverse Eigen-sensitivity method is developed to estimate the material properties and 
boundary conditions of isotropic and orthotropic composite plates [65]. They found that the proposed 
method is capable to converge the iterations fast as compared to no-step size controlled IEM.  

A FEMU based inverse identification technique is developed to accurately estimate the 
constituent level mechanical properties of fiber reinforced plastic composite panels [66]. The error 
present in the boundary conditions of the FRP composite panel is removed by using the developed 
technique. The weighted sensitivity-based FEMU technique has been proposed to accurately identify 
the degree of composite behavior of operational bridge decks with uncertain installation of shear 
connectors [67]. The proposed model is limited only to predict the stiffness of the bridge deck. 
Kriging metamodel is introduced in the optimization process of the frequency response function 
(FRF) based model updating technique to attenuate the solving time as well as to facilitate the 
application of intelligent algorithms in the FEMU of the honeycomb composite sandwich beam [68]. 
A new approach named double connective layer has been developed in combination with FEMU for 
bolted joints interfaces in hybrid aluminum/composite structures to predict its dynamic properties [69]. 
A sensitivity based inverse Eigen-sensitivity method (IEM) was used on “I” shape fiber reinforced 
plastic (FRP) composite material to estimate the in-plane material elastic properties [70]. The 
experimental modal analysis (EMA) was carried out on a free-free and simply supported FRP beam. 
Then the experimentally measured eigenvalues are used to update the finite element model that can 
be used to accurately estimate the most uncertain mechanical properties of FRP beam. They 
concluded that the updated finite element model of the ‘I’ shapes FRP composite can be used for 
health monitoring application as well as it can successfully stand along with the actual dynamic 
loading conditions.  

A brief review about the FEMU techniques has been presented that can be used for the 
composite materials [71]. The main objective of the authors to present this review is to represent the 
importance of different uncertainties present in the simulated finite element model of the composite 
structures. However, the important issues such as parameterization and regularization are also 
highlighted. IESM has been used in past to reduce the error in between the experimental modal 
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analysis (EMA) and finite element analysis (FEA) results of a composite plate [72]. They suggested 
that the error in between the EMA and FEA of the composite structures are mainly due to the various 
discrepancies present such as different material properties, thickness of the lamina and laminates, 
fiber orientations and boundary conditions etc. However, the authors have successfully reduced the 
error in between the natural frequencies of composite plate measured from EMA and FEA models by 
selecting the optimum parameters in the IESM optimization algorithm. 

It is observed from the above literature review that mostly the sensitivity based such as inverse 
Eigen-sensitivity method (IEM) is used to remove the uncertainties present in the simulated finite 
element model of the composite structures. The main principle of the IEM is to minimize the 
objective function and iteratively predict the uncertain parameters of the composite structures. 
However, there are few drawbacks of the IEM. The initial estimate of the uncertain parameters and 
the time taken to solve the iterations in the IEM algorithm is quite cumbersome. In this regard, there 
is a strong need of a simple and faster algorithm that can be successfully implemented on the 
composite structures to improve its simulated finite element model. Direct updating method (DUM) 
is a quick method and that can be used to remove the uncertainties present in the simulated finite 
element model. Also, this method is very helpful to predict the spatial-model, modal-model and 
response model of the composite structures at different excitations. 

5.1. Finite element model updating of a graphite- epoxy composite material laminate 

In this section, the FEMU of a graphite-epoxy composite material laminate is carried out.  
Figure 11 shows the four layer cantilever square laminated plate. A four nodded rectangular bending 
element with straight edges is used to make the finite element model of the composite laminate. The 
elemental mass matrix is presented in Eq 9 and the elemental stiffness matrix is given according to 
the Eq 10 as below [73].  

 
(9)

 
(10)

where Me is an elemental mass matrix, Js is Jacobian determinant of the transformation, N is an 

interpolation or shape function matrix, I is a composite inertia matrix,  &  are dimensionless 

coordinates, Ke is an elemental stiffness matrix, B is strain displacement matrix and C is an elasticity 
matrix of the composite, 

Table 7 represents the material properties that are used to develop the FE model of the graphite 
epoxy composite laminate. It is assumed that material properties such as in-plane elastic modulus, 
out of plane elastic modulus etc. are correct for the simulated-experimental FE model and represents 
the actual values. However, in the case of simulated FE model, it is assumed that the error present in 
the in-plane elastic modulus. The present percentage error is 9.35%. Also, the fiber orientation is 
assumed in-correct in the simulated FE model.  
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Figure 11. Four-layer cantilever square laminated plate. 

Table 7. Material properties of the graphite-epoxy composite laminate. 

S. No. Material properties Simulated FE model Simulated-experimental FE model [72] 

1 Number of layers 4 4 

2 Plate dimensions 0.3 m × 0.3 m 0.3 m × 0.3 m 

3 Thickness of each layer 0.001 m 0.001 m 

4 Young’s modulus in x-direction 120 GPa 132.38 GPa 

5 Young’s modulus in y-direction 10.76 GPa 10.76 GPa 

6 Density 1578 kg/m3 1578 kg/m3 

7 Poisson’s ratio 0.24 0.24 

8 Modulus of rigidity 5.65 GPa 5.65 GPa 

9 Fiber orientation [-30/0]s [-35/3]s 

10 Number of elements 10 × 10 10 × 10 

11 Boundary condition Cantilever type Cantilever type 

It is found that the presence of uncertainty in the fiber orientation directly affects the 
eigenvalues and eigenvectors of the laminate structures. Therefore, it is considered as an uncertainty 
in the simulated FE model. So, the prime objective of this study is to apply the direct updating 
technique on a graphite-epoxy composite laminate to remove the error in the simulated FE model. 

Table 8 represents the comparison of the natural frequencies predicted by the simulated and 
simulated-experimental FE model. It is found that the maximum percentage error present is 18.18%. 
This clearly represents the mismatch between the spatial and modal-model of both the FE models. So, 
it is required to correct the spatial and modal-model of the simulated FE model. In literature, as 
already discussed, the IESM is mostly used to update the simulated FE model of the composite 
structures. In this paper, the direct updating method is applied on the simulated FE model to correct it. 
After updating the simulated FE model, it is observed that the error between both the models has 
been reduced. The percentage error now is 0.00% between both the models. It reflects that the direct 
updating method is also very effective on the composite laminate structures to update its modal 
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analysis characteristics. 

Table 8. Comparison of the natural frequencies between simulated, 
simulated-experimental and updated simulated FE model. 

S. 

No. 

Natural frequencies (Hz) Error 

(Hz) (fx 

− fa) 

Error 

(%) 

(fx − fa) 

× 100/fx

Natural frequencies 

(Hz) 

Error 

(Hz) 

Error (%)

(fx − fu) × 

100/fx Simulated 

FE model  

fa 

Simulated 

experimental FE 

model fx 

Updated simulated 

FE model fu 

fx − fu 

1 0.09 0.11 0.02 18.18 0.11 0.00 0.00 

2 0.87 0.97 0.10 10.30 0.97 0.00 0.00 

3 2.46 2.40 −0.06 −2.5 2.40 0.00 0.00 

4 2.75 2.74 −0.01 −0.36 2.74 0.00 0.00 

5 3.51 3.62 0.11 3.03 3.62 0.00 0.00 

It is clearly visible from the above results that the direct updating method can be successfully 
implemented on the composite structures. The application of the direct updating method to remove 
the error in the FE models of isotropic structures is extensively used in the past. However, this study 
definitely motivates to the researchers to successfully apply the direct updating method on the 
anisotropic structures like composite materials.  

6. Conclusions 

Finite element modeling is a numerical tool that is mostly used to predict the dynamic 
characteristics of the different materials at different excitations. The material properties, fiber 
orientations, dimensions and boundary conditions are assumed in the FE model of the different 
structures. Due to these assumptions or uncertainties, there is an error between the predictions of FE 
model and real experimentation. However, the developed FE models should be reliable enough so 
that they can be directly used to predict the actual behavior of the materials. In this regard, to remove 
the error between the simulated FE model outputs and measured data, the finite element model 
updating based updating algorithms can be used to accurate the simulated FE model. It is observed 
from this numerical study that the direct updating method (DUM) can be used to update the 
spatial-model, modal-model and response model of the different structures. The main achievement of 
this work is to review and successfully apply the direct updating method on the metals as well as on 
the graphite-epoxy composite material laminate. The iteration and direct method can be used for the 
isotropic structures (metals) and also for the composite material structures. The composite materials 
are anisotropic materials; in this regard the successful application of updating methods is having a 
great importance. Without consuming a large amount of time, updating methods are quick and fast so 
that they can be used to update or correct the simulated FE model. Updating methods directly 
updates the spatial-model (mass matrix and the stiffness matrix) of the simulated models. This 
prediction directly influences the modal-model (eigenvalues and eigenvectors) of the structure. If the 
eigenvalues and eigenvectors are predicted accurately then it is possible to estimate the actual 
behavior of the system in-terms of time and frequency response functions (FRFs).  
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