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Abstract: Smart windows with advanced architectural glass coatings providing the comfortable 
daylight and thermal environment indoors are an important component to improve the energy 
efficiency of the buildings. Chromogenic and other materials potentially applicable for filtering the 
solar radiation are reviewed. They have a variety of mechanisms for changing the light transmission 
depending on change in the ambient conditions or under the influence of electric current. A smart 
window with additional function of angular filtering of solar radiation without using the blinds or 
other light redistribution devices is described. Such a window has an optical filter consisting of 
parallel non-transmissive (absorptive, reflective or scattering, including chromogenics) strips on two 
surfaces of the pane(s). The filter blocks the direct sunlight partially or completely in a preset angular 
range and transmits the diffused light providing comfortable day lighting indoors. Methods for 
calculating the geometrical parameters of the gratings considering the annual and daily change in the 
solar radiation, the location of the building and the window’s azimuth are given. Calculated angular 
and temporal characteristics of the light transmittance demonstrate the angular selectivity of the 
transmission of a smart window with grating optical filter compared to a conventional smart window 
fully glazed with chromogenic glass. A comparative assessment of the potential of various 
chromogenic and other materials for the use in smart windows, as well as in grating filters for them, 
is carried out. The future prospects of the field are declared. 
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1. Introduction  

In recent decades, smart windows with advanced architectural glass coatings are widely used to 
provide the comfortable daylight and thermal environment indoors. Such windows are an important 
component to improve the energy efficiency of the buildings [1–4]. Chromogenic and other materials 
potentially applicable in the smart windows for filtering the solar radiation have a variety of 
mechanisms for changing the light transmission depending on change in the ambient conditions or 
under the influence of electric current (Table 1). As well as glasses with liquid crystal coatings and 
suspended particle devices, chromogenic glazings are the next generation of solar control smart 
glasses after low-emissivity glasses having a high reflectance of infrared radiation. 

Table 1. Types of glass or chromism, mechanism of action and references. 

Type of glass/chromism Mechanism of action Refs. 

Low-emissivity Visible spectrum transmission and IR reflection [5,6] 

Photochromism Transmission varies with intensity of incident shortwave UV or visible light [7–23] 

Ionochromism Color change with addition of ions [24–27] 

Acidichromism Color change at alternatively exposing with different gases [24,28–30]

Thermochromism Control of amount of solar heat with changes in ambient temperature [31–60] 

Thermotropism Temperature dependent change of light scattering  [60–62] 

Chemochromism Optical properties depend on reaction with hydrogen [63,64] 

Gasochromism Change in transmittance by interaction with diluted hydrogen gas [65–68] 

Halochromism Color change due to change in pH of solution [69–71] 

Solvatochromism Color change with change in charge transfer mechanism [72–74] 

Hygrochromism Color change with infiltration or displacement of liquid compounds inside 

porous structure 

[75,76] 

Mechanochromism Color change in response to mechanical perturbation [77–79] 

Piezochromism Pressure dependent shift of selective reflection wavelength via the entire 

visible range 

[80,81] 

Tribochromism Photoemission turns on upon gentle grinding of the samples and sensitivity 

to pH in fluid solution 

[82,83] 

Elastomer-deformation  Opaque due to geometric deformation when the electrical voltage is applied [4,84] 

Electrochromism Change in transparency and color on passing electric current [85–101] 

Nanocrystal in-glass 

composites 

Separately and independently regulates transparency towards VL or NIR 

from the clear to the tinted state 

[102,103] 

Liquid crystal Transparent under electrical voltage, opaque without the voltage [104–110] 

Suspended particle 

device 

Transparent under electrical voltage, opaque without the voltage [110] 

Electrokinetic pixel 

window 

Modulates separately both transmission and hue of entering light under 

electrical voltage 

[4,111] 

Liquid infill window Shading liquids pumped in or out the glass unit [4,112,113]

The window entirely covered by smart technology, when it is switched to opaque mode, 
attenuates transmitting not only direct solar radiation but also diffused and reflected radiation. 
However, to achieve the comfortable indoor conditions, it is desirable to protect the room dependently 
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on the position of the Sun relative to the window from the direct sunlight only, and transmit the diffuse 
sky light and the light reflected from the surface of the Earth and the surrounding buildings (the 
reflected radiation (albedo) is then also diffused). At present, such a regulation of the light 
transmission of a window depending on the incidence angle of the solar beams is impossible without 
blinds or other daylight redistribution devices [114], static angular-selective shading systems [115] 
with a micro-perforated screen, a tubular shading structure, and an expanded metal mesh, or 
automatically controlled active window shades [116]. Thin films with inclined columnar 
microstructure [117,118] have an angular selectivity of optical transmittance in narrow angular ranges 
and only in certain spectral ranges and cannot optimally control the light transmission in the 
continuous spectrum of solar radiation when the Sun moves in wide angular ranges. 

Applications of angular-selective filtering of solar radiation are constantly expanding, although 
they do not yet affect the area of smart windows. Optical filter based on angular-selective photonic 
structure is used to increase the path length of radiation in a solar cell [119]. Different concepts to 
realize angular-selective thin-film filters are compared regarding their limits for efficiency and power 
output per unit area of the solar cells [120]. Potential benefit of adaptive spatial optical filter to secure 
key generation is quantified for various strengths of turbulence, sky radiances, and pointing angles [121]. 
For effective control of solar radiation passing into the room, it is necessary to know the daily and 
annual changes in the radiation intensity depending on the geographical latitude. Daylight-factor, 
radiosity and ray tracing methods are used to calculate the daylight distribution in rooms with solar 
shadings and light redirecting devices [122]. Meteorological observations database for locations 
throughout the world are given in the handbooks [123,124]. On this basis, the methods for calculating 
solar radiation data are developed [125–129]. 

Thus, smart glasses currently used in windows regulate the temperature, insolation and 
illumination level indoors, but cannot provide the angular-selective light transmission of the windows 
dynamically adapted to the position of the Sun. Without the additional use of blinds or other devices, 
the smart window can not attenuate only direct solar radiation, passing diffused one. Meanwhile, glare 
and too bright surfaces indoors arise mainly due to the direct sunlight, and the diffused light should 
preferably pass through the window to create a comfortable environment. A grating optical filter 
proposed for smart windows [130–144] provides the angular-selective light transmission depending 
on the position of the Sun relative to the window without using blinds, etc. The relative positions of 
two filter’s gratings consisting of alternating transmissive and non-transmissive strips allows you to 
protect the room from the direct sunlight in a preset range of incidence angles of the solar beams, 
while transmitting the diffused light. Such a method of angular regulation of the light transmission is 
patented by the author (RU Patents 2509324 and 2677069). The grating filter transmits only the 
desired part of the incident radiation with no change or, optionally, with a change in its spectrum, in 
different incidence-angle ranges, reflecting, absorbing, or scattering the rest of the light. 
Non-transmissive strips of the filter may hinder the view through the window and can be applied to 
vertical windows not used for viewing, to inclined windows and skylights. To ensure sufficient 
visibility it is more preferable to create the non-transmissive strips by the photochromic, 
thermochromic, electrochromic or other smart technologies.  

Materials section is devoted to an overview of chromogenic and other materials most promising 
for the use in smart windows. Design of the grating optical filter, methods for calculating its 
geometrical parameters and light transmission characteristics and some results of calculation by these 
methods are demonstrated in grating optical filters section. Conclusions and prospects of the field 
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section provides comparative assessment of the potential of different chromogenic and other materials 
for the use in grating filters, conclusions and future prospects of the field. 

2. Materials 

The prior art on the chromogenic and other technologies (Table 1) shows that photochromics, 
thermochromics, thermotropics, gasochromics and electrochromics are the most promising for the use 
in smart windows (including the windows with grating filters) compared to other chromogenics, such 
as ionochromics, acidichromics, halochromics, solvatochromics, hygrochromics (hydrochromics), 
mechanochromics (piezochromics, tribochromics), etc. There are some other smart technologies such 
as nanocrystal in-glass composites, elastomer deformation tunable, electrokinetic pixel, liquid crystal 
devices, suspended particle devices and liquid infill windows, also having the prospects for using in 
the conventional smart windows entire covered with active layers. These technologies, with the 
exception of liquid infill windows, are also applicable to the grating optical filters for smart 
windows. 

2.1. Photochromic materials 

The photochromism [7–23] phenomenon discovered at the end of the 19th century is a reversible 
color change of organic and inorganic compounds under the influence of ultraviolet and shortwave 
visible radiation. Due to the reversible reactions of photoisomerization, photocyclization, 
tautomerization, etc., accompanied by a significant change in the structure of the compound its two 
different states have different absorption spectra. An enormous amount of new concepts and 
developments in the field of photochromic glasses highly promising for applications have been 
provided in [13]. Review [17] summarizes the design and preparation of photochromic (PC) hybrid 
materials, and particularly those based on the incorporation of organic molecules in organic-inorganic 
matrices by the sol-gel method. 

The possibility of applying thin-film coatings on the window pane (Figure 1) is an important 
advantage of photochromic materials for the use in smart windows. The photochromic properties of 
polymeric thin films [12], thin amorphous [10,11] and polycrystalline [11] metal oxide layers have 
been investigated. The visible light transmittance of photochromic materials based on silver 
halogenides having a very convenient kinetics of photochemical reactions varies on average from 0.7 
in the bleached state to 0.25 in the darkened state [9]. The solar transmittance of the photochromic 
device with a TiO2 sol-gel layer decreases from 57% to 7.5% in under three minutes [19]. 

The double glazing system with a commercial low-e glass (Solarban 70XL, starphire, 5.7 mm) 
and a PC layer prepared by embedding organic dyes, 1,2-b Naphthopyran, in sol-gel based 
organic-inorganic mesoporous coating matrix [20], has the distinct reduction in visible light 
transmittance (24.6% of tinted state versus 65.0% of clear state) and solar transmittance (11.5% of 
tinted state versus 25.1% of clear state). 

Some photochromic materials are capable of an additional color change [24–30] caused by a flow 
of ions through the material (ionochromism) or by alternatively exposing a film of photochromic 
material with HCl and NH3 gases (acidochromism). Ionochromic [25–27] and acidochromic 
substances [28–30] are not promising for the use in photochromic smart windows (ion flows are 
applied in electrochromic windows only). 
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Figure 1. Double glazed smart window with low-e coating and photochromic layer. 

For the wide application of photochromic technologies in architectural glazing, it is necessary to 
increase the cyclicality of the photoswitches of materials experiencing irreversible photochemical and 
thermal reactions, as well as the stability of their photoinduced forms. For commercialization of 
photochromic windows, it is also necessary to increase their cost-effectiveness, strength and durability. 
Research in these areas continues in recent years [18–23]. 

2.2. Thermochromic and thermotropic materials 

Thermochromic materials [31–60,110] display a color change responding to changes in external 
temperature, so smart windows based on them can control the solar radiation indoors (Figure 2). The 
theory of metal-insulator transitions in VO2, Ti2O3 and Ti2–xVxO3 leading to the appearance of a 
thermochromic effect has been discussed in the 1970s [31]. Continuous thermochromism as a gradual 
color change occurs over a range of temperatures, and discontinuous thermochromism involves a 
structural phase change with instantaneous color change at the transition temperature. Vanadium 
dioxide is one of the most promising thermochromic materials for the future smart window 
applications due to its self-regulating nature and potentially simple implementation [42]. For 
commercialization of this material, it needs to be addressed some drawbacks. Thin VO2 film integrated 
into a silver-containing low emissivity coating to enhance the visible transmittance shows the unique 
combination of a high transmittance of 58.2% in its low temperature state, a solar transmittance 
variation of 7.1% with the added benefit of a low emissivity of 10% [42]. The plot of transition 
temperature as function of tungsten concentration in WxV1–xO2 single crystals shows that the transition 
temperature between 20 and 25 °C ideal for the thermochromic window with an energy-efficient 
benefit is possible at tungsten concentrations between 1.2% and 1.05% [36]. The smart window 
fabricated by coating rare earth/W-codoped VO2 nanoparticles onto glass exhibits reducing the phase 
transition temperature from ~68 to 40.8 °C and 31.9 °C at the integrated visible light transmission   
40% and 63% and the solar modulating ability 6.3% and 3.6%, respectively [49]. 

In addition to the inorganic thermochromic materials, such properties can appear in different 
classes of polymers. The actual status of development in adaptive solar control by use of thermotropic 
and organic thermochromic materials for application in smart windows has been reviewed in detail   
in [60]. Ligand-exchange thermochromic system integrated in a thin film has a gradual reduce of the 
transmittance from 54% to 4.5% in the visible range and from 22.5% to 4.5% in the solar range when 
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the temperature increases from 25 to 85 °C [60]. Thermochromic composites introduced into 
polyolefin matrices show the visible transmittance decrease from 61% to 34% and the solar 
transmittance decrease from 68% to 62%. For the typical thermochromic materials, the reduction of 
light transmission in correspondence of transparent and opaque states when coupled with a clear glass 
is from 55–60% to 5–13%, and the reduction of solar heat gain is from 0.36–0.37 to 0.12–0.17 with 
switching times in the order of a few minutes [110]. 

 

Figure 2. Double glazed smart window with low-e coating and thermochromic layer. 

Thermotropic materials [60–62] exhibit a temperature dependent change of the light scattering 
and reflective properties, but not the color change. Especially active studies of these materials began in 
the 1990s. The thermotropics, acting on the basis of reflective (back scattering) effects, are more 
advantageous due to partially preventing solar irradiation from entering the building. Due to a phase 
separation or phase transition upon reaching the switching temperature of a thermotropic system 
consisting of at least two components, a difference between the refractive indices of these components 
appears and the incident solar radiation is scattered and reflected at the interface between components 
[60]. This review provides the following data on decreasing the visible normal-hemispherical 
transmittance: (1) from 92% at 20 °C to 30% at 90 °C for a 400 μm thick film of the thermally 
crosslinked phase-separating polymer blend; (2) from 92% at 25 °C to 6% at 50 °C for a 1 mm thick 
layer of the phase-separating thermotropic gel; (3) from 58% at 20 °C to 10% at 42 °C for a polymeric 
hydrogel with added nanoparticles at their size of 630 nm; (4) from 82% (solar transmittance) at 25 °C 
to 57% at 95 °C for a 2 mm thick layer of the phase transition polymer blend; (5) from 58% to 22% for 
a 120 μm thick film of the polyolefine with thermotropic additives. 

Thermochromic and thermotropic windows are very advanced, yet simplest, smart technology 
available and are quickly commercializing throughout the world. To justify their incremental cost 
above a conventional window it needs to increase the long-term stability of glazing units and their 
energy saving potential due to improving thermochromic and thermotropic properties of materials. 
Research conducting in the past few years, are aimed also at solving these problems [46–59,62]. 

2.3. Gasochromic materials 

Gasochromic windows have potential to achieve the ultimate aim of combining the use of 
renewable energy with user comfort [18]. Gasochromic materials [4,65–68] relate to the class of 
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chemochromics [63,64] displaying a color change responding to chemical changes or reactions. One 
of the internal surfaces of a double glazed unit is coated by a gasochromic thin film reversibly 
switching its optical transmittance upon alternating exposure to diluted hydrogen and oxygen gases. 
For example, a tungsten oxide reacting with hydrogen increases scattering and absorption properties 
due to blue coloration. Oxygen causes a reversible effect to achieve the transparent state of the    
film (Figure 3). 

 

Figure 3. Double glazed gasochromic smart window. 

Advantage of the gasochromic window is ability to control the depth and speed of coloration by 
the choice of film thickness and the change of hydrogen concentration. However, such a window needs 
a hydrogen and oxygen generating system. Visible transmittance of the tungsten oxide film can vary 
between 0.10–0.59 with a solar heat gain coefficient range of 0.12–0.46, and switching speeds are 20 s 
to color and less than a minute to bleach [65]. One of the latest results [68] shows that the transmittance 
of the Pt-WO3 gasochromic films upon exposure to hydrogen was reduced from approximately 80% to 
10%, the switching time of the films was as fast as 5 s, and the switching durability of the films was 
preserved for over 1500 cycles. 

2.4. Electrochromic materials 

Unlike the chromogenics discussed above, electrochromic materials [85–101] change their 
optical properties under the influence of a low electrical voltage. An electrochromic window unit 
consists of few microns thick five-layer coating (transparent conductive/electrochromic donor/ion 
conductive electrolyte/electrochromic host/transparent conductive) interposed between two glass 
substrates (Figure 4). Reversible transporting of coloration ions (most commonly lithium or hydrogen) 
between the donor and host electrochromic layers through the central electrolyte layer cases darkening 
(coloration) and bleaching processes at the change in electrical polarity. The electrochromic window 
remains transparent (with no strong degradation in visibility) across the switching range, and can be 
changed gradually between bleached and fully colored states dependently on voltage. Some types of 
electrochromic windows need no voltage to maintain the desired colored state long time after 
switching to this state. Another type slowly goes to bleached state when powered off. Electrochromism 
among the tungsten and other transition metal oxides, inorganic non-oxide materials has been 
discussed in detail in [85] as a comprehensive foundation and reference work for studies within the 
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rapidly expanding field of electrochromic thin films for smart windows. Many types of polymer 
electrolytes widely used in electrochromic devices and other applications have been reviewed in [88]. 
Electrochromic devices consisting of electron accumulation layer (counter-electrode, LixV2O5), an ion 
conductor layer (or electrolyte, usually LiAlF4), an electrode layer (commonly tungsten trioxide WO3 
or niobium pentoxide Nb2O5, although many more metal oxides display electrochromism), and two 
outer layers made of transparent conductive oxides (TCO) are presented in [4]. 

 

Figure 4. Five-layer electrochromic device. 

The visible transmittance of typical electrochromic windows ranges from 0.02 to 0.80 [98], the 
solar heat gain coefficient ranges from 0.1 to 0.5. A recently designed monolithic solid-state 
organic-inorganic hybrid electrochromic device with indium tin oxide/tungsten oxide/nafion/indium 
tin oxide thin layers, “growed” on single glass or flexible plastic substrate by a cheap and facile 
process without any lamination step and fully at room temperature condition showed optical contrast 
of 49% (at 650 nm), switching response time of 30 s and very low electric energy absorption (of  
about 80 mJ/cm2) required to achieve a complete and homogeneous coloration (90% of optical 
modulation) [96]. This electrochromic technology outperforms all the others, with overall yearly 
energy savings as high as 40 kWꞏh/m2ꞏyr (referred to window surface) in the hottest climates, 
assuming the clear glazings as benchmark. 

A tutorial overview of a technology that is currently introduced in buildings [97] discusses a 
web-coated electrochromic device in the form of 0.4 mm thick foil (polyester/conductor/nickel 
oxide/electrolyte/tungsten oxide/conductor/polyester) for glass lamination, and touches on 
possibilities to combine electrochromism with other functionalities such as thermochromic control of 
solar energy transmittance, energy generation and storage, photocatalytic purification of indoor air. 
Electrochromic batteries that do not require external voltages to trigger coloration/de-coloration 
processes [98], in contrast to all other electrochromic technologies, are highly-promising in the 
realization of energy-efficient devices. Low-cost and flexible single-layer all-in-one electrochromic 
devices with polymer gel electrolyte incorporated into electrochromic mixtures (consisting of 
hydroxyalkyl viologens and hydroquinone or ferrocene electron mediators) exhibited low driving 
voltages (0.9 V for a ferrocene based device, 1.5 V for a hydroquinone based device), high optical 
contrast (up to 82%) and satisfactory coloration efficiency (>240 cm2ꞏC−1) [99]. Hydrides with 
switchable optical properties discovered in 1996 [86] are in research and development as 
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non-conventional electrochromics having potential advantages in terms of energy performance, 
temperature stability, glare control and privacy due to switching to a reflective state rather than 
absorbing state. Rare earth and transition metals can be converted to transparent hydrides by injection 
of hydrogen from the gas or solid phase. Another electrochromic device having the reversible change 
of optical states between clear transparent and silver-mirror due to silver deposition at introducing the 
formation of AgBrn

1–n in the electrolyte solution showed reducing the transmittance from 0.78 to 0.11 
at 700 nm [95]. 

Nanocrystal in-glass composites window (Figure 5) represents, at the moment, the most 
promising electrochromic emerging technology [4,102,103]. It was first developed by researchers at 
the University of California, Berkeley, using indium tin-oxide (ITO) nanocrystals embedded in a 
glassy matrix of niobium oxide (NbOx) and represents an evolution of the so called NIR-switching 
electrochromics, a technology that allows to control NIR radiation without blocking visible light 
transmission. 

 

Figure 5. Nanocrystal in-glass composites window. 

Nanocrystal in-glass composites proper dual-band electrochromic operation: the nanocrystal 
in-glass electrochromic film operates by absorbing Li+ ions and losing electrons from a donor layer 
and darkening accordingly, akin to conventional EC glass. At open circuit voltage (4.0 V) both 
nanocrystals and glass matrix are in a clear state. However, a voltage reduction to 2.3 V at first 
increases ions carriers in the plasmonic nanocrystals alone, which are responsible for blocking NIR 
radiation. Then, turning the voltage down to 1.5 V additionally triggers the reduction of the NbOx glass 
matrix, which in turn blocks visible light as well (Figure 5). Hence, this system allows for a triple 
switching configuration: a “bright mode” where visible light and NIR enter undisturbed; a “cool mode” 
that blocks NIR while allowing visible light in; and finally a “dark mode” that limits both heat and 
natural light entering the room. 

Electrochromic glazing is the most mature and effective active dynamic glass technology for 
buildings, however its wide spread use is still marred by a number of drawbacks, both technical and 
economical, and its operation versatility has also room for further improvement [4]. In recent years, a 
wider range of electrochromic materials are studied to overcome these shortcomings [92–101]. 
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2.5. Other electrically operating technologies 

Like electrochromic windows, elastomer deformation tunable and electrokinetic pixel windows, 
polymer-dispersed liquid crystal (PDLC) windows and suspended-particle devices (SPD) also 
function under the influence of an electrical voltage. An elastomer-deformation tunable window[4,84] 
presented in Figure 6 is a dynamic glazing technology (developed at Harvard School of Engineering), 
having different properties and characterizing by the possibility to vary from a clear state to a tinted 
opaque state, without vision trough, able to diffuse light [4]. This mechanochromic technology 
exploits geometric deformation of the glazed surface to control light scattering, turning the opacity of 
the window from clear to opaque or any state in between. This effect is achieved by sandwiching the 
glass or polymer pane between two transparent dielectric elastomer layers, which are sprayed with a 
network of electrically conducting silver nanowires (Figure 6). When voltage is applied to the window, 
nanowires are energized and turn into electrodes, which tend to move toward each other by Coulombic 
forces squeezing and deforming the two elastomer layers below. The process requires less than a 
second to complete. The application of this technology in the glass manufacturing industry should be 
facilitated by its cheaper manufacturing process, which employs elastomer sheets already available in 
large format rolls and foregoes the slow and expensive vacuum deposition required by most current, 
chemical-based dynamic glazing in favor of a simpler spraying or peeling of the silver nanowire layer. 
This process would also be easily scalable to larger architectural applications [4]. 

 

Figure 6. Elastomer deformation tunable window. 

Electrokinetic pixel window technology [4,111], devised by Researchers at the University of 
Cincinnati, in collaboration with Hewlett Packard and EMD/Merck, controls the colored particles 
movement via electrophoresis to modulate separately both transmission and hue of entering light. The 
system employs two planar electrodes, controlling an electrophoretic dispersion of particles of 2 
biprimary, complementary colors characterized by opposite electrical charges [4]. Key to the system is 
an additional, third electrode shaped as a hexagonal grid that creates a mesh of honeycomb cells,   
500 mm in side. Additionally, the bottom planar electrode features polymer-replicated micro-pits able 
to trap color particles as needed and inhibit their chromatic spread (Figure 7). Each of the electrodes 
can be separately charged, drawing particles of the specific color towards the upper electrode, the 
inferior one or onto the perimeter one according to the positive or negative charge supplied. 
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Figure 7. Electrokinetic pixel window. 

This way it is possible to obtain a neutral, dark state (no electrodes charged, both color particles 
mixed in uniform dispersion) or a neutral clear state (color particles compacted towards the perimeter 
electrode and in the lower electrode micro-pits, no color dispersion). At the same time, a cold hue (blue 
particles dispersed, yellow particles compacted around the perimeter electrode) or a warm one (yellow 
particles dispersed, blue particles accumulated around the perimeter electrode) can be achieved. 
Switching between control states requires ±25 V and 10 s, whereas each can be maintained with a low 
holding voltage of ±10 V. Testing of a Cyan-Red colloidal dispersion achieved visible transmittance 
values of 75% in its clear state and 22% in dark state [4]. 

Liquid crystal windows [104–110] are investigating from 1980s. The brief review of industrial 
development and market situation of PDLC technology [106] suggests that this field has become the 
subject of worldwide demand and growth again. Liquid crystal devices consist of a double sheet of 
glass within which is located a polymer matrix film sandwiched between two electrical conductors of 
transparent thin plastic film (Figure 8). Within the film tiny liquid crystal spheres with a diameter of 
the same order of magnitude as the wavelength of visible radiation are dispersed. In the absence of 
electrical stimulus the liquid crystals have a disordered arrangement and the light rays undergo random 
diffractions so glazed elements appear white and translucent; on the other hand, when an electric field 
is applied, the liquid crystals align in the same direction ensuring the transparency of the panels. The 
degree of transparency can be controlled by the voltage applied. The light transmittance of liquid 
crystal glazing in the active state does not normally exceed 70%, while in the off state is about 50%. 
The solar factor reduction is usually between 0.69 and 0.55 [110]. 

SPD smart glasses developed by Research Frontiers Inc. are also a promising energy control 
technology. SPD consist of a double sheet of glass within which is located a layer of thin laminate of 
suspended particles similar to rods immersed in a fluid, placed between two electrical conductors of 
transparent thin plastic film (Figure 9). When the power is turned on, the suspended rod particles align, 
light passes through and the SPD smart glass panel clears. When the power is switched off the 
suspended rod particles are randomly oriented blocking the light and the glass appears opaque. In this 
way, SPD glass can lighten or darken, allowing instantaneous control of the amount of light and heat 
passing through. SPD smart glass, when dark, can block up to 99.4% of the visible radiation [110]. 
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Figure 8. Polymer dispersed liquid crystals device. 

 

Figure 9. Suspended particle device. 

Although the elastomer deformation and electrokinetic pixel window technologies, as well as 
suspended particle devices, have prospects for using at fully glazing of conventional smart windows, 
in grating optical filters, the possibility of their use is limited for small widths of the active strips of 
gratings. The liquid crystal panels are the most promising for the construction of interior privacy 
partitions. 

3. Grating optical filters 

3.1. Design concepts and principle of operation 

Design concepts of grating optical filters for smart windows are presented in Figure 10. An 
optical filter with thin-film grating layers formed by alternating directionally transmissive and 
non-transmissive (absorptive, reflective, or scattering) parallel strips on both surfaces of a glass sheet 
substrate (Figure 10d) has been proposed originally in [130–133]. The alternating strips of 
millimeters widths can be made by any of the known methods of surface processing, including 
gluing a film with pre-deposited strips on it to the substrate surface. The directional light 



732 

AIMS Materials Science  Volume 7, Issue 6, 720–771. 

transmission of the filter depends on widths of the transmissive strips c1 and c3, widths of the 
non-transmissive strips c2 and c4, as well as distance between gratings s (the thickness of glass in this 
case). Just as a diffraction grating, the gratings we form here are characterized by the period, that is, 
the total width of the two adjacent strips (c1 + c2 and c3 + c4). For the uniform regulation of light 
transmission over the entire area of the window, the periods of two gratings must be equal: c1 + c2 = 
c3 + c4. 

 

Figure 10. (a) Window with sloped gratings adapted to the Sun’s trajectory, (b) filter 
with multilayer gratings, (c) filter with thin-film coatings on different panes, and (d) filter 
with thin-film coatings on both surfaces of pane (c is characteristic angle of the filter, s 
is distance between gratings,  is slope angle of the filter’s gratings, c1 and c3 are widths 
of transmissive strips, c2 and c4 are widths of active strips). 

The filter with two thin-film gratings on different panes of a double glazed window (Figure 10c) 
has been presented initially in [134,135]. The strips are sloped at an angle  (Figure 10a) to be 
adapted to the Sun’s trajectory relative to the window. Figure 10b shows the section of a window in a 
plane perpendicular to the gratings, strips of which interposed between the glass substrates and 
consist of multilayer coatings. The similar sections are shown in Figure 10c,d. A shift of the input 
and output gratings relative to each other is determined by a characteristic angle of the filter c 
between a beam passing through the centers of the strips of both gratings, and the horisontal. If this 
beam falls into the center of the non-transmissive strip of the output gratings, the filter has a 
minimum transmittance in some angular range symmetrically around the characteristic angle (when 
c1 > c4, Figure 10c) or zero transmittance at the characteristic angle (when c1 = c4, Figure 10d). If the 
beam falls into the center of the transmissive strip, the filter has a maximum transmittance in some 
angular range symmetrically around the characteristic angle (Figure 10b). 

As a static passive device, the grating filter with non-transmissive and non-switchable strips has 
clear limitations impairing the view through the window compared to adaptive and/or dynamic 
switching windows. Therefore filters with reflective, absorptive or scattering strips can only be 
applied to windows that are not used for viewing, and also to skylights. A combination of the angular 
selectivity of the grating filter and adaptive/responsive technologies discussed in materials section 
would be preferred to use. In this case, the strips of the gratings, switched to an active (darkened) 
state due to environmental parameters or when an electric current is applied, will obstruct the view 
only when protection from the intensive solar radiation is necessary (just like a window fully glazed 
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with smart glass or a conventional window system with blinds) and will not interfere with the view 
during the rest of the time, being in an inactive (bleached) state. 

Grating filter attenuates the direct sunlight completely at a preset characteristic incidence angle 
(Figure 10d) or partially in an angular range symmetrically around the characteristic angle (such 
range with equal minimum transmittance is highlighted in Figure 10c by dashed lines). Figure 10d 
shows two of several angular ranges in which the diffused beams falling into the same point at 
different incidence angles pass through the transmissive strips of the output gratings. Protection not 
only from the direct light, but also partially from the diffused light is possible when c4 > c1. Since the 
filter has two gratings, it is possible to use two different smart technologies in one window. It is 
advisable to use, for example, the reflective chromogenics in the input gratings and the scattering or 
absorptive chromogenics in the output gratings [134]. 

If the filter’s gratings located on different panes of double or triple glazed windows as in Figure 
10b,c the optimal widths of the strips vary from a few millimeters to tens of millimeters [141], and 
for single glazing (Figure 10d) these widths are several millimeters [131]. At such widths of the 
strips that are much larger than wavelengths of the visible light, the problems due to diffraction, 
dispersion and other wave phenomena do not arise, unlike diffraction gratings. This is similar to 
blinds and other devices, in the use of which these harmful phenomena are also not occur. The effect 
of diffraction on the directional transmittance of grating optical filters with angular-selective light 
transmission designed for single and double glazed smart windows have been investigated in [143]. 

In Figure 11, the refracted beams labeled 1–7 indicate the boundaries of the incident collimated 
radiation that passes through the input surface of the filter within the limits of a single period of the 
gratings. The beams labeled 0 indicate such boundaries at a normal incidence angle. For the 
plane-parallel filter, a bandwidth h is the width of the part of the transmissive strips on the output 
surface, through which the refracted beams pass within the limits of a single period (h0 and h5 are 
indicated for beams 0 and 5, respectively). The bandwidth is defined through the angular dependence 
of the offset l of the refracted beam on the output surface with respect to the non-refracted beam 0 at 
the normal incidence angle (l2 and lc are indicated for beam 2 and the beam incident at the 
characteristic angle c, respectively). 

 

Figure 11. Schematic diagram of a grating optical filter. 
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The intensity of light transmitted through the input gratings is reduced with increasing incidence 
angle. However, the ratio of transmitted intensity to incident intensity for all angles is the same and is 
equal to the ratio of the width of the transmissive strip to the period of the input gratings. The widths 
of the alternating strips on the output gratings and their shift relative to the input gratings provide 
selective light transmission that depends on the range of the incidence angle. As the incidence angle 
changes, the proportion of radiation that passes through both gratings of the filter also changes. The 
ratio of the intensity transmitted through the filter to the incident intensity is equal to the ratio of the 
bandwidth depending on the incidence angle to the period of the gratings. Angular-selective filtering 
of the intensity of the radiation distinguishes this filter from neutral-density filters, which evenly 
reduce the transmitted intensity, independently on the incidence angle. 

3.2. Method for calculating the angular dependence of light transmittance of grating filter 

The angular dependence of the directional light transmittance of the filter is calculated by a 
graphic-analytical method [133]. The theoretical transmittance  of the plane-parallel filter is calculated 
by:  = h/(c1 + c2). The offset function (an angular dependence of the offset) was obtained [130] 
taking into account Snell’s law: l = ssin/(n2 − sin2)1/2, where  is the incidence angle and n is the 
refractive index of the glass. Figure 11 shows that with increasing incidence angles from 0° to the 
angle that corresponds to the refracted beam 2, the bandwidth is reduced. When analyzing the 
position of the beam 1, which is located in this angular range, we obtain the following equation for 
calculating the bandwidth: h = 0.5c1 − 0.5c4 + lc − l. Since the relation 0.5c1 + l = 0.5c4 + lc holds 
when beam 2 passes through the lower edge of the absorptive strip on the output gratings, the offset 
is calculated as l = −0.5c1 + 0.5c4 + lc. The corresponding incidence angle is extremal. With a further 
increase in the incidence angle, the bandwidth is unchanged and is equal to h = c1 − c4 (including for 
the refracted beam 3 corresponding to the characteristic angle of the filter). The precise value of the 
extremal incidence angle is determined by substituting the calculated offset l of the refracted beam 2 
into  = arcsin[nl/(s2 + l2)1/2]. 

Using a similar analysis of Figure 11, the equations for calculating the bandwidth in other 
ranges of the incidence angles are obtained: 

(1) Between the refracted beams 4 and 6 as well as for beam 5, it increases according to the 
relation h = 0.5c1 − 0.5c4 − lc + l. 

(2) Between the refracted beams 6 and 7, it is unchanged and h = c3. 
The refracted beam 7 corresponds to the incidence angle 90° at the given refractive index. The 

equations for calculating the offsets of the refracted beams at the extremal incidence angles      
are obtained by equating the calculated bandwidths for two adjacent areas: l = 0.5c1 − 0.5c4 + lc for 
beam 4 and l = −0.5c1 + c3 + 0.5c4 + lc for beam 6. 

The offset function exists and is continuous in the incidence angle range from 0° to 90° for 
possible values of the refractive index of the glass (1.47 < n < 1.76) and increases continuously [130]. 
The offset functions for the refracted beams are plotted in Figure 12 for various refractive indices 
and distances between gratings. The first and second derivatives of the offset function are given by: 
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Both derivatives by Eqs 1 and 2 exist and are continuous in the angular range 0°–90°. For the 
second derivative, we have determined the points of inflection (indicated in Figure 12) of the offset 
function; the positions of these points are determined only by the refractive index and is independent 
on the distance between gratings. For n = 1.8 (curve 4), there is no point of inflection because the 
second derivative cannot be zero in the angular range 0°–90° (the maximal refractive index, for 
which the point of inflection exists, is n = 1.73). In the range of incidence angles from 0° to the 
angles corresponding to the points of inflection, the second derivatives are positive (displacement 
functions are concave upward); further, up to 90°, the second derivatives are negative (concave 
downward). 

 

Figure 12. Offset functions for refracted beams. 

In spite of the fact that the offset functions have concave and convex regions, a nearly linear 
dependence of the offset on the beam incidence angles is observed in the angular range from 0°    
to 60°–70°; the angles for which the bending becomes noticeable (Figure 12) decrease with 
increasing refractive index. 

The angular dependence of the directional light transmittance of the filter with thin-film 
coatings on different panes of a double glazed window (Figure 10c) was calculated in [134]. To form 
the gratings of a triple glazed window, the internal surfaces of either of the two chambers are used. 
Figure 13 exhibits angular characteristics of the light transmission of the filters applied to the single 
and double glazed windows. For the single glazing, the filter characteristic was calculated at 
parameters: c = 30, c1 = 3 mm, c2 = 1 mm, c3 = 2.5 mm, c4 = 1.5 mm, s = 4 mm, n = 1.5. 

The corrected characteristic was calculated taking into account the reflection according to 
Fresnel equations, as well as the absorption according to Bouguer–Lambert law [131] by Eq 3: 

cor = (1 − )2exp{−s[1 + sin2/(n2 − sin2)]1/2} (3)

where  is the natural absorptance of the glass,  is the reflectance of the glass surfaces. Figure 13 
shows the characteristic corrected according to this equation, as well as the experimental 
characteristic in the angular range 0–60 obtained for a sample of this filter [131]. 
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Figure 13. Angular characteristics of light transmission for single and double glazed 
windows. 

For a double glazed window (Figure 10c), the beam offset function is simpler than for single 
glazing: l = stan. By graphic-analytical calculating the filter with parameters c = 40.8, c1 = 24 mm, 
c2 = 8 mm, c3 = 20 mm, c4 = 12 mm, and s = 16 mm, five angular ranges with identical parameters of 
the change in the bandwidth were specified: 
(1) In the angular range 0–11.44 (l = −0.5c1 + 0.5c4 + lc) it decreases: h = 0.5c1 − 0.5c4 + lc − l. 
(2) In the angular range 11.44–43.6 (l = 0.5c1 − 0.5c4 + lc) it has a minimum: h = c1 − c4. 
(3) In the angular range 43.6–55.45 (l = −0.5c1 + c3 + 0.5c4 + lc) it increases: h = 0.5c1 − 0.5c4 − lc 

+ l. 
(4) In the angular range 55.45–59.57 (l = 0.5c1 + 0.5c4 + lc) it has a maximum: h = c3. 
(5) In the angular range 59.57–60 it decreases: h = 0.5c1 + c3 + 0.5c4 + lc − l. 

Equations for calculating the offset of the beam at the extreme incidence angles defined by  = 
arctan(l/s) are shown in parentheses. Graphic-analytical calculation was carried out (Figure 13) only 
up to the incidence angle of 60, because filtering of the solar radiation is not relevant at the larger 
angles. Corrected filter characteristic for double glazing, shown in Figure 13, is calculated by Eq 4: 

 = (1 − )4exp{−s[1 + sin2/(n
2 − sin2]1/2}exp{−s[1 + sin2/(n

2 − sin2]1/2} (4)

where 1 and 2 are the natural absorptances, s1 and s2 are the thicknesses, n1 and n2 are the 
refractive indices of the external and internal panes of double glazing, respectively. 

3.3. Calculated and experimental angular characteristics of light transmittance 

Method for calculating the directional light transmittance of the filter with thin-film grating 
layers formed by alternating transmissive and absorptive (zero transmittance) parallel strips on  
both surfaces of a glass sheet substrate has been confirmed by the numerical simulation and 
experiments [131,132]. Calculated angular characteristics of 20 filters with different geometrical 
parameters when the incidence angle is changed in range from 0° to 90° in a plane perpendicular to 
the gratings have alternating sections with decreasing, constant minimum, increasing and constant 
maximum transmittance. In the angular range 0°–60° a broken and virtually linear dependence is 
observed for all the filters. The sloped sections in this range have insignificant curvature and 
inflection points, at large angles the curvature increases (this shows the effect of the sinusoidal 
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dependence of the offset function—up to 60°, it is almost linear). The influence of reflection and 
other physical factors becomes stronger at larger angles, however, there is less demand for practical 
application at these angles. In Figure 14, the calculated, corrected and experimental angular 
characteristics of light transmittance of the filter with parameters c = 30, c1 = 3 mm, c2 = 1 mm, c3  
= 2.5 mm, c4 = 1.5 mm, s = 4 mm and n = 1.5 [131] are presented, as well as of the clean glass 
samples, glasses with a clean film and glasses with a black film indifferent variations. 

 

Figure 14. Angular characteristics of light transmittance of the filter (curves 1–5) and 
additional glass samples (curves 6–15): 1—calculated; 2—corrected; 3, 4, and 
5—experimental data for the filter and its input and output gratings, respectively; 6 and 7 
—experimental and calculated data for clean glass; 8, 9, and 10—glasses with a clean 
film on the input, output, and both surfaces, respectively; 11 and 12—glasses with a 
black film on the input and output surfaces, respectively; 13 and 14—glasses with a 
black film on the input and a clean film on the output surfaces, and vice versa; 15—glass 
with a black film on both surfaces. 

The calculated values of the transmittance are in good agreement with the experimental data in 
the angular range 0°–60° for 7 filters with different geometrical parameters [131]. The mean 
deviations of the experimental data for these filter samples do not exceed 4%, and the maximum 
deviation is 5.6%. When characteristics of 7 filters were compared for the incidence angles up to 60°, 
it became clear what needs to be taken into account to ensure the pre-specified characteristics of the 
transmittance: 

-To make the transmittance increase faster in the same angular range, it is necessary to reduce 
the period of the gratings. 

-The angular characteristic is virtually symmetrical relative to the characteristic angle of the 
filter. 

-By choosing the widths of the alternating strips, it is possible to minimize or maximize the 
transmittance for different values of the characteristic angle, or for different angular ranges 
symmetric relative to this angle. 

-If the transmissive and absorptive strips on the output gratings are interchanged, the 
characteristics are axially symmetric relative to the horizontal. 
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-For an equidistant shift of the characteristics over the angular ranges, the characteristic angle of 
the filter needs to be varied. 

3.4. Methods for determining the optimum slope angle of filter’s gratings 

Horizontal and vertical blinds are the best devices for controlling the transmitted solar radiation 
depending on the incidence angle of sunlight. The most significant advantage of the grating optical 
filter over blinds is that the alternating strips of the gratings can be applied to the window pane at any 
angle—the most optimal for the window with the given azimuth A0 of orientation to the cardinal. The 
filter can provide a minimum or maximum light transmission in a predetermined range of the 
incidence angles. By optimizing of solar radiation filtering it is mainly required to minimize 
transmission in the hottest period of the year. In filter’s gratings, it can be used strips reflecting or 
absorbing only infrared or ultraviolet spectrum part of the solar radiation with the aim of window’s 
visibility maintaining. The optimum slope angle of the gratings at given thickness and refractive 
index of the glass, the latitude and longitude of location is determined according to the following 
algorithm [134,135,138]. 

(1) The elevation H and the azimuth A of the Sun are calculated (by one of the numerous 
computer programs) for every hour relative to the zenith position of the Sun on days of the spring or 
autumn equinox and the summer and winter solstice. 

(2) The azimuth of the Sun for a given window, measured from the perpendicular to the plane 
of the window at the point of incidence is equal to:  = A − A0. 

(3) The incidence angle of the beam on the vertical plane window is calculated by the special 
case of first cosine theorem for the trihedral angle when the dihedral angle in front of the desired 
plane angle is 90: cos = cosHcos. The incidence angle is:  = arccos[cosHcos(A − A0)]. 

(4) The refraction angle is calculated by Snell’s Law: n = arcsin(sin/n). 
(5) For a single glazed window (Figure 15a), the coordinates x and y of the output surface trace 

of the point 0 of incidence onto the input surface of the filter are determined by: x = stan and y = 
−{stan(n − )/cos}, where  is the refraction angle corresponding to the azimuthal incidence 
angle , calculated from proportion:  = n/ [134]Coordinates of incidence point’s traces are 
determined every hour for days of equinox and solstice. For a double glazed window (Figure 15b), 
the coordinates are determined by: x = stan and y = −{stan(− )/cos} [138]. 

 

Figure 15. Coordinates x and y of traces 01 and 02 on the filter’s output surface for 
incidence point 0 at (a) single and (b) double glazed windows. 
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(6) The trajectories of the output surface trace of the point of incidence are plotted for the days 
of equinoxes and solstices. Figure 16 shows an example of such trajectories for a window with 
azimuth of 120° for the city of Orenburg, Russia (the latitude of 51°46'N, the longitude of 55°06'E, 
GMT + 05:00). The trajectories are calculated for the days of the vernal equinox (21.03.2013), 
summer (21.06.2013) and winter (21.12.2013) solstice at s = 4 mm and n = 1.5. 

(7) The isochrones are plotted through the traces with the identical time. The trajectory of the 
point traces is symmetric with respect to the vertical for a window with the south orientation. Thus, 
the point of incidence on the input surface, depending on the time of day and season leaves the traces 
on the output surface on the complex and changing trajectory. 

(8) The date and time with the maximal Sun protection requirements are set to determine the 
optimum angle of the filter gratings slope. In Figure 16, the optimum slope angle is indicated for  
the 15 of July (for the middle of the hottest period for the city of Orenburg) for the zenith location of 
the Sun. The lines of the slope are drawn along the normals to the isochrones in the points found by 
interpolating between the spring-autumn and summer trajectories for the 15 of July. 

 

Figure 16. Optimum slope angle of filter’s gratings for window with azimuth of 120°. 0 
is point of incidence of solar beam onto input surface of filter. 

The developed algorithm [134] enables to optimize solar radiation filtering according to the 
orientation of a particular window to the cardinal and the known motion trajectory of the Sun relative 
to it. This algorithm was updated in [138] by selecting a date for calculation taking into account the 
local climate. As such a date the middle of the hottest period of the year or the day with the 
maximum solar radiation can be taken. Next, the time of zenith position of the Sun and the time with 
maximum solar radiation are determined for the selected date. The maximum solar radiation falls on 
the upper atmosphere at the noon. However, the transparency of the atmosphere significantly affects 
the daily course of radiation, especially in the summer months. The atmosphere is less transparent in 
the afternoon due to its higher dustiness and humidity and the emergence of convective cloudiness. 
Therefore, the maximum intensity of direct radiation in summer occurs in the morning hours. The 
updated algorithm [138] differs from the previous one starting from point 6. 

(6) The trajectories of the output surface trace of the point of incidence are plotted for the 
selected date through the hourly points with the calculated coordinates x and y. These trajectories 
will be approximately symmetric with respect to a line passing through the point corresponding to 
the time when the azimuths of the Sun and window are equal (x = 0 in Figure 17). The precise 
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symmetry is only for a window with the azimuth of 180, when the trajectory of the Sun relative to 
the window is symmetric. For such a window the strips of the filter’s gratings should be horizontal. 

 

Figure 17. Optimum slope angles of filter’s gratings by dates for single (a) and double (b) 
glazed windows with azimuth of 120°. 

(7) The line of symmetry of the trace trajectory is plotted for a certain time, for example, for the 
time with maximum solar radiation as in Figure 17. The angle between the perpendicular to this line 
of symmetry plotted through the corresponding point of the trace trajectory and the horizontal is the 
optimum slope angle of the filter’s gratings on the window pane. 

In Figure 17, the optimum angles of filter’s gratings slope for different dates are shown for 
single (s = 4 mm and n = 1.5) and double (s = 16 mm and n = 1.5) glazed windows with the azimuths 
of 120. Calculations were carried out also at the different refractive indices of the glass, distances 
between filter’s gratings and azimuths of the window, as well as at the different latitudes for the 
longitude of the city of Orenburg (55°06'E) [138]. Figure 18a demonstrates the dependencies of the 
optimum angle on the azimuth for the maximum solar radiation and the middle of the hottest period. 
The maximum difference between them is 22%. The dependences of the optimum slope angle on the 
latitude are presented in Figure 18b for the double glazed window with azimuth of 120. 

 

Figure 18. Dependences of optimum slope angle of filter’s gratings on azimuth of 
window (a) and latitude (b). 

In [136,139], a new more effective method to determine the optimum slope angle of filter’s 
gratings was presented.  

(1) By one of the many computer programs taking into account the geographical coordinates  
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of the building, elevation H and azimuth A of the Sun are calculated for the selected date through 
every minute (hour, etc.) relative to the time when the azimuth of the Sun and the azimuth A0 (0  
A0 < 360) of the window are equal (A = A0). At this time, the solar beams fall in the plane 
perpendicular to the window (y-axis in Figure 19). The trajectory of the Sun’s motion relative to 
window with azimuth of 120 and slope angles of filter’s gratings on a window pane are determined 
in Figure 19 for the city of Orenburg at 15.07.2015 (middle of the hottest period in Orenburg). 

 

Figure 19. Determination of the Sun’s trajectory relative to window and slope angles of 
filter’s gratings. 

(2) The azimuth of the Sun measured from the perpendicular to the window is calculated by:  
= A − A0. For further calculations, only the azimuths within −70    +70 should be taken because 
of the increase in reflectance at large incidence angles. 

(3) The incidence angle is calculated by: cos = cosHcos. The incidence angle is equal:  = 
arccos(cosHcos). Only the angles   70 should be taken for further calculations. 

(4) Values of the coordinates of trace of trajectory of the Sun on vertical plane of the window 
are calculated in the range of incidence angles   70: x = tan; y = tanH. Based on the results   
of calculations, the trace of the trajectory of the Sun is plotted (dashed line in Figure 19). The 
calculated points are indicated through every hour relative to 10 h 49 min (the time at A = A0), and 
also for 11 h 30 min (the time of maximum solar radiation). For 8 h 49 min at the azimuth A and the 
elevation H of the Sun, the arrows show order of obtaining the point of “trace” of the Sun on the 
plane of the window. 

(5) If a required time tmin of the minimum light transmittance of the window is preset (usually it 
is the time of maximum solar radiation) an equation of the curved trajectory is found through 
determined points of the trajectory in a selected time interval (for example, tmin ± 30 min). The 
equation of function can be found using the nonparametric regression analysis. Derivative of     
the obtained function is calculated for the point at tmin. This derivative is equal to angular coefficient 
ktan of the line tangent to the trajectory for the point at tmin. Desired optimal slope angle tan of the 
filter’s gratings on the window pane obtained by making a tangent is equal to: tan = arctanktan (42º in 
Figure 19). 
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If the time tmin is not initially set, linear approximation of the curved trajectory is performed and 
equation of the straight line is found: yapp = kappxapp + bapp. Using kapp = tanapp, desired optimal slope 
angle app of the filter’s gratings obtained by approximation is equal to: app = arctankapp (39º in 
Figure 19). The determined slope angles are adapted to the trajectory of the Sun’s motion relative to 
window. Table 2 shows the computational results of the slope angles of the filter’s gratings for 6 
different azimuths of the windows according to this method by the linear approximation [141]. 
Calculations are carried out for the double glazed window at the distance between gratings s = 16 
mm on the day (15.06.2018) and the time (11 h 30 min) of maximum solar radiation in the city of 
Orenburg. As the azimuth of the window increases from 90° to 180°, the slope angle of the filter’s 
gratings decreases from 44° to 0°. 

Table 2. Slope angles of filter’s gratings and characteristic angles of filter for different 
azimuths of windows [141]. 

Azimuth of window  Time interval Slope angle Characteristic angle 
105 7.20–12.20 43 7.96 
120 7.49–12.19 42 28.71 
135 8.36–13.06 36 47.17 
150 9.15–13.15 34 41.39 
165 9.18–13.48 25 40.22 
180 11.20–15.20 0 27.71 

The slope angles of filter’s gratings determined according to the initial algorithm [134,135,138] 
are smaller than by the new algorithm [136,139]. The new algorithm is universal and suitable for 
windows with any glazing (by the initial algorithm, the angles for the single and double glazed 
windows are different), as well as for devices with sloped shading elements, for example, for zebra 
blinds with sloped strips. For the south window with the azimuth of 180°, the angles are the same 
since the Sun’s trajectory in this case is symmetric with respect to the zenith position of the Sun. 

3.5. Methods for determining the characteristic angle of the filter 

Since the angular characteristic of the light transmission of the filter is virtually symmetrical 
relative to its characteristic angle [131,133,134], for a given characteristic, the characteristic angle 
can be determined graphically from the line of symmetry between the areas of decreasing and 
increasing transmission (Figure 13). After determining the optimum angle of the filter gratings slope 
it is necessary to find its geometric parameters to meet the angular-selective characteristic of the light 
transmission required to the particular window. They are calculated according to the following 
algorithm [134]. 

(1) The pre-specified angular-selective characteristic of the filter is shown in Figure 20 as a 
dependency of the light transmittance pre on the incidence angle . 

(2) The pre-specified characteristic is corrected taking into account the angular dependence of 
the reflectance and absorptance. The corrected characteristic of light transmission of the filter is 
shown in Figure 20 by line cor. The values are calculated by: cor = pre/raw, where raw is the 
transmittance of a raw glass calculated by Eq 3 or 4. 
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Figure 20. Calculating the geometric parameters of the filter with the pre-specified 
angular characteristic. pre, cor, app, cal and fin are the pre-specified, corrected, 
approximated, calculated and final angular characteristics, respectively. 

(3) The corrected line cor is replaced by a polygonal line app as a result of piecewise linear 
approximation. Figure 13 shows that the calculated characteristics of the light transmission are close 
to the polygonal lines. The horizontal areas with the minimum and maximum light transmission are 
calculated, respectively, by: 

 = (c1 − c4)/(c1 + c2) (5) 

 = c3/(c1 + c2) (6) 

The sloped areas with the increasing and decreasing transmittance are calculated for the single 
and double glazed windows, respectively, by: 

   2 2 2 2
1 4 1 20.5 0.5 sin sin sin sininc c cc c s n s n c c             (7) 

   2 2 2 2
1 4 1 20.5 0.5 sin sin sin sindec c cc c s n s n c c             (8) 

   1 4 1 20.5 0.5 tan taninc cc c s s c c         (9) 

   1 4 1 20.5 0.5 tan tandec cc c s s c c         (10) 

where  is the projection of the incidence angle on a plane perpendicular to the gratings (Section B in 
Figure 10). Eqs 5–10 were obtained from the calculation equations of the graphic-analytical method 
given in method for calculating the angular dependence of light transmittance of grating filter 
subsection. 

(4) The value of the filter characteristic angle c is determined graphically on the vertical axis 
of symmetry between the decreasing and increasing areas of the polygonal line app (Figure 20). This 
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symmetry of the values of light transmittance is the result of reversing the signs before the 
summands in Eqs 7–10. 

A new method is developed [136,141,142] to optimize the characteristic angle of the filter at 
preset date and time of day taking into account orientation of the window to the cardinal, the latitude 
of the building, the seasonal and daily distribution of the solar radiation intensity. The characteristic 
angle is determined as a projection of the incidence angle on a plane perpendicular to the strips of the 
gratings (Section B in Figure 10) for the single and double glazed window, respectively, by Eqs 11 
and 12: 

   
 

   
 

2
2

2

tan tan cos
arctan tan cos arctan

cos tan
n n n n

c n
n n n

                           
 (11)

 
 

2
2

2

tan tan cos
arctan tan cos arctan

cos tanc

                     
 (12)

where  = A – A0. To calculate the characteristic angle, the values of the azimuth and elevation of the 
Sun are taken for the time when a minimum directional light transmission is required. 

Determination of projections of the traces of the incidence point on the input gratings surface on 
a plane perpendicular to the strips of the filter’s gratings is shown in Figure 21 at the characteristic 
angle and an arbitrary incidence angle. The characteristic angles of filters for the different azimuths 
of the windows calculated by Eq 12 [141] are demonstrated in Table 2. In Figure 21, the arrangement 
of the strips is shown at 11 h 49 min. 

 

Figure 21. Projections of the traces of the incidence point on a plane perpendicular to the 
strips of the filter’s gratings. 0 is the incidence point on the input gratings surface, 01 and 
0'1 are the traces of point 0 on the output gratings surface at the characteristic angle and 
an arbitrary incidence angle, 02 and 0'2 are the projections of the points 01 and 0'1 on the 
plane perpendicular to the strips,  is a shift between filter’s gratings at the characteristic 
angle and arbitrary incidence angle. 

The shift  between filter’s gratings at the characteristic angle and arbitrary incidence angle 
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provides the calculation of the bandwidth of the filter at this arbitrary incidence angle. 

3.6. Methods for determining the widths of strips of filter’s gratings 

For a given angular characteristic of the light transmission of the filter (Figure 20), the widths of 
the alternating strips of filter’s gratings are calculated according to the following initial    
algorithm [134]. 

(1) The values of the widths of the strips c1, c2, c3 and c4 are determined by solving a system of 
four equations, one of which is the equation of the periods of the input and output gratings: c1 + c2 = 
c3 + c4. Other three equations are based on Eqs 5–10 for areas of the line app (Figure 20). The 
transmittances 1 and 2 at the angles 1 and 2 are determined graphically for two arbitrary points 1 
and 2 on the sloping area of the line app. Eq 8 or 10 for the decreasing area is used twice with the 
substitution of the found values. Eq 5 for the area with the constant minimum light transmittance is 
applied as the fourth equation by the substitution of the appropriate value 3, defined in Figure 20. 

(2) Graphic-analytical calculation by Eqs 5–10 is carried out for a filter with the determined 
geometric parameters c1, c2, c3, c4 and c. Figure 20 shows the calculated characteristic cal, which 
may differ from the line app if the values c1, c2, c3, c4 and c determined by solving the system of 
four equations are rounded. 

(3) The final (actual) angular characteristic of the filter fin with the accepted geometric 
parameters is obtained by the correction taking into account the angular dependence of the 
reflectance and absorptance by: fin = calraw. 

By a new method [136,141,142], the theoretical values of required minimum min and maximum 
max transmittances are preset to optimize the geometric parameters of the filter at preset date and 
time of day taking into account orientation of the window to the cardinal, the latitude of the building, 
the seasonal and daily distribution of the solar radiation intensity. The minimum and maximum 
theoretical light transmittances are preset taking into account Eqs 5 and 6. The widths of the strips 
are calculated by: 

2 2 2 2
3 2 sin sin 2 sin sinc c av avc s n s n         (for a single glazing) (13) 

3 2 tan 2 tanc avc s s     (for a double/triple glazing) (14) 

 4 3 max max1c c     (15) 

 2 3 min 3 4c c c c     (16) 

1 3 4 2c c c c  
 (17) 

where av is the preset average incidence angle (av < c) at which the directional light 
transmittance of the filter should have the average value av = 0.5(min + min), min and max are the 
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preset minimum and maximum theoretical transmittances (without taking into account the reflection 
and absorption). 

The widths of all strips of both gratings decrease with the increasing average angle as can be 
seen from Eqs 13 and 14. Selection of the average incidence angle predetermines the widths of the 
alternating angular ranges with decreasing, minimum, increasing and maximum light transmittances, 
of which the theoretical angular characteristic of the filter consists (Figure 13). 

The widths of the strips calculated [141] by Eqs 14–17 for the double glazed window with the 
azimuth of 120° at the distance between gratings s = 16 mm on the day (15.06.2018) and the time (11 h 
30 min) of maximum solar radiation in the city of Orenburg at the different average incidence angles 
and light transmittances are presented in Table 3. 

Table 3. Widths of strips at different average incidence angles and light transmittances [141]. 

 Average angle (degree) Widths of strips (mm) 
c1 c2 c3 c4

Light transmittances min = 0.45 (rmin 

= 0.26) and max = 0.7 (rmax = 0.45) 

23 4.2233 1.4078 3.9418 1.6893
19.807 6.4286 2.1429 6 2.5714 
13.233 10.7143 3.5714 10 4.2857 
0 18.7768 6.2589 17.525 7.5107 

Light transmittances min = 0.15 (rmin 

= 0.09) and max = 0.4 (rmax = 0.26) 

23 7.3908 2.4636 3.9418 5.9127 
19.807 11.25 3.75 6 9 
13.233 18.75 6.25 10 15 
0 32.8594 10.9531 17.525 26.2875 

The minimum and maximum required transmittances rmin and rmax are calculated by Eq 18 at 
a = 0.01 mm−1 and n = 1.5 by correcting the theoretical light transmittances  taking into account 
the reflection according to Fresnel equations, as well as the absorption according to 
Bouguer–Lambert law: 

 
 

 
 

2
2 2 2

2 2 2 2

sin tan 1 sin
1 0.5 exp

sin tan sin
i in i in i

cor a
i in i in i

s
n

                                
 (18) 

where I is the incidence angle of the solar beams at the time, when a minimum light transmission is 
required (i.e. at the characteristic angle); in is the corresponding refractive angle; a is the natural 
absorptance of glass, mm−1; s is the total thickness of all panes, mm. The exponent of the first 
multiplier in the denominator is 2, 4 and 6 for single, double and triple glazed windows, respectively. 

For the experimental confirmation of calculated optimal geometric parameters of the filter, a 
model of the double glazed window with gratings has been made [141]. The experiments have been 
carried out in the city of Orenburg, Russia on June 15 (the day of maximum solar radiation in 
Orenburg), 2018, from 6 h 49 min up to 13 h 19 min The corresponding optimal filter parameters 
have been determined for a double glazed window with the azimuth of orientation of 120° and the 
distance between the gratings of 16 mm to provide the minimum light transmittance of the window  
at 11 h 30 min (the time of maximum solar radiation in the city of Orenburg). The calculated, 
corrected, and experimental angular characteristics of the filters at the average incidence angle    
of 19.807° and two different light transmittances (from Table 3) are presented in Figure 22. The 
experimental data are in good agreement with the corrected (theoretical) values. 



747 

AIMS Materials Science  Volume 7, Issue 6, 720–771. 

 

Figure 22. Calculated, corrected, and experimental angular characteristics of the filters at 
the different light transmittances. 

Thus, all the optimal geometrical parameters of the filter providing a minimum light 
transmission in a predetermined range of the incidence angles are determined. 

3.7. Methods for calculating the angular and temporal characteristics of light transmittance 

The theoretical angular characteristic of the filter is a dependence of its theoretical light 
transmittance on the incidence angle changing in a plane perpendicular to the gratings (Section B in 
Figure 10) when the light source moves only in this plane, unlike the Sun. The angular ranges with 
the constant minimum and maximum transmittances are calculated by Eqs 5 and 6. The decreasing 
and increasing transmittances are calculated by Eqs 7 and 8 for single glazing and by Eqs 9 and 10 
for double glazing. 

The theoretical temporal characteristic is a dependence of the theoretical transmittance on the 
time of day when the light source (the Sun) has a complicated trajectory. The ranges with the constant 
minimum and maximum transmittances are calculated also by Eqs 5 and 6. Decreasing and increasing 
transmittances are calculated [141,142] by: 

   2 3 1 20.5 0.5c c c c       (19) 

where  is the shift between the traces of the input gratings on the surface of the output gratings at the 
characteristic angle and an arbitrary incidence angle. This shift is determined for a single and double 
glazed window, respectively, by [142]: 
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                                                      

(20) 
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(21) 
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where  and i are the incidence angles; n and in are the corresponding refractive angles at the time, 
when a minimum or maximum transmission is required, and an arbitrary time, respectively.

 
The corrected characteristics of the transmittance cor are calculated taking into account the 

reflection according to Fresnel equations, as well as the absorption according to Bouguer–Lambert law 
by Eq 18. 

All the above equations are suitable for calculating the transmittance of the filter with gratings 
having the non-transmissive (zero transmittance) strips. When using chromogenic strips, some 
calculation equations should be changed. A filter, chromogenic strips of which are switched to the 
colored (darkened) state, in addition to transmitting the direct light through the transmissive strips of 
both gratings (i.e. through clear glass), can transmit the colored direct light through the chromogenic 
strips if this applied technology is not light scattering or reflective. After transformations of Eqs 5 
and 6, the minimum and maximum transmittances are calculated by [142]: 

    min 1 2 1 4 2 1 21chr chrc c c c c         (22) 

    max 1 2 2 1 2 3 2 1 21chr chr chr chrc c c c c         
 (23) 

where chr1 and chr2 are the directional transmittances (at normal incidence) of the chromogenic 
strips of the input and output gratings in their colored state, respectively. 

After transformations of Eqs 7–10, taking into account the partial transmission of the 
chromogenic strips, the decreasing and increasing transmittances are calculated for single and double 
glazings, respectively, by [142]: 

        2 2 2 2
1 4 1 2 1 2 1 2 2 1 2 3 1 1 2 1 20.5 0.5 sin sin sin sin 1dec c c chr chr chr chr chr chr chr chr chr chrc c s n s n c c c c c                         (24) 

       2 2 2 2
1 4 1 2 1 2 1 2 2 1 2 3 1 1 2 1 20.5 0.5 sin sin sin sin 1inc c c chr chr chr chr chr chr chr chr chr chrc c s n s n c c c c c                         (25) 

        1 4 1 2 1 2 1 2 2 1 2 3 1 1 2 1 20.5 0.5 tan tan 1dec c chr chr chr chr chr chr chr chr chr chrc c s s c c c c c                          (26)

        1 4 1 2 1 2 1 2 2 1 2 3 1 1 2 1 20.5 0.5 tan tan 1inc c chr chr chr chr chr chr chr chr chr chrc c s s c c c c c                          (27)

From Eq 19, the decreasing and increasing transmittances depending on the time of day are 
calculated by [142]: 

        2 3 1 2 1 2 1 2 2 1 2 3 1 1 2 1 20.5 0.5 1 chr chr chr chr chr chr chr chr chr chrc c c c c c c                        (28) 

The visible light transmittance of chromogenic glasses in the bleached state is comparable or 
less than that of the clear glass. Such transmittance of a smart window with the grating filter will 
exceed that for a conventional chromogenic smart window, since the total area of all chromogenic 
strips of both gratings is less than the total area of the conventional window. 
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3.8. Angular and temporal characteristics of light transmittance of smart windows 

The theoretical angular characteristic of the light transmittance of the filter with absorptive 
strips is calculated by Eqs 5–10. It shows changing the transmittance of the smart window in a plane 
perpendicular to the gratings (Section B in Figure 10), and can illustrate a dependence of the 
transmittance on projections of the real incidence angles on this plane. This characteristic is 
corrected by Eq 18 at the natural absorptance of the glassa = 0.01 mm−1 and the total thickness of 
all panes s = 8 mm. The angular characteristics of the light transmittance of the filter with 
thermochromic strips (chr1 = chr2 = 0.34, thermochromic composites introduced into polyolefin 
matrices [60]) instead of absorptive strips are calculated by Eqs 22–27 and corrected by Eq 18. The 
characteristic of a window fully covered with thermochromic layer is calculated by Eq 18 at  = 0.34. 

The angular characteristics of the solar transmittance of the filter with thermochromic strips 
(chr1 = chr2 = 0.62, thermochromic composites introduced into polyolefin matrices [60]) are 
calculated by Eqs 22–27 and corrected by Eq 18. The characteristic of a window fully covered with 
thermochromic layer is calculated by Eq 18 at  = 0.62. 

The theoretical and corrected temporal characteristics of the light and solar transmittance are 
calculated in a time interval from 6 h 49 min to 12 h 19 min (later than 12 h 19 min the real 
incidence angles of the solar beams exceed 70°). The minimum and maximum theoretical light 
transmittance of the window with absorptive strips is calculated by Eqs 5 and 6. The decreasing and 
increasing transmittances are calculated by Eq 19 substituting the shifts calculated by Eq 20 or 21.he 
incidence angles of the solar beams and corresponding refractive angles are determined every half 
hour relative to the time when the azimuths of the Sun and the window are equal (10 h 49 min) and 
for the time with the required minimum light transmission (11 h 30 min). The corrected characteristic 
is calculated by Eq 18. 

The temporal characteristics of the light transmittance of the window with thermochromic strips 
are calculated by Eqs 20–23 and 28 and corrected by Eq 18 for two cases: (1) chr1 = chr2 = 0.34 
(thermochromic composites introduced into polyolefin matrices [60]) and (2)chr1 = chr2 = 0.045 
(ligand-exchange thermochromic system integrated in a thin film [60]). The temporal characteristics 
of the light transmittance of the window fully covered with chromogenic layer (chr = 0.34 and chr = 
0.045) are calculated by Eq 18 at the corresponding incidence and refractive angles. 

The temporal characteristics of the solar transmittance of the window with thermochromic strips 
are calculated by Eqs 20–23 and 28 and corrected by Eq 18 for the same two materials at chr1 = chr2 
= 0.62 and chr1 = chr2 = 0.045. The temporal characteristics of the light transmittance of the window 
fully covered with chromogenic layer (chr = 0.62 and chr = 0.045) are calculated by Eq 18. 

The geometrical parameters of the filter calculated according to methods for determining the 
widths of strips of filter’s gratings subsection are the optimum slope angle of filter’s gratings of 42°, 
the characteristic angle of 28.71°, the widths of the strips of c1 = 11.25, c2 = 3.75, c3 = 6 and c4 = 9 mm. 

Figure 23 shows the theoretical and corrected angular characteristics calculated in [142] for light 
(Figure 23a) and solar (Figure 23b) transmittances of a filter with thermochromic and absorptive strips 
and a window fully covered with thermochromic layer. The characteristics of the thermochromic filter 
and thermochromic layer are given for the colored state of the thermochromic material. 
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Figure 23. Angular characteristics of transmittance. (a) 1 and 2—theoretical and 
corrected for filter with absorptive strips, 3 and 4— theoretical and corrected for filter 
with thermochromic strips at chr1 = chr2 = 0.34, 5— corrected for window fully covered 
with thermochromic layer at chr = 0.34. (b) 1 and 2— theoretical and corrected for filter 
with thermochromic strips at chr1 = chr2 = 0.62, 3—window fully covered with 
thermochromic layer at chr = 0.62.  

Distinction between all theoretical characteristics and their corrections increases with an 
increase in the incidence angle due to a nonlinear increase in the reflectance and absorptance. The 
calculated filter has the widths of the transmissive strips of the input gratings, which exceed the 
widths of the absorptive and thermochromic strips of the output gratings (c1 > c4, as in Figure 10c), 
therefore the theoretical transmittance is minimum in some angular range symmetrically around the 
characteristic angle (lines 1 and 3 in Figure 23a, line 1 in Figure 23b). The light transmittance of the 
filter with chromogenic strips is significantly higher than the filter with absorptive strips due to 
transmitting the direct sunlight through chromogenic strips additionally and selecting the material with 
high value of the visible light transmittance (chr1 = chr2 = 0.34) in its colored state. 

When comparing the corrected characteristics of a chromogenic grating filter (lines 4 in Figure 
23a and 2 in Figure 23b) and a layer of the same chromogenic material fully covering the window 
(lines 5 and 3 in Figure 23a,b), it can be seen that the filter provides a minimum of the light 
transmittance in a preset angular range symmetrically around the characteristic angle, while the 
transmittance of the window with the chromogenic layer just smoothly decreases with the increasing 
incidence angle. As a periodic structure, the filter also has other minimums of the transmittance at 
large incidence angles when the Sun protection is irrelevant due to an increase in the reflectance and 
absorptance. Moreover, with the initial selection of the angular range with the required minimum 
transmittance during the highest intensity of solar radiation and high temperature, in the adjacent 
angular ranges, the chromogenic strips will be in the bleached state under the influence of ambient 
stimulative conditions or with forced switching in the case of electrochromic materials. 

Figure 24 presents the temporal characteristics of the theoretical and corrected light (Figure 24a) 
and solar (Figure 24b) transmittances of the windows with absorptive and thermochromic strips and 
the window fully covered with thermochromic layer calculated in [142]. The characteristics are 
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shown for the colored state of the thermochromic strips and layer according to the calculation results 
without taking into account the fact that they can be switched to the bleached state. 

 

Figure 24. Theoretical (lines 1, 3 and 7) and corrected (lines 2, 4–6 and 8) temporal 
characteristics. (a) Light transmittance: 1 and 2—filter with thermochromic strips at chr1 
= chr2 = 0.34, 3 and 4—filter with thermochromic strips at chr1 = chr2 = 0.045, 5     
and 6—window fully covered with thermochromic layer at chr = 0.34 and chr = 0.045, 
respectively, 7 and 8—filter with absorptive strips. (b) Solar transmittance: 1        
and 2—filter with thermochromic strips at chr1 = chr2 = 0.62, 3 and 4—filter with 
thermochromic strips at chr1 = chr2 = 0.045, 5 and 6—window fully covered with 
thermochromic layer at chr = 0.62 and chr = 0.045, respectively. 

The characteristics with a gradual change in the incidence angles on the plane perpendicular to 
the gratings, shown in Figure 23, are valid only for the eastern and western windows of buildings 
located on the equator. In all other cases, due to a simultaneous change in the azimuth and the 
elevation of the Sun, the transmittance of the window depends on the projections of the real 
incidence angles of the solar beams on the plane perpendicular to the gratings [134,136]. The values 
of these projections, taking into account the slope angle of the filter’s gratings adapted to the 
trajectory of the Sun relative to a window (Figure 10a), can increase or decrease repeatedly during the 
day. Therefore, the ranges of angular (Figure 23) and temporal (Figure 24) characteristics with the 
same minimum transmittance significantly differ. The temporal characteristics of the windows with 
filters have two time intervals with minimum transmittance, the first of which is very long. However, 
in the morning hours with low intensity of ultraviolet and shortwave visible solar radiation and low 
temperature, the chromogenic (photochromic or thermochromic/thermotropic) strips should be 
switched to the bleached state and the filter will function only at a later time, providing the required 
minimum transmittance at preset time 11 h 30 min and, in this case, in some time interval around it. 
This time duration depends not only on ratio of the widths of strips (as for angular characteristics), 
but also on the change in the real incidence angles. The required time duration can be achieved by 
numerical simulation, setting different values of the average incidence angle. The functioning of the 
filter is much easier when using gasochromic or electrochromic materials, as they can be switched 
between bleached and colored state at any time. 

The temporal characteristics of the light and solar transmittance of the window fully covered 
with chromogenic layer are not as smooth and monotonically decreasing as its angular characteristics, 
since the real incidence angles of the solar beams do not change monotonically. In the time interval 
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when the chromogenic layer fully covering the window is most likely to be switched to the colored 
state (from 10 h 49 min to 12 h 19 min), its temporal characteristics are decreasing (lines 5 in Figure 
24) or almost unchanged (lines 6). 

The light transmittance of the filter with chromogenic strips (line 2 in Figure 24a) is 
significantly higher than the filter with absorptive strips (line 8) for the material with a high value of 
the visible light transmittance of chr1 = chr2 = 0.34 in its colored state. At a low its value (chr1 = chr2 
= 0.045, line 4), this excess is negligible and exists only due to additional transmitting the direct 
sunlight through chromogenic strips. Vice versa, the excess of the light and solar transmittance of the 
filter with chromogenic strips over the transmittance of the window fully covered with the same 
chromogenic layer is greater for the material with a low value of the transmittance (chr1 = chr2     
= 0.045, lines 4 compared to lines 6 in Figure 24) than the material with a high its value (chr1 = chr2 
= 0.34 and chr1 = chr2 = 0.62, lines 2 in Figure 24a,b compared to lines 5). Here the reason is the 
smaller total area of all chromogenic strips of both gratings of the filter than the total area of the 
chromogenic window. 

In Figure 24, both light and solar transmittances (lines 2 and 4) have two explicit minimums 
(excepting line 2 in Figure 24b for a material with very high solar transmittance of 0.62), during the 
first of which (partially or entirely) it is desirable to switch the chromogenic strips to the bleached state. 
When choosing photochromic, thermochromic, etc. materials for both gratings, we should take into 
account external conditions that affect the switching mode. For materials switching by electric current, 
programmable switches can be used. 

With a pre-selected time of 11 h 30 min for a minimum required transmittance, the maximum is 
observed at 10 h 49 min (when the azimuths of the Sun and the window are equal), since the shift 
between the traces of the input gratings on the surface of the output gratings by Eq 20 or 21 has a 
maximum value. In the same time interval (from 10 h 49 min to 12 h 19 min in Figure 24), the values of 
the maximums and minimums of transmittance and the ratios between them depend on the light and 
solar transmittance of the selected material in the colored state of the strips (lines 2 and 4 in Figure 24). 

To expand the angular ranges with increasing, decreasing, or constant transmittance, it is 
necessary to increase the period of the gratings, as it was proved computationally and experimentally 
in [131]. According to Eqs 13–17, the widths of all strips, therefore, the period increase with the 
decreasing average angle. That is, with the same times of the maximums of transmittance (10 h 49 min 
and 12 h 19 min), the time interval with a constant minimum of transmittance can be increased by the 
decrease in the average angle. With the same widths of the strips of gratings and other parameters, to 
change the times of the maximums of transmittance, it is necessary to change the characteristic angle 
of the filter (according to Eqs 7–10 and 24–27), i.e., to choose a different time with a required 
minimum of transmittance (according to Eqs 11 and 12). 

Thereby, switching the chromogenic strips to the bleached state at the required time by choosing 
the suitable material is an important advantage of using chromogenic strips instead of absorptive ones, 
which significantly increases transmission at low intensity of solar radiation and low temperature. In 
the colored state of chromogenic strips having the different transmittance depending on the material 
used (lines 2 and 4 in Figure 24 in the time interval from 10 h 49 min to 12 h 19 min), the ratio between 
the transmission of direct and diffused radiation varies additionally. In addition to the angular ranges 
shown in Figure 10d for the diffused “non colored” beams passing through the transmissive strips of 
the output gratings, the diffused beams will also partially pass through the chromogenic strips of both 
gratings and create more comfortable daylighting. 
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The main advantage of a smart window with chromogenic filter over a conventional chromogenic 
smart window is the angular selectivity of its transmittance (lines 2 and 3 in Figure 23). The 
transmittance of the conventional window decreases with the increasing incidence angle only due to an 
increase in the reflectance and absorptance. The filter additionally regulates the transmittance of the 
window with a change in the incidence angle due to the gratings. Since the incidence angles of the 
solar beams change over time, the angular selectivity of the filter also causes a temporary change in the 
transmittance of the filter. Comparison of lines 2 and 4 in Figure 24 for filters of different chromogenic 
materials with lines 5 and 6 for conventional windows made of the same materials, respectively, shows 
that the transmittance control is more pronounced at the low transmittance of material in the colored 
state. At very high values (0.62 for the solar transmittance in Figure 24b), lines 2 and 5 are only slightly 
different. 

In the colored state of chromogenic material, a conventional smart window passes diffused light 
only through the chromogenic layer fully covering the window, and a window with chromogenic filter, 
in addition, also passes diffused light through transmissive strips of pure glass, as shown in Figure 10d. 
In the bleached state, the chromogenic material slightly reduces the transmittance of a window 
compared to pure glass. Therefore, the window with filter has a higher visible light and solar 
transmittance because of the smaller total area [131,141] of all chromogenic strips of both gratings 
than the total area of the conventional chromogenic window. According to the results obtained for the 
widths of the strips in methods for determining the widths of strips of filter’s gratings subsection, this 
area is 15% smaller. 

Thus, the analysis of the use of chromogenic technologies in the filters with angular selectivity 
of the transmission and the results of calculation of their angular and temporal characteristics of the 
light and solar transmittance according to the modified method confirm the advantages of a smart 
window with chromogenic filter above (1) a window with a filter with absorptive strips (ability to 
switch the chromogenic strips to the bleached state and increase transmission at low intensity of solar 
radiation and low temperature, increased comfort of daylighting due to an additional variation of the 
ratio between the transmission of direct and diffused radiation), (2) a conventional chromogenic 
smart window (angular selectivity of the transmittance, possibility to transmit the diffused light when 
attenuating the direct light in the colored state, the higher visible light and solar transmittance in the 
bleached state). 

3.9. Numerical simulation of the light transmittance of smart window for 12 months 

A numerical simulation of the light transmission of a smart window with integrated optical filter 
for 12 months have been performed [137] to demonstrate the possibility to provide dynamic control 
of daylighting and solar energy throughout the year without human intervention and the use of 
daylight redirection devices. Calculations of the theoretical and corrected temporal characteristics of 
the light transmittance have been carried out for a filter with geometric parameters shown in Tables 2 
and 3: the slope angle of filter’s gratings of 42°, the characteristic angle of the filter of 28.71°, the 
average incidence angle of 19.807°, the widths of the strips of c1 = 6.4286, c2 = 2.1429, c3 = 6 and c4 
= 2.5714 mm. These parameters were determined at the given minimum (min = 0.45) and maximum 
(max = 0.7) theoretical transmittance for a double glazed window with the azimuth of 120 at the 
distance between the gratings s = 16 mm per day and the time of the maximum solar radiation in 
Orenburg. 
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The results of calculations of the elevation and azimuth of the Sun, the difference between the 
azimuths of the Sun and the window, the incidence angles of the solar beams, the coordinates of the 
traces of the point of incidence of the solar beams on the output surface, the theoretical and corrected 
transmittances of the filter depending on the time of day for the 15th day of each month. The 
theoretical and corrected temporal characteristics of the filter are shown in Figure 25. Line 6e shows 
the results of experiments on a double glazed window model conducted on June 15, 2019 in 
Orenburg. All geometric parameters of the model correspond to the values accepted for calculations. 

According to Eq 18, the distinction between the theoretical and corrected transmittances 
depends only on the incidence angle. The characteristics presented in Figure 25 show that this 
distinction increases with the increasing incidence angle. The time of day when the azimuths of the 
Sun and the window are equal, as well as the daylight hours and the corresponding time intervals 
selected to approximate the trajectory of the Sun, differ from month to month. 

Values of the corrected transmittance are minimal for the pre-set time (11 h 30 min) and the date 
(15.06.2018) of the maximum solar radiation. The only exception is lower values at large incidence 
angles of the solar beams, which is explained by an increase in the reflectance. The average values of 
the theoretical and corrected light transmittances of the filter at the corresponding time intervals for 
the warmest months [137] are presented in Table 4. These data demonstrate the minimum 
transmittance in June, as well as in May and July, when protection from solar radiation is most in 
demand. 

 

Figure 25. Monthly (1–12) dependences of the theoretical (upper lines) and corrected 
(lower lines) light transmittances of a smart window with an integrated optical filter on 
the time of day at min = 0.45 and max = 0.7. 

The experimental results are in good agreement with the calculated data. According to Figure 25 
it can be seen that the largest deviations (up to 16%) between the corrected calculated (lower line 6) 



755 

AIMS Materials Science  Volume 7, Issue 6, 720–771. 

and experimental (line 6e) transmittances are observed at large incidence angles of the solar beams, 
which is explained by an increase in the reflectance and absorptance. 

Table 4. Monthly average light transmittances of the filter from April to October [137]. 

Month Time interval,  

h min 

Average light transmittance, Average light transmittance, 
 cor  cor 

April 8.1–12.4 0.52 0.4 0.31 0.22 
May 8.31–13.01 0.49 0.37 0.26 0.18 
June 6.49–13.19 0.51 0.36 0.27 0.19 
July 6.49–13.19 0.5 0.37 0.24 0.17 
August 6.26–13.56 0.52 0.38 0.3 0.22 
September 7.48–12.48 0.57 0.44 0.36 0.27 
October 8.09–12.39 0.52 0.4 0.35 0.26 

Thus, smart window with integrated optical filter with parameters determined by the methods 
described above, provides angular-selective control of daylighting and solar energy during the 
movement of the Sun without human intervention and the use of daylight redirection devices 
throughout the year. Such a smart window has the minimum light transmission at a given date and 
time of the day and differs from blinds and other similar devices. The calculations have been 
performed for gratings with transmissive and non-transmissive strips, therefore, in the cold season, 
the filter can also have light transmission minimums (Figure 25), since the gratings are periodic 
structures. Therefore, instead of non-transmissive (reflective, absorptive or scattering) strips, it is 
advisable to use strips using chromogenic and other technologies described in materials section and 
angular and temporal characteristics of light transmittance of smart windows subsection. In this case, 
in the cold season, the filter will let in as much light and solar energy as possible. 

3.10. Diffraction in the grating optical filters with angular-selective light transmission 

Since with the increasing incidence angle of parallel beams onto the gratings their period 
decrease, diffraction limitations can occur even in gratings with millimeter periods or more. In [143], 
the influence of diffraction on the angular-selective directional light transmission of grating optical 
filters with periods of up to tens of millimeters designed for single and double glazed smart windows, 
have been investigated. 

To calculate the filter parameters at a complex trajectory of the Sun’s motion, the projection of 
the angle  between the beam passing through the input gratings (in Figure 26a this angle belongs to 
the plane of incidence) and the perpendicular to the window on the plane ' is determined. The plane 
' is perpendicular to the strips of the gratings. For single glazing, this angle is equal to the refractive 
angle  = arcsin(sin/n). For double glazing, it is equal to the incidence angle  = . The projection 
' of the refractive or incidence angle  is determined by: 

   ' 2 2arctan cos arctanx y x y s        
(29) 
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Figure 26. (a) Projection ' of refractive (or incidence) angle  on a plane perpendicular 
to the strips, (b) smart window with the sloped gratings, and (c) diffraction in the input 
gratings of the filter [143]. 

Figure 26b shows a diagram of a smart window with sloped gratings adapted to the trajectory of 
the Sun in relation to the window, and the coordinates of the traces of the point of incidence O1 at the 
characteristic (Oс) and arbitrary (O2) incidence angles. To calculate the characteristic angle according 
to Eq 29, we take the values x = xmin and у = уmin, calculated for the values of the azimuth of the Sun 
and the incidence angle, corresponding to the time of the maximum solar radiation, when the 
directional light transmission of the window should have a minimum value. The arrangement of the 
strips in Figure 26b corresponds to the characteristic angle of incidence when the incidence point O1 
is in the middle of the transmissive strip of the input gratings, and its trace Oc is in the middle of the 
non-transmissive strip of the output gratings. Figure 26b shows the shift  between the traces of the 
input gratings in the plane of the output gratings for the characteristic angle c and an arbitrary 
incidence angle  (the projection of the distance between points O2 and Oc on a plane perpendicular 
to the strips of the gratings). 

It is known that with an oblique incidence of parallel beams onto the gratings, the diffraction 
pattern is observed on a plane perpendicular to the incident beams. In the simplest case, when the 
incidence angle of the beams onto the plane of the grating changes, and the direction of the beams 
always remains perpendicular to the slits of the diffraction grating (Figure 11), the period of the 
grating d decreases according to: d' = dcos. However, in our case, it must be taken into account that 
the incidence angles of the solar beams simultaneously change both in the azimuthal (horizontal) and 
vertical plane. In addition, the gratings of the filter are located at an angle  to the horizontal. 

The periods of the input and output gratings are d = с1 + с2 = с3 + с4. The diffraction pattern 
after the passage of parallel beams through the input gratings will be observed with a decrease in the 
period of these gratings according to: d' = dcos' (Figure 26c).The widths of the strips of the input 
gratings will decrease proportionally. With the oblique incidence of parallel beams, the width of the 
transmissive strip and the period of the gratings (after transformations, taking into account Eq 29) 
will be, respectively: 

   ' 2 2 2 2
1 1 cos arctanc c s s x y x y        (30) 
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   ' 2 2 2 2cos arctand ds s x y x y        
(31) 

In Figure 26c, the plane of incidence of the solar beams at a given instant of time (plane     
in Figure 26a) is projected onto the plane perpendicular to the strips of the gratings (plane ' in 
Figure 26a). The directions of the intensity maxima up to the third order and the projection 1' of the 
diffraction angle corresponding to the first-order maximum are conventionally shown. 

According to the well-known diffraction grating equation, after the passage of sunlight through 
the input gratings with the number of slits, i.e. transmissive strips, N, light intensity I() at diffraction 
angle  will be equal to:  

 
2 2

' ' ' '
1 1

0

sin sin sin sin
sin sin sin

c c N d d
I I

                                            
(32) 

where I0 is the light intensity in the direction of the main diffraction maximum,  is the wavelength. 
When determining the directional transmittance by Eqs 5, 6 and 19 and correcting it by Eq 18, 

diffraction is not taken into account. The concept of “directional light transmission” is permissible 
only at very small diffraction angles , which can be observed when the grating period is 
significantly larger than the wavelength. Calculations show [131,136] that the grating periods of 
optical filters for windows exceed the wavelengths of visible light by four orders of magnitude for 
single glazing and five orders of magnitude for double glazing. In accordance with the equation d' = 
dcos', the influence of diffraction increases with the increasing incidence angles of the solar beams, 
especially when approaching “sliding” beams, that is, to incidence angles of 90°. However, at such 
incidence angles, the solar beams passing through the window structure fall into the area in close 
proximity to the window and there is no need to control the light transmission. 

The directions of intensity maxima are determined from the condition d'(sinm − sin) = m, 
where m is the order of the maximum. This expression is valid for an unlimited grating, however, in 
window constructions the number of periods is quite large and is about 50 for double glazing and 375 
for single glazing. The intensity corresponding to the diffraction angle m is calculated by Eq 32. 

With a significant excess of the grating period over the light wavelength and, accordingly, at 
small diffraction angles, the total intensity after passing through the input gratings is equal to: Ipas1 = 
с1Ifal/d, where Ifal is the intensity of the falling light. This intensity is the sum of the light intensity in 
the direction of the main maximum and the diffracted light intensity Ipas1 = I0 + Idif, where I0 = 
(с1/d)2Ifal. Then the total intensity of the transmitted light is equal to: 

2
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(33)

where the second term in parentheses indicates the fraction of diffracted light. 
The intensity of diffracted light is related to the intensity Ifal of the light incident on the input 

gratings by the ratio: 
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 1 1
1 2dif fal

с d с
I I

d




 
(34)

The maximum intensity of the diffracted light according to this expression is achieved at с1 = 
0.5d, i.e., when the widths of the transmissive and non-transmissive strips of the gratings are equal с1 
= с2. 

At small diffraction angles, the solar radiation transmitted through the input gratings can be 
considered directed (not scattered). For window structures, the scattered diffracted light is acceptable 
in view of the fact that protection from the solar radiation cannot simultaneously provide good 
visibility through the window. 

The propagation of a parallel beam of light transmitted through the gratings can be considered 
straightforward and obeying geometric optics at distances from the gratings r << D2/, where D is 
the beam diameter. For real window structures and the distances between the input and output filter 
gratings, this inequality is fully satisfied. 

The light diffracted in the input gratings partially passes through the transmissive strips of the 
output gratings (Figure 26c), the rest is blocked by non-transmissive strips. Accordingly, the light 
transmittance calculated by Eqs 5, 6 and 19 and corrected by Eq 18 decreases. Let us evaluate the 
decrease in the transmittance due to diffraction at distances of the maximum wavelength of visible 
radiation of 780 nm from the two edges of the non-transmissive strip of the output gratings within 
one its period. At large distances, the influence of diffraction can be neglected. The intensity of 
diffracted light will decrease in comparison with that calculated by Eq 34 by the amount of (2      
× 780/d)2Ifal. Then the intensity of the light diffracted on the input gratings and passing through the 
output gratings is (with a length dimension in mm): 

  6
1 1

1 2

2,4336 10
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с d с
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d

  


 
(35)

Thus, it follows from Eqs 33–35 that the intensity of the light transmitted through the input 
gratings and reaching the output gratings taking into account diffraction losses is equal to: 
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Excluding diffraction loss: 

2
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1 2pas fal

с с с
I I

d

 
  
   (37)

The ratio of the expressions in parentheses in Eqs 36 and 37 shows a decrease in the transmittance of 
the filter due to diffraction by the input gratings. 

The projection of the distance of 780 nm from the edge of the non-transmissive strip of the 
output gratings onto the plane of Figure 26c with a distance s between the filter gratings is defined by 
Eq 38: 
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 4 ' ' ' '7.8 10 cos tan tans            (38)

Then the projection ' of the diffraction angle  at a distance of 780 nm from the edge of the strip is 
defined by Eq 39: 

 ' 4 ' ' 'arctan 7.8 10 cos tans       
 

(39)

The diffraction angle is determined by: 
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where from: 

   4
0 0arctan cos 7.8 10A A y s A A             (41)

The orders of intensity maxima within the angle  are determined from the condition d'sinm = 
± m. The corresponding intensity maxima and intensity in the direction of the angle  are 
determined by Eq 32. 

The corrected directional transmittance calculated by Eq 18 is equal to the ratio of the intensity 
passing through the output gratings to the intensity incident on the input gratings: cor = Ipas/Ifal 
(without taking into account the losses of diffracted light at the edges of the non-transmissive strips 
of the output gratings). When accounting for diffraction by Eqs 36 and 37 in Eq 18, the 
corresponding diffraction factor is added to calculate the light transmittance: 
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(42) 

Diffraction on the output gratings does not affect the value of the transmittance, however, the 
fraction of diffracted (scattered) light will increase. According to Eq 42, the diffraction limits of the 
incidence angles and the widths of the transmissive and non-transmissive strips of the input gratings 
are estimated at which the influence of the diffraction factor can be neglected. 

In [143], the effect of diffraction on the light transmission of the optical filter with the 
parameters described in numerical simulation of the light transmittance of smart window for 12 
months section was estimated. At the incidence angles of the solar beams greater than 70°, the 
reflectance sharply increases, as well as transmitted beams fall into the area near the window, i.e. 
there is no need for control the light transmission. With the accepted parameters of the filter, the 
incidence angle is  = 69.9842° at 12 h 49 min At this angle, the width of the transmissive strip of 
the input gratings and the grating period by Eqs 30 and 31 are equal to с1' = 6.3193 and d' = 8.4258 
mm. 

The total intensity of the light transmitted through the input gratings, according to the equation 
Ipas1 = с1Ifal/d is equal to Ipas1 = 0.75Ifal. It consists of the light intensity in the direction of the main 
maximum I0 = 0.5625Ifal and the diffracted light intensity Idif = 0.1875Ifal (according to Eqs 33 and 34). 
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The diffraction angle at the distance of 780 nm from the edge of the non-transmissive strip of 
the output gratings according to Eq 41 is  = 0.0017°. The maxima of the first and second orders 
from the condition d'sinm = ± m at  = 780 nm are 1 = 0.0053° and 2 = 0.0106°. Within the angle 
there are no intensity maxima, except for the main maximum. The intensities calculated by Eq 32 at 
N = 50 corresponding to the diffraction angles , 1 and 2 are equal to: I() = 0.5849I0, I(1) = 
0.0169I0 and I(2) = 0.0132I0. 

The main diffraction maximum is sharp (75% of the total intensity of the light transmitted 
through the input gratings) and narrow—of the order of the wavelength on the plane of the output 
gratings (from a comparison of the diffraction angle  = 0.0017° and the direction of the minimum 
between the zeroth and first order maxima 1/2 = 0.00265°). 

The shift between the traces of the input gratings in the plane of the output gratings for the 
characteristic angle c and incidence angle  = 69.9842° according to Eq 21 is  = 11.78 mm. The 
theoretical light transmittance according to Eq 19 is  = 0.5973. 

According to Eqs 18 and 42, the corrected light transmittance was calculated without taking into 
account and taking into account diffraction. In both cases, they are equal to cor = 0.3783. The 
transmittances are practically the same, because the diffraction factor in Eq 42 is 0.9999998. At the 
incidence angle of  = 69.9842°, the value of the diffraction factor in Eq 42 would be comparable 
with the multiplication of the second and third factors estimating the contribution of reflection and 
absorption, at the widths of the strips of several nanometers, which is impossible in the considered 
window constructions. With the widths of the strips used for the calculation at the incidence angles 
of 85°, 87° and 89°, the corrected light transmittance without and taking into account diffraction is, 
respectively, 0.0848, 0.0365 and 0.005, i.e., when approaching the incidence angle of 90°, the 
transmittance tends to zero. 

For a single glazed window with a distance between the gratings (glass thickness) s = 4 mm and 
widths of the strips c1 = 3, c2 = 1, c3 = 2.5 and c4 = 1.5 mm (a filter with such parameters has been 
considered in [131]), the diffraction factor in Eq 42 is 0.9999992 and the influence of diffraction can 
also be neglected. 

3.11. Novel building typology with optimal daylighting 

A novel building typology consisting in the use of the grating optical filters in the smart 
windows to achieve comfortable conditions of natural lighting and insolation indoors has been 
presented in [140]. The problems of ensuring comfortable conditions will always be relevant, 
including in the cities of the future, since without their optimal solution it is impossible to imagine a 
building that fully corresponds to the concept of “smart home”. For a separate building, these 
problems could be solved quite simply by choosing the maximum area of light openings for the 
northern sector, the minimum for the southern, and the middle for the eastern and western sectors. 
However, from an architectural and artistic point of view, such a building with different window 
sizes on different facades can hardly be called a successful solution. It would be even more difficult 
to imagine a similar approach for a complex of buildings, given their mutual influence on the 
distribution of sunlight. In modern conditions for a building with identical windows, problems are 
solved with the use of blinds and other devices for redistributing light fluxes. 

The use of low-emission coatings, chromogenic and other advanced technologies in windows is 
constantly expanding, especially due to a gradual decrease in cost, that is, the future lies with such 
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technologies. The disadvantage of such windows is the inability to transmit scattered sunlight when 
blocking direct radiation. Discomfort in the room is caused by direct rays, and in the active state, smart 
windows also cease to transmit scattered rays. The functioning of such windows does not take into 
account the position of the Sun in the sky, that is, the incidence angles of the solar beams onto the 
window, although at some angles protection is not required even from direct beams. 

A novel approach to the use of chromogenic technologies in the smart windows is that thin-film 
chromogenic coating is applied not over the entire area of one surface of pane, as in conventional 
smart windows, but in the form of parallel strips on two surfaces of the one or two panes, from which 
a grating optical filter with angular selectivity consists. Figure 27 demonstrates the principles of 
using the smart windows with optical filters on an example of a complex of three buildings by 
dividing the building’s facade into shading and lighting zones, taking into account two opposing 
buildings. All three buildings are located in parallel, the paths of solar beams are shown for the time 
of the maximum solar radiation at the selected calculating date (usually this is the middle of the 
hottest period of the year or the day of the maximum solar radiation). At this time, the illuminated 
part of the facade of the building needs the maximum Sun protection, that is, the light transmission 
of the smart windows with activated chromogenic strips should be minimal, and for the shaded part 
of the facade it is possible to use smart windows with a relatively large light transmission (in extreme 
cases, in this area you can apply conventional windows). 

Thus, in this case, for the considered facade of the building, it is advisable to use smart windows 
of two types that differ from each other in the level of light transmission. The slope angles of the 
gratings of both types must be the same, since they are designed for the same facade. The characteristic 
angles of the filters must also be the same due to the same incidence angles of the solar beams. 
However, the ratio of the widths of the transmissive and chromogenic strips will be different. 

 

Figure 27. Determining facade areas of the building for selection of options of smart 
windows taking into account the opposing buildings [140]. 

The widths of the directionally transmissive strips of the output gratings are calculated for single 
and double/triple glazed windows, respectively, by Eqs 13 and 14. Numerical simulation [141] shows 
that for the same value of this width, in order to increase the light transmission of the filter, it is 
necessary to reduce the period of the gratings. Similarly, taking into account the surrounding buildings, 
smart windows are calculated for all the facades of the building, with the exception of the northern 
sector, where the Sun protection is not required. The dimensions of the windows of all the facades will 
be the same, and the thin-film coatings of the filters will not violate the aesthetic appearance. In 
addition, the absence of blinds and other devices will even improve the aesthetic properties of 
windows, especially panoramic ones. Ergonomic properties will also improve (there is no need to 
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constantly adjust the position of the blinds lamellas, since a smart window with an optical filter 
self-adapts to the position of the Sun), as well as environmental factors (lack of window construction 
elements, for example, blinds requiring replacement with subsequent disposal). Smart windows with 
optical filters will cost more than conventional windows, but they also perform additional functions of 
angular regulation of light transmission and save money on the purchase of light redistribution devices, 
their installation and operation. 

During seasonal and daily movement of shaded and illuminated sections of the facade, smart 
windows of two corresponding types will function in a less optimal mode, since their parameters are 
calculated for the time with the most required Sun protection, when the intensity of solar radiation is 
maximum. 

The proposed building typology is best suited for a complex of buildings in which people are 
mostly in the daytime, that is, for public buildings such as offices, classrooms, libraries, mega malls, 
etc. The considered approach is applicable not only for newly designing buildings, but also for 
reconstructing old buildings with replacing windows. 

4. Conclusions and prospects of the field 

Smart windows with advanced architectural glass technologies having a variety of mechanisms 
for changing the light transmission depending on change in the ambient conditions or under the 
influence of electric current have been reviewed. Photochromic, thermochromic, thermotropic, 
gasochromic and electrochromic technologies, as well as nanocrystal in-glass composites, elastomer 
deformation tunable, electrokinetic pixel, liquid crystal and suspended particle devices, are the most 
promising for the use in the conventional smart windows entire covered with active layers. These 
technologies are also applicable to the grating optical filters for smart windows with additional 
function of angular filtering the solar radiation without using the blinds or other light redistribution 
devices. 

Design of the grating filter, methods for calculating its geometrical parameters and light 
transmission characteristics and some results of calculation by these methods have been demonstrated. 
Unlike the conventional smart window, such a window with the filter blocks the direct sunlight 
partially or completely in a preset range of the incidence angles of the solar beams and transmits the 
diffused light providing more comfortable daylighting indoors. Calculated angular and temporal 
characteristics of the light transmittance demonstrate the angular selectivity of the transmission of a 
smart window with grating optical filter compared to a conventional smart window. 

Each of the chromogenic or other smart technology has its own advantages and disadvantages and 
is being continuously developed. The possibility of their use in the grating filters depends on the 
complexity of applying thin-film surface coatings (using masks, etc.) or multilayer coatings interposed 
between two glass sheets, but there is no fundamental difference from the fabrication of conventional 
smart windows. Wide thin-film photochromic, gasochromic, thermochromic or thermotropic strips on 
the inner surfaces of a double or triple glazing chamber (Figure 10c) will be more technologically in 
the fabrication than narrower strips on both surfaces of a single glazing (Figure 10d), as well as 
multilayer strips with electrochromics, thermochromics or thermotropics interposed between glass 
sheets (Figure 10b). Various methods of physical vapor deposition and all other well-known coating 
methods can be applicable for fabricating the gratings with varying degree of the manufacturability. 
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Self-adhesive window films with pre-applied chromogenic gratings are promising for the renovation 
of existing window systems. 

The total cost of a window with two gratings will increase compared to a conventional smart 
window with a single chromogenic surface due to the use of masks or other technological 
complications. However, for such a window, a smaller amount of chromogenic materials will be 
required, since the total area of all chromogenic strips of both gratings will be less than the area of the 
window [131,141] fully covered with the chromogenic layer. In addition, the window with grating 
filter will be more effective due to a new function of the angular selectivity of transmission improving 
the indoor environment. By reducing the cost of air conditioning in the hot season, like a conventional 
chromogenic window, the filter additionally improves lighting conditions due to the transmission of 
diffused solar radiation. All this contributes to the commercialization of smart windows with filters in 
the future, especially considering that chromogenic technology is actively developing and becoming 
cheaper. 

Based on smart glass technologies [1–113] and developed grating optical filters [130–139,141–144], 
a novel building typology has been proposed in [140]. The fundamental principle of such a typology is 
the building, the windows of each facade of which (excluding facades in the northern sector, where the 
Sun protection is not required) have filters with the individual slope of the gratings and the relative 
position of the two gratings, calculated taking into account the azimuths of the windows, as well as the 
different light transmittances in different zones of each the facade, determined by the shading of these 
facades with the surrounding buildings. 

Having the optimal light transmission in each facade, the windows of these facades can be of the 
same dimensions, and the thin-film coatings of the filters will not violate the aesthetic appearance, 
along with the absence of blinds or other devices. Due to self-adaptation of the filter to the position of 
the Sun, such a smart window is more ergonomic compared to the blinds whose lamellas need 
adjustment. Lack of the additional window construction elements requiring replacement with 
subsequent disposal improves the environmental protection. 

Thus, the prospects of the field of both smart windows in general and grating filters in particular 
are confirmed by the possibility of further developing the comfort of daylighting and insolation of 
rooms in the “smart homes” of the future. 
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