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Abstract: When constructing on clay and gyttja soils, low-carbon ground improvement methods such
as preloading should be preferred over carbon-intensive solutions (e.g., piles or deep mixing with lime-
cement binder). The design of preloading requires knowledge about the compressibility and
consolidation properties of subsoil, but site-specific oedometer tests may be scarce or even lacking,
especially in the early design phases. Hence, this paper presents two extensive databases based on
oedometer tests performed on Finnish clay and gyttja soils, with a special emphasis on consolidation
rate and creep properties. The FI-CLAY-oedo/14/282 database contains 282 oedometer test-specific
data entries, such as initial hydraulic conductivity and maximum creep coefficient. The second
database, FI-CLAY-cv/8/774, contains 774 load increment—specific data entries (e.g., coefficient of
consolidation) from 232 oedometer tests. The analysis of these databases provided three main results:
(1) statistics for bias factors, which quantify the differences between determination methods (log time
vs. square root time method and oedometer vs. falling head test), (i1) transformation models (and their
transformation uncertainty) to predict creep coefficient from index or consolidation properties, and (ii1)
typical value distributions for various consolidation rate and creep properties, in a form of histograms
and fitted lognormal distributions. All the results are given with statistical information, which allows
their straightforward utilization as input data for probabilistic assessment (reliability-based design). It
is concluded that the consolidation properties of clay and gyttja soils are indeed characterized by
significant uncertainty. Hence, such results are recommended to be used as existing (prior) knowledge
when determining design parameters, either by supporting engineering judgement or via a more
systematic framework such as Bayesian statistics.
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1. Introduction

Construction on soft soils such as clay and gyttja usually requires pile foundations or extensive
ground improvement. However, the carbon footprint of such geotechnical solutions is often significant;
hence, low-carbon ground improvement methods such as preloading should be preferred over carbon-
intensive solutions (e.g., piles or deep mixing with lime-cement binder) [1,2].

The design of preloading (with or without vertical drains) requires knowledge on the
geotechnical properties of the soil to be treated; besides compressibility properties such as
compression index (Cc) and preconsolidation pressure, the time-settlement prediction requires
consolidation rate properties such as the coefficient of consolidation (c¢,) or hydraulic conductivity
(k) [3.,4]. Further, especially in organic soils such as gyttja, the secondary (creep) settlement should
also be estimated, e.g., via the creep coefficient (Cq:). These consolidation rate and creep parameters
can be defined using oedometer tests performed on undisturbed samples; the incrementally loaded
oedometer test (ILOT) provides all these properties, while the constant rate of strain (CRS) test is
usually applied to estimate ¢, and/or k only (i.e., the standard procedure does not provide estimate
for Cy:). However, acquiring a sufficient amount of high-quality soil samples for the oedometer tests
is not realistic in the early stages of the project, and thus, the preliminary settlement analysis is often
conducted using literature values and empirical correlations.

In Finland, marine soft clays and gyttja soils are common, especially in the coastal area. Many of
these soft soils are sensitive and characterized by very low hydraulic conductivity due to high clay
content [5—7]. Some indicative values for the consolidation rate properties of Finnish clays have been
presented in design handbooks; however, such table values are scarce and have not been re-evaluated
during the last decades. A few Finnish clay databases have been published so far, including FI-
CLAY/14/856 [6] and F-CLAY/7/216 [7] in the TC304 compendium of databases (“304dB”), but none
of them contain consolidation rate or creep properties. Hence, this paper presents an extensive database
of oedometer tests performed on clay and gyttja soils, with a special emphasis on consolidation rate
and creep properties. The studied sites are located in Finland, and testing was done at Aalto University
(previously the Technical University of Helsinki) for various research projects. Two databases were
compiled. The first, FI-CLAY-oedo/14/282, contains 282 oedometer test results, some of which are
enhanced with classification test results from a nearby specimen (i.e., partially multivariate database).
The 14 parameters of interest in FI-CLAY-oedo/14/282 are the maximum creep coefficient (Cogmax),
initial hydraulic conductivity from ILOT (k;), minimum coefficient of consolidation from CRS (cy,min),
natural water content (w,), initial void ratio (ep), fall cone liquid limit (), undrained shear strength
(s«), sensitivity (S;), degree of saturation (S;), effective in situ stress (a.0), preconsolidation pressure
(6»"), over-consolidation ratio (OCR), compression index (Cc), and swelling index (Cs). The second
database is named FI-CLAY-cv/8/774 and contains 774 load increment—specific data entries from 232
ILOT tests. The eight parameters of interest in FI-CLAY-cv/8/774 are the square root time (Taylor)
coefficient of consolidation (c¢,r), log time (Casagrande) coefficient of consolidation (cvc), creep
coefficient (Cu), Taylor hydraulic conductivity (k7), Casagrande hydraulic conductivity kc, falling
head test hydraulic conductivity (kuirec:), Stress ratio (ov/0p"), and w,. Many of the oedometer tests
included in the newly compiled FI-CLAY-oedo/14/282 are also included in the previously published
FI-CLAY/14/856 [6]; the key difference between the databases is that FI-CLAY/14/856 did not contain
any consolidation rate properties (e.g., k; or Cugmax) nor stress increment data. Indeed, L6fman and
Korkiala-Tanttu [6] used the previously published database to derive transformation models for
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compression indices Cc and Cs, while this paper investigates the consolidation rate (k, ¢v) and creep
properties (Co).

These newly compiled databases are used to characterize the consolidation rate and creep
properties of soft marine clays and gyttjas by means of statistics and histograms (typical value
distributions). The systematic differences between methods (e.g., log time vs. square root time method)
to define consolidation properties are defined via bias factors. In addition, transformation models to
predict consolidation properties based on other geotechnical properties (e.g., w,) are investigated and
derived. It should be noted that although the compiled database FI-CLAY-oedo/14/282 also includes
compressibility properties (e.g., Cc), this study focuses on consolidation rate and creep properties only.
The derived typical value distributions and transformation models can be used as input parameters for
the preliminary settlement predictions done in the early stages of preloading design, when no site-specific
oedometer tests are available. The results may also be applied to evaluate the reliability of oedometer
tests and as existing knowledge to consider when determining the characteristic value. Bayesian statistics,
for example, allow a systematic framework to combine existing knowledge (e.g., typical value
distributions) with limited site-specific ground investigations as prior distributions [8—10].

2. Materials and methods
2.1. Characterization of consolidation properties

Consolidation properties (coefficient of consolidation c¢,, hydraulic permeability &, and creep
coefficient Cy) can be defined with an ILOT test. For each load increment, a time-settlement graph is
constructed to define ¢, and C,. Figure 1a presents the principle of determining ¢, using the square
root time method, also known as the Taylor method [11]. This method is based on finding the time and
specimen height corresponding to a 90% degree of primary consolidation (U). The coefficient of
consolidation ¢, is calculated as follows:

0.848H*?
Cyr = t— (1)
90
where drainage length H is equal to half of the specimen thickness at U = 50% consolidation, and ¢y
is the time at U = 90% (0.484 is the time factor corresponding to U = 90%).

The log time method, also known as the Casagrande method [12], is illustrated in Figure 2a; a
100% degree of primary consolidation is interpreted using the extrapolated line fitted to the steepest
tangent and the line fitted to the secondary (creep) settlement observations. The coefficient of
consolidation c¢,c is then calculated with the time and specimen height corresponding to U = 50%:

0.196H?
Cyc = ts (2)
0

As illustrated in Figure 1b, the creep coefficient Cq. is acquired as the slope of creep settlement
line [13]:

C. = Agg 3
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where & is compression during secondary consolidation (%). The unit for Cg is usually%. An
alternative formulation is based on void ratio (e) change instead of compression (creep coefficient Cge).

Usually, the interpretation of C,. requires rather long consolidation times for the creep to occur;
for Finnish soft soils, the standard time of 24 h usually provides reasonable estimates. However, more
complete characterization of creep behavior requires longer (>24 h) load increments (this test type is
later referred to as ILOT CREEP).
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Figure 1. Determination of consolidation properties (cyv and Cg) from incremental
oedometer test: (a) Taylor method; (b) Casagrande method.

For each load increment, the hydraulic conductivity £ may be estimated using the ¢y value, unit
weight of water (yw), and modulus, while assuming that Terzaghi’s theory of consolidation is valid:

Cylw
k=21 @

where oedometer modulus M, is defined for the load increment in question via Ag,'/Ae,, where &, is
vertical compression, and o' is effective vertical stress.

Typically, the parameter of interest is the vertical coefficient of consolidation c¢,, to be used as
input for one-dimensional settlement calculation. However, if preloading with vertical drains is used,

AIMS Geosciences Volume 11, Issue 2, 343-369.



347

the horizontal consolidation properties may be investigated using rotated soil samples or a special
radial consolidation oedometer test (later referred to as ILOT H).

Once the stress increments have been analyzed, the oedometer curve may be constructed using
the interpreted end-of-primary (EOP) [14] compression points (see Figure 2). Preconsolidation
pressure o,’ separates the over-consolidated (OC) stress state and normally-consolidated (NC) stress
state for the soil specimen. As illustrated in Figure 2, the ¢, values are typically quite high in the OC
region and tend to drop significantly after g,’. After the minimum c,, a moderate increase is often
observed with increasing stress. Figure 2 also shows the applied interpretation method for compression
index Cc, which emphasizes the compressibility right after ¢, rather than the whole NC curve, since
the soft sensitive clays in Finland typically exhibit nonlinear behavior also in a semi-logarithmic space.
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Figure 2. Example of a stress-strain relationship for a clay specimen and changes in the
coefficient of consolidation, ¢,, with stress.

Hydraulic conductivity & exhibits some decrease with increasing compression, as the pore space
is increasingly reduced (see Figure 3). The initial hydraulic conductivity at the beginning of the
oedometer test (k;) may be interpreted by a linear regression fitted to the logarithm of &: k at zero
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compression is then found by extrapolation [15]. When fitting the regression line, k values
corresponding to the first few load increments (in the OC region) may be omitted if needed, since the
time-settlement analyses are not as accurate in the OC stress state as they are in NC stress state with
classical time-settlement behavior. In addition, there may be some unevenness in the oedometer test
specimen’s surface at the beginning of the test, which leads to inaccuracies. Quite often, the OC state
time-settlement analysis is not performed at all, and the first £ value corresponds to compression
around 5-20%; In such a case, using that k value as initial £k would be an underestimation.
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Figure 3. Example of a hydraulic conductivity k reducing with compression and the
interpretation of initial k1 from k values based on (a) Taylor method and (b) Casagrande
method.

The creep coefficient Cy, also exhibits stress dependency: Cq 1s very low until a certain stress and
compression are reached, after which it increases fast up to a maximum value and then slowly
decreases with further compression (see an example in Figure 4). Indeed, Mesri et al. [16] suggested
that the ratio Cu./Cc is constant, thus implying that maximum C, occurs during maximum
compressibility, i.e., right after g," (see Figure 2). On the other hand, subsequent studies have shown
that this ratio is not constant in soft sensitive clays (see, e.g., [17]).

In Nordic soft soils, the significant increase in C, has been found to occur when vertical
effective stress is approximately 0.8a,' [15]. However, the determination of C,. with the Casagrande
method tends to be unsuccessful in stress regions close to o,' due to the time-settlement graph
exhibiting a form other than reverse s-shaped. Thus, the maximum C,: needs to be estimated
indirectly. Figure 4b shows the Swedish method [15] based on compression: the linear line is fitted
to the observations after the critical compression at 0.80,', and the extrapolated value at critical
compression is the estimated Cog max. Alternatively, Cog max 1s interpreted using the stress method, i.e.,
via the Cq. values at stresses greater than 0.8a," or g’ (see, e.g. [18]). In the stress method (see Figure
4a), the decrease in C after the maximum tends to be less linear, and hence the interpretation may
vary; wider coverage of stresses often provides a less conservative estimate for Cegmar, compared to
focusing on the stresses right after 0.8q,'.
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Figure 4. Estimation of maximum creep coefficient Cae,max using the (a) stress method
(e.g., [18]) and (b) compression method [15].

2.2. Databases FI-CLAY-oedo/14/282 and FI-CLAY-cv/8/774

The compiled oedometer test database FI-CLAY-oedo/14/282 is partially multivariate. The
included parameters and their statistics are collected in Table 1. Each row in this database represents
one oedometer test. In the database name, 14 refers to the number of main parameters of interest; it
should be noted, however, that the database contains more than 14 columns, providing some additional
information. The number 282 refers to the number of data rows (i.e., oedometer tests). Table 1
summarizes the statistics for the soil parameters included in the database. All the data rows include
natural water content wj, initial void ratio ey, (bulk) unit weight y, and initial hydraulic conductivity £;.
On the other hand, there are only 168 oedometer tests with Coe max. Statistics of the degree of saturation
show that the specimens were fully saturated, with a few exceptions with S, < 100%.

From the 282 oedometer tests, 65% are ILOT tests, while the rest are CRS tests. Some of the
ILOT tests (n = 25) where combined with the falling head test (test type “ILOT_K*), which allows
direct measurement of hydraulic conductivity (kdireer). The database contains n = 12 long-term
oedometer tests (“ILOT_CREEP”) and n = 19 horizontal oedometer tests (“ILOT_H”). As the portion
of these special tests is relatively small, these test results have not been filtered out in the analysis.

The clear majority of test specimens in FI-CLAY-oedo/14/282 are clays (see Figure 5). About 25%
of specimens are estimated to be clays, gyttja soils, or silts, thus classified as cohesive soils (since
actual classification data was lacking). The applied “GEO” soil type classification system is based on
geological origin, grain size distribution, and organic content [19].
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Table 1. Statistics for the oedometer test database FI-CLAY-oedo/14/282.

Property Unit Symbol n Mean SD?  Min 25%  50% 75%  Max
Natural water content % W 282 94.37 3492 28.00 69.92 92.15 110.00 187.00
Void ratio - eo 282 256 093 0.78 1.89 252 3.02 520
Unit weight kKNm3 T 282 1494 1.56 11.95 1398 14.74 15.80 19.61
Hydraulic conductivity, 10°m/s k; 282 137 223  0.07 053 0.86 143 3020
ILOT?

Max. creep coefficient, % Coemax 168 1.90 1.36 0.13 0.92 1.48 2.66 7.73
stress method

Degree of saturation % S 224 99.02 327  66.00 99.00 100.00 100.00 107.46
Effective in situ stress ~ kPa ) 241 38.70 2497 3.00 20.24  32.00 48.50 143.00
Preconsolidation stress ~ kPa op' 262 62.69 53.37 10.00 30.00 43.00 74.75  350.00
OCR - OCR 227 1.69 1.21 042 1.03 1.33 1.77  10.58
Compression index - Cc 240 1.53 087  0.07 0.80 1.45 2.09 4.64
Swelling index - Cs 227 0.11 0.09  0.01 0.06  0.10 0.14 094
Min. coefficient of m>/'year  Comin 94 0.81 2.23 0.05 0.19 0.26 0.56 19.60
consolidation, CRS test

Fineness number® (%) F 76 80.10 37.78 38.67 57.08 69.70 85.57 202.30
Undrained shear kPa Su 81 3446 2795 10.50 18.40 25.80 37.30  156.90
strength

Sensitivity - Sy 76 18.68 11.47 1.40 9.75 16.94 24770  46.97
Organic content % Org 68 1.33 2.18 0.00 0.00 0.21 1.85 9.20
Clay content % Cl 62 5442 18.18 23.50 38.38  50.00 68.25 89.00

Note: ¥ SD = sample standard deviation. ® F is the fall cone liquid limit, which has been found to be

approximately equal to liquid limit w;, [6]. © The majority of k; values were interpreted using the Taylor method

(see Figure 3a).

Figure 5. Soil types included in the FI-CLAY-oedo/14/282 database.

The second compiled database,

FI-CLAY-cv/8/774,

u Clays

Gyttja soils

m Silt or dry
crust clay

H Cohesive

soils

contains stress

increment-specific

information from ILOT tests. That is, each row represents the interpreted parameters from one load
increment. Test-specific properties such as test number, water content of the specimen, and
preconsolidation pressure are thus repeated for each load increment. Table 2 represents the statistics of
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the included parameters. This database contains results from 232 ILOT tests, some of which have been
performed on rotated specimens to study horizontal permeability (n =41 data rows out of n = 774 load
increments). In total, 138 ILOT tests in FI-CLAY-cv/8/774 are also included in the FI-CLAY-
oedo/14/282 database. Most of the specimens included in the FI-CLAY-cv/8/774 database were
estimated to represent clay or gyttja soils.

Table 2. Statistics for the load increment database FI-CLAY-cv/8/774.

Property Unit Symbol » Mean SD Min 25% 50% 75% Max

Effective vertical stress (in the kPa o' 774 199.62 240.66 7.35 50.00 100.00 201.00 1487.00
beginning of load increment)

Coefficient of consolidation, square m?/year cyr 774 6.58 14.17 0.02 0.28 0.80 442 93.85
root time (Taylor)

Coefficient of consolidation, log time ~ m?/'year c.c 704 3.81 9.17 0.01 0.18 047 2.07 79.44

(Casagrande)
Creep coefficient % Coc 699 1.05 092 0.02 040 0.79 147 640
Hydraulic conductivity, square root 10°m/s kr 398 047 056 0.00 0.11 028 0.62 4.39
time (Taylor)
Hydraulic conductivity, log time 10°m/s ke 382 032 039 000 0.08 0.19 041 277
(Casagrande)

Hydraulic conductivity, falling head 10°m/s kareee 49 040 028 0.09 0.18 030 0.57 1.36
test

Preconsolidation stress kPa op' 772 79.46 76.03 7.00 27.00 46.00 97.89 350.00
Stress ratio - o/o,' 770 3.72  5.06 0.04 1.09 2.17 430 61.54
Natural water content % Wy 774 87.38 35.73 18.60 58.34 84.40 113.00 178.20
Degree of saturation % S, 488 99.44 271  84.00 99.25 100.00 100.00 107.46
Effective in situ stress kPa ov' 764 40.86 28.25 4.00 20.00 31.50 53.00 143.00
OCR - OCR 762 2.14 225 0.10 1.00 142 226 27.00

Table 3 presents the included sites, sampling years, and number of observations in both databases.
All the sites are located in Finland; the majority are located on the southern or western coast of Finland.
More detailed references for the test data are given in the database info (see supplementary material).
Most of the included study sites are described in greater detail by Lofman and Korkiala-Tanttu [6], as
they are also included in the previously published database FI-CLAY/14/856.

2.3. Transformation uncertainty and model bias

Empirical correlations (transformation models) are characterized by transformation uncertainty [21];
that is, the model to predict a consolidation property using another soil parameter is never perfect. Bias
factor is a useful variable for evaluating the systematic and random transformation uncertainty. The bias
factor b; of ith data point can be defined as the actual target value (e.g., Cy) divided by the predicted
target value (e.g., prediction based on wy) [22]:
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actual target value

()

L= predicted target value

The model bias b is the arithmetic mean of values b;. If b = 1, the model is unbiased (i.e., no
systematic transformation error). The (random) transformation uncertainty can be defined from the
sample coefficient of variation (COV) of values b;, usually denoted by 6. Sample COV is a measure of
data dispersion, which is defined as the sample SD divided by the mean, and it is sometimes given as
a percentage. The definition of transformation uncertainty via ¢ represents a multiplicative form [22]:

actual target value = predicted target value X b X Eqrans (6)

where &ans 1s the variability term (random variable) for the transformation model. The mean of &:ans
is 1, and its COV is 6.

In addition to the evaluation of transformation models, the bias factor may be applied to study the
systematic difference between various methods to define consolidation properties (e.g., k& from
oedometer or direct measurement, ¢, based on Taylor’s or Casagrande’s method). For example, if the
bias factor is defined as kuirecr/kt, model bias b > 1 means that the falling head test, on average, provides
greater k values than the Taylor method.

Table 3. Description of the included sites (FI-CLAY-oedo/14/282 and FI-CLAY-cv/8/774).

Site Reference  Sampling year(s)  FI-CLAY- FI-CLAY-
oedo/14/282 n (ki) cv/8/774 n (¢vr)

Haarajoki [6] 1995 23 22
Ossinlampi, Otaniemi (HUT-clay) [6] 2009, 2012 17 27
Kimola (canal) [6] 2017 20 123
Kujala test embankments (Lahti vt12) [6] 2017 26 106
Murro (test embankment) [6] 1993 1 2
Maarinranta, Otaniemi [6] 1998 (0) 68
POKO (Porvoo-Koskenkyld) [6] 1999 55 81
Pernid (test embankment) [6] 2009, 2010 11 47
Suurpelto (Espoo) [6] 2005, 2008 31 94
Soderkulla-Nikkilé (Sipoo, Pt 11689) [6] 1997-1999 47 86
Tattara (Nakkila, Pt 12895) [6] 1997 0) 18
Tolsa (Kirkkonummi) [6] 1996 0) 7
Vanttila (Espoo) [20] 2001/2002Y 10 33
Ostersundom (test embankment) [6] 2013 41 (0)

Note: » Estimated.
2.4. Linear and polynomial regression models (transformation models)

This section describes the methodology to derive transformation models for consolidation
properties. To be more specific, this paper applies linear and polynomial regression models fitted using
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the ordinary least squares (OLS) method within the Scikit-learn library for Python [23]. The
polynomial transformation model and its transformation uncertainty are defined by:

Y= by + b X +by(X)?>+¢ (7

where Y is the predicted In-transformed target value, b terms are regression coefficients, X is the In-
transformed predictor, and ¢ is the transformation error. Error ¢ is a zero-mean normal random variable
with standard deviation o, (additive transformation uncertainty). OLS is applied to natural logarithms
of the soil properties to ensure relatively constant residual scatter around the trendline. The linear
regression model is otherwise similar to Equation 7, but the coefficient b; is zero.

Transformation error &; for ith data point is quantified as the residual (error) term of ith observation
(e.9., Cuemax from ILOT test) minus the predicted value Y. The standard deviation of the transformation
error o, can then be estimated from these individual residual errors using Equation 8 (see, e.g., [24]):

as=jnfi[yi—mz ®

i=1

where n is the number of observations used in the linear regression, and v is the number of degrees of
freedom (here taken as the number of estimated regression coefficients).

Before fitting the transformation model, potential outliers need to be detected and removed. In
this study, creep coefficients (Cqsmax OF Cqs) greater than 6 were not considered, as they were observed
to be very rare; n = 2 Cumax Values and one C,. were thus removed as outliers. In addition, for each
transformation model, the standard deviation method with a 3o-threshold was applied; those data
points in which the residual error ¢ was more than 3o, apart from the zero mean were detected as
outliers and thus removed before defining the final regression coefficients and model statistics.

3. Results and discussion
3.1. Stress dependency of consolidation properties

As illustrated in Figure 6, the stress dependency of the coefficient of consolidation ¢, is clearly
visible in the compiled database FI-CLAY-cv/8/774. In NC state, ¢, tends to be less than 2 m?/year
for the considered marine soft soils. Similarly, the creep coefficient C,: shows a clear distinction
between the critical stress ratio ¢,"0," = 0.8 (see Figure 7). The figure also shows that variability in
Coe 1s smaller in the OC stress state (stress ratio < (0.8) than in the NC stress state, where higher Cy.
values are observed. In preloading design, C, in the OC state may be used to estimate creep
settlement after the removal of temporary surcharge, since the subsoil behaves as over-consolidated
soils if the preloading has been successful.

3.2. Model biases: Coefficient of consolidation and hydraulic conductivity (FI-CLAY-cv/8/774)
This analysis uses the bias factors to compare different methods used to define cv or k. Figures
8 and 9 compare the Taylor and Casagrande methods to define ¢y or k, respectively. Figures 8b and 9b

show the histograms of bias factors (cvc/cyr or ke/kt ) and the fitted distribution(s). Normal distribution
was fitted to the data using the method of moments (MoM), while a lognormal distribution was fitted
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using the maximum likelihood estimation method (MLE). The results of the bias analysis are shown
in Table 4. The arithmetic mean for the bias factor cvc/cvt is b = 0.8, meaning that the coefficient of
consolidation cy defined using the Casagrande method is, on average, 0.8cy1. In other words, cy defined
using the Taylor method tends to be higher, on average 1.25cyc (1/0.8 = 1.25). The bias factor kc/kt
has quite very similar statistics, but the histogram shows a different shape: the lognormal distribution
did not provide a good fit and was hence omitted from the results (see Figure 9b). The authors estimate
that the main reason for the model bias is that while the Taylor method emphasizes the initial part of
the time-settlement curve, the Casagrande method utilizes measurements all the way until U =~ 100%,
where creep also starts to influence the time-settlement behavior besides primary consolidation.
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Figure 10 describes the model bias for estimating k from the ILOT test (kc or k) compared with
the falling head test (Kairect). According to Figure 10, a lognormal distribution provides a better fit
compared to a normal distribution. The mean bias factors for the Taylor and Casagrande methods are
1.67 and 2.35, respectively; that is, kr is less biased on average. In addition, the COV value for the bias
factor is smaller for kr (0.52 compared to 0.92), which indicates smaller model uncertainty. However,

the studied sample size was rather small (n = 47-49 bias factors).
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Table 4. Statistics for the bias factors and the parameters of the fitted lognormal distribution.

Bias factor Statistics (arithmetic) Lognormal distribution
n min 50% max mean (b) SD Ccov in Oin
Cvc/Cyr 704  0.003 0.769  6.88  0.759 0.368 0.484 —0.3998 0.6096
kc/kr 364 0.035 0.804 134 0.759 0.239 0.314 N/A N/A
kairee/kic 47 0944 1761 144 2350 2.150 0915 0.6662 0.5315
Kairect/kr 49 0.547 1.381  4.55 1.669 0.870 0.521 0.3949 0.4771

Notes: n = number of observations (bias factors); 50% = median; b = model bias; SD = standard deviation; COV =
coefficient of variation; u;, = mean (parameter for lognormal distribution); o;, = standard deviation (parameter for

lognormal distribution).
3.3. Transformation models for consolidation properties
3.3.1.  Coefficient of consolidation and hydraulic conductivity

This section investigates empirical correlations for consolidation properties that may be used to
derive transformation models. Figure 11 shows that ¢, shows some correlation with w,: high ¢, values
seem to be more common for soils with smaller w,, while soft soils with w, > 70% (Figure 11b) are
characterized by smaller ¢, values (mostly ¢, < 2 m?/year). After In-transformation, a regression
function could be fitted to the data, but the transformation uncertainty was estimated to be too large
(0 > 1) for practical use. Instead, typical value distributions were defined for soft soils and stiffer soils
separately (see Section 3.4).
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Some previous studies (e.g., [25]) found a correlation between ¢, and plasticity index. However,
this transformation model could not be investigated because the compiled databases do not include a
sufficient number of plasticity index values (as the Finnish geotechnical classification system [19] does
not incorporate plasticity index).

Hydraulic conductivity & has been demonstrated to be correlated with initial void ratio, liquid
limit wz, and ratio w,/wr ([26]). Figure 12a shows the relationship between w; and k; (this study),
together with observations from the FG/KSAT-1358 database compiled by Feng and Vardanega [26,27].
Note that only the selected range of k is shown. Based on the notable overlap of the datasets in Figure
12a, the data from the FI-CLAY-oedo/14/282 database is in accordance with FG/KSAT-1358. However,
as illustrated in Figure 12b, even though FI-CLAY-oedo/14/282 data is, for the most part, in accordance
with the transformation models derived by Feng and Vardanega [26], there is no notable correlation.
The authors estimate that since FI-CLAY-oedo/14/282 consists mostly of soft marine clay soils, the
range in k; value is too narrow to show a significant correlation with w,/w;. Therefore, no
transformation model for hydraulic conductivity was derived in this study.
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Figure 11. Relationship between w, and ¢,. (a) All observations (FI-CLAY-cv/8/774); (b)
wa > 70% and ¢, < 5 m?/year.

3.3.2.  Creep coefficient

Figure 13a shows the relationship between the creep coefficient [Cy: in NC state (stress ratio >
0.8) and Cugmax] and w,. Maximum creep Cogmax S€€ms to form the upper bound, as expected. The
figure also shows the area in which observations on Swedish soft soils are located [15]; data from FI-
CLAY-oedo/14/282 shows a similar positive correlation between w, and Cogmar. Meanwhile, Figure
13b shows the dependence between w, and C, in the OC state (stress ratio < 0.8); some positive
correlation can be observed, but the strength of the correlation and the amount of data were assessed
to be too small to derive reliable transformation model for C: in the OC state.
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Figure 14 illustrates the relationship between compressibility and creep coefficient Cog max. Figure
14b compares the data with Andersen’s [28] transformation model for C,, which uses compression
ratio CR [= Cc¢/(1+ep) given in %] as a predictor: this Danish model for clays, gyttjas, and peats is
found to somewhat overestimate Coemax for Finnish clay and gyttja soils. When the Andersen’s best fit
model (Cu: = 0.009CR!*®) was used to predict Cusmar in FI-CLAY-0edo/14/282, the average model
bias (Equation 5) was found to be 0.74 with transformation uncertainty ¢ = 0.57.

Linear or polynomial transformation models for Cesmax Were derived using three predictors: Cc,
wn, and ep. The model statistics and regression coefficients are collected in Table 5. Figures 15a and
16a illustrate the fitted transformation model with In-transformed variables (w, or Cc) as axes, while
Figures 15b and 16a show the predicted vs. actual Cog max scatterplot with 1:1 line and +£50% boundaries.
The mean bias values for the Cgyemar models are around 1.1, but the medians for the bias are
approximately 1.0, which implies that the distributions of the biases are skewed (e.g., lognormal rather
than normal distribution). A median or mean equal to 1 should be expected, as the transformation model
is derived using the same dataset to which its prediction is compared; in other words, the studied model
should be unbiased. One outlier was detected using the 3o-threshold when fitting the Cogma(Cc) model.
For these transformation models, the transformation uncertainty is 6 = 0.43—0.47, which implies medium
transformation uncertainty [29].

Next, the relationship between ¢, and C,: was investigated. Such transformation model would be
useful if the load increment has not been long enough to provide a reliable C,. estimate; the ¢, for that
load increment, defined with either Taylor or Casagrande methods, could then be used to estimate Ce.
Such a model may also be applied to the CRS test, as it provides a ¢, value. Figure 17 presents the
derived linear Cq(cyr) model and the detected outlier values. Table 5 presents the statistics for both
Cos(cvr) and Coe(cvc) models; the transformation uncertainty is found to be smaller when c¢,c is the
predictor (0 = 0.56 versus ¢ = 0.64).
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Table 5. Statistics for derived transformation models for the coefficient of creep.

Model variables  Outliers Regression model: Y = bg + biX + by(X)? + & Bias statistics

Y X bo b1 b, o: n R? 50% Mean 6
InCc) 1 0.2784 0.843 0) 0.435 154 0.69 1.00 1.10 0.43

IN(Comax) IN(Wn) O —13.157  4.746 -0.377 0.469 166 0.64 1.01 111 0.47
Ine)) O —0.9751 2.109 —0.423 0.468 166 0.64 1.00 111 0.46

In(Cey) In(cir) 4 -0.330 -0.445 (0) 0.596 694 0.66 0.99 119 064
In(cic) 5 —0.522 -0.480 (0) 0.548 674 0.71 1.00 1.16 0.56

Notes: n = number of observations used to fit the model; R? = degree of determination; . = standard deviation of the zero-

mean transformation error ¢; 50% = median; 6 = COV of the bias values.

Finally, Figure 18a shows the Cosma(ws) model in linear scale together with +2¢, boundaries,
showing that in small w, values, the model is characterized by smaller transformation uncertainty,
which is in accordance with the observations [same for Cy, max(Cc) model, see Figure 14a]. Accordingly,
Figure 18b shows the derived Cq¢(c,7) model in linear scale. Due to the strong nonlinearity of the model,
it is evident that the transformation model should not be applied blindly to very small ¢, values. If the
transformation model predicts Cq: > 6, it is recommended to use an estimated maximum value instead.
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Figure 13. Relationship between wn and (a) Cq. in NC state (stress ratio > 0.8) and Cmax
(this study), compared with max C,. reported by Larsson [15]; and (b) C. in OC state
(stress ratio <0.8).
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To compare, the transformation uncertainty in the models to predict creep coefficient (6 = 0.4—
0.6) is found to be somewhat larger than the transformation models for compressibility (e.g., Cc) of
Finnish clay soils, 0 = 0.4 [6]. (To compare, the TC304 state-of-the-art report [30] observed that most
clay models for Cc and Cs have high variability, i.e., 0.6 <J < 0.9.)
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Figure 17. Prediction of C,. based on cyr of the same stress increment: (a) fitted linear
regression model and (b) predicted vs. actual values.

AIMS Geosciences Volume 11, Issue 2, 343-369.



362

a) b)
12 6
o Data o Data
Model Model
101 --- Model + 20, = 51 -==Model + 20,
.

) // = o

= »” s

g 81 » 84

g # O
S ,/ =

= P 20 D

o 61 ’ S 31

O g :d:)
& P e :

8 // o % o g

g 4 o b 08 ° ®

(] o Q 4

) O
@) (o]

=B . . . : . 0 fECSE SRR e - Sy o =
0 25 50 75 100 125 150 175 200 0 20 40 60 80 100
Water content wj, (%) Coefficient of consoldiation ¢, r(m?/year)
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3.4. Typical value distributions for consolidation properties

The typical value distributions of ¢, were formed for two data groups: (1) soil specimens with w;, >
70%, categorized as soft soils (i.e., clay and gyttja soils), and (2) soil specimens with w, < 70%,
categorized as stiff clays and silts. In addition, ¢, values corresponding to OC or NC states were
separated. However, instead of using stress ratio 0,/0," = 1 as the defining boundary, to account for
possible measurement error in g, the following definitions were used: a,"0,"' < 0.9 was categorized as
OC state, while a,"0," > 1.1 was categorized as NC state. In the case of creep coefficient C., load
increment specific values were separated to OC and NC states using the critical stress 0.80," (that s,
stress ratio 0,70, = 0.8). As above, to account for possible measurement errors, the datasets were
formed using the criteria 0,70, < 0.7 and 6,70," > 0.9.

In the determination of a typical value distribution of hydraulic conductivity £, an effort was made
to evaluate the initial (natural state) k. The parameter k; provides this estimate, but another dataset was
formed by considering load increment specific & values: stress ratios o,70," < 2 were estimated to
provide approximations of k;. Estimates based on Taylor and Casagrande methods (kr and kc) were
considered as separate datasets. After stress ratio filtering, the number of kuirc: values (n = 49) was
assessed to be too small to form a typical value distribution. Further division of data into soft soils and
stiffer soil specimens was trialed, but the change in the typical value distribution was considered to be
insignificantly small; these results were hence omitted.

The typical value distributions for ¢, are shown in Figure 19 (soft soils) and Figure 20 (stiff clays
and silts), and their statistics and parameters for lognormal distribution (MLE fit) are collected in Table
6. The minimum ¢, from the CRS test (¢, min) was found to have a very similar distribution to the ¢, in
NC state, and hence these datasets were combined to form a typical value distribution (Figure 19a).
Nonetheless, the statistics are provided for distinct datasets also in Table 6. For soft soils, there is a clear
distinction between the typical values in NC state compared to OC state; the mean value for ¢, in OC
state is, on average, approximately 10 times greater. It is also observed that the mean value for ¢, in NC
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state is rather small, on the scale of 0.5 m?/year. In stiff clays and silts, however, the difference between
OC and NC states is much smaller. The mean ¢, value in NC state for stiff clays and silts (7 m?/year and
13 m?/year) is in accordance with the typical values (for ¢, slightly above 0,") suggested for Danish
inorganic clay (16 m?/year) and gyttja or organic clay (6 m?/year) [28]. Very high COV values are
observed for all ¢, data groups, ranging from 0.9 to 2.1 (Table 6). Such high COV values can be
expected because consolidation properties are known to have large inherent variability even within

semi-homogeneous soil layers. For the inherent variability of ¢,, COVimn =

0.33-0.68 has been

suggested [31], and COVinn = 0.28—-0.61 has been observed to apply to soft Finnish clays [32].
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Figure 19. Typical value distributions of ¢, for soft soils (w, > 70%) in (a) NC state and
(b) OC state (FI-CLAY-cv/8/774).
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Figure 20. Typical value distributions of ¢, for stiff clays and silts (w, < 70%) in (a) NC
state and (b) OC state (FI-CLAY-cv/8/774).
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Table 6. Statistics for the typical values and MLE distribution fit.

Dataset Statistics (arithmetic) Lognormal distribution

n min 50%  max mean SD COV  unm Oin

Soft soils (clays and gyttja soils), w, = 70—-190%:

¢ in NC state (inlc. cymin) 484  0.02 0.29 11.6 0488 0.838 1.716 —1.165 0.8566
¢y in NC state 402 0.02 0.30 11.60 0.504 0.857 1.701 —1.141 0.8772
Cymin (in NC state) 82 0.05 0.25 6.50 0412 0.736 1.736 —1.284 0.7361
¢ve in NC state 384 0.02 0.22 12.34  0.358 0.750 2.092 —1.491 0.8620
¢rin OC state 57 0.15 2.15 64.46 8.897 13.57 1.525 1.226 1.3920
¢ve in OC state 50 0.13 1.92 27.85 5328 6.741 1.265 0.814 1.4032

Stiff clays and silts, w, = 20-70%:

¢y in NC state 174 0.09 2.67 93.85 12,55 20.59 1.641 1.322 1.5887
¢ve in NC state 158 0.09 1.43 75.05 6.821 13.68 2.005 0.701 1.4863
¢y in OC state 91 1.00 15.6 87.56 18.44 15,59 0.845 2.533 0.9781
¢ve in OC state &3 0.64 8.74 79.44 1212 11.77 0971 2.082 0.9933

Clay and gyttja soils, w, = 20-190%:

Cosmax 168 0.13 1.48 7.73 1.902 1.358 0.714 0.369 0.7940
Cu in “NC” state 563  0.02 0.97 6.40 1.227 0911 0.743 —0.070 0.7888
Cu in “OC” state 107  0.04 0.13 1.03 0.187 0.163 0.871 —1.931 0.6785
k; (oedometer) 282 0.07 0.86 30.2 1.373 2226 1.620 —0.118 0.8573
kr (stress ratio < 2) 202 0.011 0.59 4.39 0.740 0.661 0.893 —0.690 0.9894
kc (stress ratio < 2) 185 0.017 0.39 2773 0491 0445 0906 —1.107 0.9842

Notes on units: ¢, values are in m*/year, C,. values are in %, and k values are in 10 m/s.

Typical value distributions for creep coefficients of clay and gyttja soils (i.e., all the data in the
compiled databases) are shown in Figure 21, and their statistics are collected in Table 6. There is
approximately a ten-times difference in the mean and maximum values for C,: in OC state compared
to Cogmax and Cy in NC state. The COV value for creep coefficients varies between 0.7 and 0.9. As
expected, this is a somewhat larger COV value compared to the inherent variability of C,: observed in
Finnish clays, COVinn = 0.26-0.52 [32].

Finally, typical value distributions for hydraulic conductivity &k are shown in Figure 22. As
expected, the mean value for £; is greater than for the data groups with & values (even though the stress
ratio is limited to 2). As for COV, k; has the greatest value (1.6), while k£ values have COV = 0.9. For
the inherent variability of £, COVinn = 0.68—0.90 has been suggested [31]. Meanwhile, for k; of soft
Finnish clays, a range equal to COVinn = 0.29-0.56 has been observed [32].

According to Figures 19-22, a lognormal distribution seems to fit the datasets rather well. Note
that for better readability of the histograms, the x-axes for NC ¢, of soft soils (Figure 19a) and £;
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(Figure 22b) have been limited to a value smaller than the maximum observed value, since those high
value occurrences were too rare to be seen in the histogram.
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Figure 21. Typical value distributions of Cy for clay and gyttja soils: (a) Cousmax and Cesin
NC state and (b) C,: in OC state (FI-CLAY-cv/8/774 and FI-CLAY-oedo/14/282).
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Figure 22. Typical value distributions of k for clay and gyttja soils: (a) kr and kc for stress
ratios < 2 (FI-CLAY-cv/8/774); and (b) interpreted k; (FI-CLAY-oedo/14/282).
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4., Conclusions

This paper introduced and investigated two compiled databases of consolidation properties for
Finnish clay and gyttja soils: FI-CLAY-oedo/14/282 contains oedometer test-specific parameters such
as initial hydraulic conductivity k; and maximum creep coefficient Cogmar, while FI-CLAY-cv/8/774
consists of load increment-specific parameters such as coefficient of consolidation ¢, and hydraulic
conductivity k. The analysis of these databases provided three main results:

1) Statistics for bias factors, which quantify the difference between methods to define ¢, and k (e.g.,

Taylor vs. Casagrande methods, oedometer test vs. falling head test).

2) Linear or polynomial transformation models (and their transformation uncertainty) to predict the
creep coefficient (Cosmax OF Cye) from index or consolidation properties.

3) Typical value distributions in the form of histograms and fitted lognormal distributions for various
consolidation properties (cv, k, Cagmax, and Ceg).

All the results are given with statistical information, which allows their straightforward utilization
as input data for probabilistic assessment (reliability-based design, RBD). After all, consolidation
properties based on transformation models or typical value distributions are both characterized by
significant uncertainty, and hence RBD enables assessing the corresponding uncertainty in the
settlement prediction [33].

The statistics of the bias factors revealed that the ¢, defined using the Casagrande (log time)
method is, on average, 0.8 times the ¢, defined with the Taylor (square root time) method. A comparison
between the falling head test (i.e., direct measurement) and incremental oedometer test showed that
kdirect was, on average, 1.4 times the k value, according to Taylor. The Casagrande method was found
to have an even greater bias (1.8). Meanwhile, the transformation uncertainty in the models to predict
creep coefficient was found to be 0 = 0.4-0.6 (9 is the coefficient of variation COV for a transformation
model). For example, the transformation uncertainty in the regression model to predict Cosmax from wy,
was 0 = 0.47 (i.e., 47%). The smallest transformation uncertainty (6 = 0.43) was acquired when the
compression index Cc was used as a predictor for Cogmax. Since the dataset contained Finnish clay and
gyttja soils only, the derived transformation models may be biased if applied outside of Finland.
However, the authors estimate that the derived transformation models can be applied with relatively
small bias to clay and gyttja deposits on the eastern coast of Sweden due to shared geological
sedimentation history (i.e., post-glacial clays deposited in the Baltic Sea).

It was observed that the typical value distributions of consolidation properties of Finnish soft
soils, stiff clays, or silts are characterized by COV in the scale of 1.0-2.0 (i.e., 100-200%). In soft
soils (w, = 70—-190%), the mean value for ¢, in the over-consolidated state was found to be, on average,
around ten times greater than ¢, in the normally consolidated state. To conclude, the consolidation
properties of clay and gyttja soils are marked with considerable uncertainty. Hence, it is beneficial to
consider the existing knowledge when determining the soil parameters either by supporting
engineering judgement or via a more systematic framework such as Bayesian statistics [34].

In the future, possibly reducing the considered transformation uncertainties by means of
advanced machine learning algorithms should be investigated. Support vector machine, random
forest, and artificial neural networks could be used to create transformation models for the
consolidation rate and creep properties of clay and gyttja soils with reduced transformation
uncertainty [35,36]. Moreover, with the novel machine learning algorithms’ capacity to analyze big
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data (e.g., [35]), the compiled databases could be further extended, and the transformation models
refitted with the complemented datasets.
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