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Abstract: When constructing on clay and gyttja soils, low-carbon ground improvement methods such 

as preloading should be preferred over carbon-intensive solutions (e.g., piles or deep mixing with lime-

cement binder). The design of preloading requires knowledge about the compressibility and 

consolidation properties of subsoil, but site-specific oedometer tests may be scarce or even lacking, 

especially in the early design phases. Hence, this paper presents two extensive databases based on 

oedometer tests performed on Finnish clay and gyttja soils, with a special emphasis on consolidation 

rate and creep properties. The FI-CLAY-oedo/14/282 database contains 282 oedometer test-specific 

data entries, such as initial hydraulic conductivity and maximum creep coefficient. The second 

database, FI-CLAY-cv/8/774, contains 774 load increment–specific data entries (e.g., coefficient of 

consolidation) from 232 oedometer tests. The analysis of these databases provided three main results: 

(i) statistics for bias factors, which quantify the differences between determination methods (log time 

vs. square root time method and oedometer vs. falling head test), (ii) transformation models (and their 

transformation uncertainty) to predict creep coefficient from index or consolidation properties, and (iii) 

typical value distributions for various consolidation rate and creep properties, in a form of histograms 

and fitted lognormal distributions. All the results are given with statistical information, which allows 

their straightforward utilization as input data for probabilistic assessment (reliability-based design). It 

is concluded that the consolidation properties of clay and gyttja soils are indeed characterized by 

significant uncertainty. Hence, such results are recommended to be used as existing (prior) knowledge 

when determining design parameters, either by supporting engineering judgement or via a more 

systematic framework such as Bayesian statistics. 

Keywords: clay; gyttja; coefficient of consolidation; creep; secondary consolidation; hydraulic 
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1. Introduction  

Construction on soft soils such as clay and gyttja usually requires pile foundations or extensive 

ground improvement. However, the carbon footprint of such geotechnical solutions is often significant; 

hence, low-carbon ground improvement methods such as preloading should be preferred over carbon-

intensive solutions (e.g., piles or deep mixing with lime-cement binder) [1,2]. 

The design of preloading (with or without vertical drains) requires knowledge on the 

geotechnical properties of the soil to be treated; besides compressibility properties such as 

compression index (CC) and preconsolidation pressure, the time-settlement prediction requires 

consolidation rate properties such as the coefficient of consolidation (cv) or hydraulic conductivity 

(k) [3,4]. Further, especially in organic soils such as gyttja, the secondary (creep) settlement should 

also be estimated, e.g., via the creep coefficient (Cαε). These consolidation rate and creep parameters 

can be defined using oedometer tests performed on undisturbed samples; the incrementally loaded 

oedometer test (ILOT) provides all these properties, while the constant rate of strain (CRS) test is 

usually applied to estimate cv and/or k only (i.e., the standard procedure does not provide estimate 

for Cαε). However, acquiring a sufficient amount of high-quality soil samples for the oedometer tests 

is not realistic in the early stages of the project, and thus, the preliminary settlement analysis is often 

conducted using literature values and empirical correlations.  

In Finland, marine soft clays and gyttja soils are common, especially in the coastal area. Many of 

these soft soils are sensitive and characterized by very low hydraulic conductivity due to high clay 

content [5–7]. Some indicative values for the consolidation rate properties of Finnish clays have been 

presented in design handbooks; however, such table values are scarce and have not been re-evaluated 

during the last decades. A few Finnish clay databases have been published so far, including FI-

CLAY/14/856 [6] and F-CLAY/7/216 [7] in the TC304 compendium of databases (“304dB”), but none 

of them contain consolidation rate or creep properties. Hence, this paper presents an extensive database 

of oedometer tests performed on clay and gyttja soils, with a special emphasis on consolidation rate 

and creep properties. The studied sites are located in Finland, and testing was done at Aalto University 

(previously the Technical University of Helsinki) for various research projects. Two databases were 

compiled. The first, FI-CLAY-oedo/14/282, contains 282 oedometer test results, some of which are 

enhanced with classification test results from a nearby specimen (i.e., partially multivariate database). 

The 14 parameters of interest in FI-CLAY-oedo/14/282 are the maximum creep coefficient (Cαε,max), 

initial hydraulic conductivity from ILOT (k1), minimum coefficient of consolidation from CRS (cv,min), 

natural water content (wn), initial void ratio (e0), fall cone liquid limit (F), undrained shear strength 

(su), sensitivity (St), degree of saturation (Sr), effective in situ stress (σv0ʹ), preconsolidation pressure 

(σpʹ), over-consolidation ratio (OCR), compression index (CC), and swelling index (CS). The second 

database is named FI-CLAY-cv/8/774 and contains 774 load increment–specific data entries from 232 

ILOT tests. The eight parameters of interest in FI-CLAY-cv/8/774 are the square root time (Taylor) 

coefficient of consolidation (cvT), log time (Casagrande) coefficient of consolidation (cvC), creep 

coefficient (Cαε), Taylor hydraulic conductivity (kT), Casagrande hydraulic conductivity kC, falling 

head test hydraulic conductivity (kdirect), stress ratio (σvʹ/σpʹ), and wn. Many of the oedometer tests 

included in the newly compiled FI-CLAY-oedo/14/282 are also included in the previously published 

FI-CLAY/14/856 [6]; the key difference between the databases is that FI-CLAY/14/856 did not contain 

any consolidation rate properties (e.g., k1 or Cαε,max) nor stress increment data. Indeed, Löfman and 

Korkiala-Tanttu [6] used the previously published database to derive transformation models for 
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compression indices CC and CS, while this paper investigates the consolidation rate (k, cv) and creep 

properties (Cαε). 

These newly compiled databases are used to characterize the consolidation rate and creep 

properties of soft marine clays and gyttjas by means of statistics and histograms (typical value 

distributions). The systematic differences between methods (e.g., log time vs. square root time method) 

to define consolidation properties are defined via bias factors. In addition, transformation models to 

predict consolidation properties based on other geotechnical properties (e.g., wn) are investigated and 

derived. It should be noted that although the compiled database FI-CLAY-oedo/14/282 also includes 

compressibility properties (e.g., CC), this study focuses on consolidation rate and creep properties only. 

The derived typical value distributions and transformation models can be used as input parameters for 

the preliminary settlement predictions done in the early stages of preloading design, when no site-specific 

oedometer tests are available. The results may also be applied to evaluate the reliability of oedometer 

tests and as existing knowledge to consider when determining the characteristic value. Bayesian statistics, 

for example, allow a systematic framework to combine existing knowledge (e.g., typical value 

distributions) with limited site-specific ground investigations as prior distributions [8–10]. 

2. Materials and methods 

2.1. Characterization of consolidation properties 

Consolidation properties (coefficient of consolidation cv, hydraulic permeability k, and creep 

coefficient Cαε) can be defined with an ILOT test. For each load increment, a time-settlement graph is 

constructed to define cv and Cαε. Figure 1a presents the principle of determining cv using the square 

root time method, also known as the Taylor method [11]. This method is based on finding the time and 

specimen height corresponding to a 90% degree of primary consolidation (U). The coefficient of 

consolidation cvT is calculated as follows: 

𝑐𝑣𝑇 =
0.848𝐻2

𝑡90
 (1)  

where drainage length H is equal to half of the specimen thickness at U = 50% consolidation, and t90 

is the time at U = 90% (0.484 is the time factor corresponding to U = 90%).  

The log time method, also known as the Casagrande method [12], is illustrated in Figure 2a; a 

100% degree of primary consolidation is interpreted using the extrapolated line fitted to the steepest 

tangent and the line fitted to the secondary (creep) settlement observations. The coefficient of 

consolidation cvC is then calculated with the time and specimen height corresponding to U = 50%: 

𝑐𝑣𝐶 =
0.196𝐻2

𝑡50
 (2)  

As illustrated in Figure 1b, the creep coefficient Cαε is acquired as the slope of creep settlement 

line [13]:  

𝐶𝛼𝜀 =
∆𝜀𝑠

∆ log(𝑡)
 (3)  
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where 𝜀𝑠  is compression during secondary consolidation (%). The unit for Cαε is usually%. An 

alternative formulation is based on void ratio (e) change instead of compression (creep coefficient Cαe).  

Usually, the interpretation of Cαε requires rather long consolidation times for the creep to occur; 

for Finnish soft soils, the standard time of 24 h usually provides reasonable estimates. However, more 

complete characterization of creep behavior requires longer (>24 h) load increments (this test type is 

later referred to as ILOT_CREEP). 

 

Figure 1. Determination of consolidation properties (cv and Cαε) from incremental 

oedometer test: (a) Taylor method; (b) Casagrande method. 

For each load increment, the hydraulic conductivity k may be estimated using the cv value, unit 

weight of water (γw), and modulus, while assuming that Terzaghi’s theory of consolidation is valid: 

𝑘 =  
𝑐𝑣𝛾𝑤

𝑀𝑠
 (4)  

where oedometer modulus Ms is defined for the load increment in question via Δσvʹ/Δεv, where εv is 

vertical compression, and σvʹ is effective vertical stress.  

Typically, the parameter of interest is the vertical coefficient of consolidation cv, to be used as 

input for one-dimensional settlement calculation. However, if preloading with vertical drains is used, 
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the horizontal consolidation properties may be investigated using rotated soil samples or a special 

radial consolidation oedometer test (later referred to as ILOT_H). 

Once the stress increments have been analyzed, the oedometer curve may be constructed using 

the interpreted end-of-primary (EOP) [14] compression points (see Figure 2). Preconsolidation 

pressure σpʹ separates the over-consolidated (OC) stress state and normally-consolidated (NC) stress 

state for the soil specimen. As illustrated in Figure 2, the cv values are typically quite high in the OC 

region and tend to drop significantly after σpʹ. After the minimum cv, a moderate increase is often 

observed with increasing stress. Figure 2 also shows the applied interpretation method for compression 

index CC, which emphasizes the compressibility right after σpʹ rather than the whole NC curve, since 

the soft sensitive clays in Finland typically exhibit nonlinear behavior also in a semi-logarithmic space. 

 

Figure 2. Example of a stress-strain relationship for a clay specimen and changes in the 

coefficient of consolidation, cv, with stress.  

Hydraulic conductivity k exhibits some decrease with increasing compression, as the pore space 

is increasingly reduced (see Figure 3). The initial hydraulic conductivity at the beginning of the 

oedometer test (k1) may be interpreted by a linear regression fitted to the logarithm of k: k at zero 
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compression is then found by extrapolation [15]. When fitting the regression line, k values 

corresponding to the first few load increments (in the OC region) may be omitted if needed, since the 

time-settlement analyses are not as accurate in the OC stress state as they are in NC stress state with 

classical time-settlement behavior. In addition, there may be some unevenness in the oedometer test 

specimen’s surface at the beginning of the test, which leads to inaccuracies. Quite often, the OC state 

time-settlement analysis is not performed at all, and the first k value corresponds to compression 

around 5–20%; In such a case, using that k value as initial k would be an underestimation.  

 

Figure 3. Example of a hydraulic conductivity k reducing with compression and the 

interpretation of initial k1 from k values based on (a) Taylor method and (b) Casagrande 

method.  

The creep coefficient Cαε also exhibits stress dependency: Cαε is very low until a certain stress and 

compression are reached, after which it increases fast up to a maximum value and then slowly 

decreases with further compression (see an example in Figure 4). Indeed, Mesri et al. [16] suggested 

that the ratio Cαe/CC is constant, thus implying that maximum Cαe occurs during maximum 

compressibility, i.e., right after σpʹ (see Figure 2). On the other hand, subsequent studies have shown 

that this ratio is not constant in soft sensitive clays (see, e.g., [17]). 

In Nordic soft soils, the significant increase in Cαε has been found to occur when vertical 

effective stress is approximately 0.8σpʹ [15]. However, the determination of Cαε with the Casagrande 

method tends to be unsuccessful in stress regions close to σpʹ due to the time-settlement graph 

exhibiting a form other than reverse s-shaped. Thus, the maximum Cαε needs to be estimated 

indirectly. Figure 4b shows the Swedish method [15] based on compression: the linear line is fitted 

to the observations after the critical compression at 0.8σpʹ, and the extrapolated value at critical 

compression is the estimated Cαε,max. Alternatively, Cαε,max is interpreted using the stress method, i.e., 

via the Cαε values at stresses greater than 0.8σpʹ or σpʹ (see, e.g. [18]). In the stress method (see Figure 

4a), the decrease in Cαε after the maximum tends to be less linear, and hence the interpretation may 

vary; wider coverage of stresses often provides a less conservative estimate for Cαε,max, compared to 

focusing on the stresses right after 0.8σpʹ.  
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Figure 4. Estimation of maximum creep coefficient Cαε,max using the (a) stress method 

(e.g., [18]) and (b) compression method [15]. 

2.2. Databases FI-CLAY-oedo/14/282 and FI-CLAY-cv/8/774 

The compiled oedometer test database FI-CLAY-oedo/14/282 is partially multivariate. The 

included parameters and their statistics are collected in Table 1. Each row in this database represents 

one oedometer test. In the database name, 14 refers to the number of main parameters of interest; it 

should be noted, however, that the database contains more than 14 columns, providing some additional 

information. The number 282 refers to the number of data rows (i.e., oedometer tests). Table 1 

summarizes the statistics for the soil parameters included in the database. All the data rows include 

natural water content wn, initial void ratio e0, (bulk) unit weight γ, and initial hydraulic conductivity k1. 

On the other hand, there are only 168 oedometer tests with Cαε,max. Statistics of the degree of saturation 

show that the specimens were fully saturated, with a few exceptions with Sr < 100%.  

From the 282 oedometer tests, 65% are ILOT tests, while the rest are CRS tests. Some of the 

ILOT tests (n = 25) where combined with the falling head test (test type “ILOT_K”), which allows 

direct measurement of hydraulic conductivity (kdirect). The database contains n = 12 long-term 

oedometer tests (“ILOT_CREEP”) and n = 19 horizontal oedometer tests (“ILOT_H”). As the portion 

of these special tests is relatively small, these test results have not been filtered out in the analysis.  

The clear majority of test specimens in FI-CLAY-oedo/14/282 are clays (see Figure 5). About 25% 

of specimens are estimated to be clays, gyttja soils, or silts, thus classified as cohesive soils (since 

actual classification data was lacking). The applied “GEO” soil type classification system is based on 

geological origin, grain size distribution, and organic content [19]. 

 



350 

AIMS Geosciences  Volume 11, Issue 2, 343–369. 

Table 1. Statistics for the oedometer test database FI-CLAY-oedo/14/282. 

Property  Unit Symbol n Mean SDa) Min 25% 50% 75% Max 

Natural water content  % wn 282 94.37 34.92 28.00 69.92 92.15 110.00 187.00 

Void ratio  − e0 282 2.56 0.93 0.78 1.89 2.52 3.02 5.20 

Unit weight  kN/m3 Γ 282 14.94 1.56 11.95 13.98 14.74 15.80 19.61 

Hydraulic conductivity, 

ILOT c) 

10-9 m/s k1 282 1.37 2.23 0.07 0.53 0.86 1.43 30.20 

Max. creep coefficient, 

stress method  

% Cαε,max 168 1.90 1.36 0.13 0.92 1.48 2.66 7.73 

Degree of saturation % Sr 224 99.02 3.27 66.00 99.00 100.00 100.00 107.46 

Effective in situ stress  kPa σv0ʹ 241 38.70 24.97 3.00 20.24 32.00 48.50 143.00 

Preconsolidation stress kPa σpʹ 262 62.69 53.37 10.00 30.00 43.00 74.75 350.00 

OCR  − OCR 227 1.69 1.21 0.42 1.03 1.33 1.77 10.58 

Compression index − CC 240 1.53 0.87 0.07 0.80 1.45 2.09 4.64 

Swelling index − CS 227 0.11 0.09 0.01 0.06 0.10 0.14 0.94 

Min. coefficient of 

consolidation, CRS test  

m2/year cv,min 94 0.81 2.23 0.05 0.19 0.26 0.56 19.60 

Fineness numberb)  (%) F 76 80.10 37.78 38.67 57.08 69.70 85.57 202.30 

Undrained shear 

strength 

kPa su 81 34.46 27.95 10.50 18.40 25.80 37.30 156.90 

Sensitivity − St 76 18.68 11.47 1.40 9.75 16.94 24.70 46.97 

Organic content  % Org 68 1.33 2.18 0.00 0.00 0.21 1.85 9.20 

Clay content % Cl 62 54.42 18.18 23.50 38.38 50.00 68.25 89.00 

Note: a) SD = sample standard deviation. b) F is the fall cone liquid limit, which has been found to be 

approximately equal to liquid limit wL [6]. c) The majority of k1 values were interpreted using the Taylor method 

(see Figure 3a).  

 

Figure 5. Soil types included in the FI-CLAY-oedo/14/282 database. 

The second compiled database, FI-CLAY-cv/8/774, contains stress increment-specific 

information from ILOT tests. That is, each row represents the interpreted parameters from one load 

increment. Test-specific properties such as test number, water content of the specimen, and 

preconsolidation pressure are thus repeated for each load increment. Table 2 represents the statistics of 
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the included parameters. This database contains results from 232 ILOT tests, some of which have been 

performed on rotated specimens to study horizontal permeability (n = 41 data rows out of n = 774 load 

increments). In total, 138 ILOT tests in FI-CLAY-cv/8/774 are also included in the FI-CLAY-

oedo/14/282 database. Most of the specimens included in the FI-CLAY-cv/8/774 database were 

estimated to represent clay or gyttja soils.  

Table 2. Statistics for the load increment database FI-CLAY-cv/8/774. 

Property  Unit Symbol n Mean SD Min 25% 50% 75% Max 

Effective vertical stress (in the 

beginning of load increment) 

kPa σvʹ 774 199.62 240.66 7.35 50.00 100.00 201.00 1487.00 

Coefficient of consolidation, square 

root time (Taylor) 

m2/year cvT 774 6.58 14.17 0.02 0.28 0.80 4.42 93.85 

Coefficient of consolidation, log time 

(Casagrande) 

m2/year cvC 704 3.81 9.17 0.01 0.18 0.47 2.07 79.44 

Creep coefficient  % Cαε 699 1.05 0.92 0.02 0.40 0.79 1.47 6.40 

Hydraulic conductivity, square root 

time (Taylor) 

10-9 m/s kT 398 0.47 0.56 0.00 0.11 0.28 0.62 4.39 

Hydraulic conductivity, log time 

(Casagrande) 

10-9 m/s kC 382 0.32 0.39 0.00 0.08 0.19 0.41 2.77 

Hydraulic conductivity, falling head 

test 

10-9 m/s kdirect 49 0.40 0.28  0.09  0.18  0.30  0.57  1.36 

Preconsolidation stress kPa σpʹ 772  79.46  76.03  7.00  27.00  46.00  97.89  350.00 

Stress ratio − σvʹ/σpʹ 770 3.72 5.06 0.04 1.09 2.17 4.30 61.54 

Natural water content % wn 774 87.38 35.73 18.60 58.34 84.40 113.00 178.20 

Degree of saturation % Sr 488 99.44 2.71 84.00 99.25 100.00 100.00 107.46 

Effective in situ stress kPa σv0ʹ 764 40.86 28.25 4.00 20.00 31.50 53.00 143.00 

OCR  − OCR 762  2.14  2.25  0.10  1.00  1.42  2.26  27.00 

Table 3 presents the included sites, sampling years, and number of observations in both databases. 

All the sites are located in Finland; the majority are located on the southern or western coast of Finland. 

More detailed references for the test data are given in the database info (see supplementary material). 

Most of the included study sites are described in greater detail by Löfman and Korkiala-Tanttu [6], as 

they are also included in the previously published database FI-CLAY/14/856.  

2.3. Transformation uncertainty and model bias  

Empirical correlations (transformation models) are characterized by transformation uncertainty [21]; 

that is, the model to predict a consolidation property using another soil parameter is never perfect. Bias 

factor is a useful variable for evaluating the systematic and random transformation uncertainty. The bias 

factor bi of ith data point can be defined as the actual target value (e.g., Cαε) divided by the predicted 

target value (e.g., prediction based on wn) [22]: 
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𝑏𝑖 =
𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒
 (5)  

The model bias b is the arithmetic mean of values bi. If b = 1, the model is unbiased (i.e., no 

systematic transformation error). The (random) transformation uncertainty can be defined from the 

sample coefficient of variation (COV) of values bi, usually denoted by δ. Sample COV is a measure of 

data dispersion, which is defined as the sample SD divided by the mean, and it is sometimes given as 

a percentage. The definition of transformation uncertainty via δ represents a multiplicative form [22]:  

𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 =  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 × 𝑏 ×  𝜀𝑡𝑟𝑎𝑛𝑠 (6)  

where εtrans is the variability term (random variable) for the transformation model. The mean of εtrans 

is 1, and its COV is δ.  

In addition to the evaluation of transformation models, the bias factor may be applied to study the 

systematic difference between various methods to define consolidation properties (e.g., k from 

oedometer or direct measurement, cv based on Taylor’s or Casagrande’s method). For example, if the 

bias factor is defined as kdirect/kT, model bias b > 1 means that the falling head test, on average, provides 

greater k values than the Taylor method.  

Table 3. Description of the included sites (FI-CLAY-oedo/14/282 and FI-CLAY-cv/8/774). 

Site Reference Sampling year(s) FI-CLAY-

oedo/14/282 n (k1) 

FI-CLAY-

cv/8/774 n (cvT ) 

Haarajoki [6] 1995 23 22 

Ossinlampi, Otaniemi (HUT-clay) [6] 2009, 2012 17 27 

Kimola (canal) [6] 2017 20 123 

Kujala test embankments (Lahti vt12) [6] 2017 26 106 

Murro (test embankment) [6] 1993 1 2 

Maarinranta, Otaniemi [6] 1998 (0) 68 

POKO (Porvoo-Koskenkylä) [6] 1999 55 81 

Perniö (test embankment) [6] 2009, 2010 11 47 

Suurpelto (Espoo) [6] 2005, 2008 31 94 

Söderkulla-Nikkilä (Sipoo, Pt 11689) [6] 1997–1999 47 86 

Tattara (Nakkila, Pt 12895) [6] 1997 (0) 18 

Tolsa (Kirkkonummi) [6] 1996 (0) 7 

Vanttila (Espoo) [20] 2001/2002b) 10 33 

Östersundom (test embankment) [6] 2013 41 (0) 

Note: b) Estimated.  

2.4. Linear and polynomial regression models (transformation models) 

This section describes the methodology to derive transformation models for consolidation 

properties. To be more specific, this paper applies linear and polynomial regression models fitted using 
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the ordinary least squares (OLS) method within the Scikit-learn library for Python [23]. The 

polynomial transformation model and its transformation uncertainty are defined by:  

𝑌̂ =  𝑏0 + 𝑏1𝑋 + 𝑏2(𝑋)2 + 𝜀 (7)  

where 𝑌̂ is the predicted ln-transformed target value, b terms are regression coefficients, X is the ln-

transformed predictor, and ε is the transformation error. Error ε is a zero-mean normal random variable 

with standard deviation σε (additive transformation uncertainty). OLS is applied to natural logarithms 

of the soil properties to ensure relatively constant residual scatter around the trendline. The linear 

regression model is otherwise similar to Equation 7, but the coefficient b2 is zero.  

Transformation error εi for ith data point is quantified as the residual (error) term of ith observation 

(e.g., Cαε,max from ILOT test) minus the predicted value 𝑌̂. The standard deviation of the transformation 

error σε can then be estimated from these individual residual errors using Equation 8 (see, e.g., [24]): 

𝜎𝜀 = √
1

𝑛 − 𝑣
∑[𝑌𝑖 − 𝑌𝑖̂]2

𝑛

𝑖=1

 (8)  

where n is the number of observations used in the linear regression, and v is the number of degrees of 

freedom (here taken as the number of estimated regression coefficients). 

Before fitting the transformation model, potential outliers need to be detected and removed. In 

this study, creep coefficients (Cαε,max or Cαε) greater than 6 were not considered, as they were observed 

to be very rare; n = 2 Cαε,max values and one Cαε were thus removed as outliers. In addition, for each 

transformation model, the standard deviation method with a 3σ-threshold was applied; those data 

points in which the residual error εi was more than 3σε apart from the zero mean were detected as 

outliers and thus removed before defining the final regression coefficients and model statistics.  

3. Results and discussion 

3.1. Stress dependency of consolidation properties 

As illustrated in Figure 6, the stress dependency of the coefficient of consolidation cv is clearly 

visible in the compiled database FI-CLAY-cv/8/774. In NC state, cv tends to be less than 2 m2/year 

for the considered marine soft soils. Similarly, the creep coefficient Cαε shows a clear distinction 

between the critical stress ratio σvʹ/σpʹ = 0.8 (see Figure 7). The figure also shows that variability in 

Cαε is smaller in the OC stress state (stress ratio < 0.8) than in the NC stress state, where higher Cαε 

values are observed. In preloading design, Cαε in the OC state may be used to estimate creep 

settlement after the removal of temporary surcharge, since the subsoil behaves as over-consolidated 

soils if the preloading has been successful.  

3.2. Model biases: Coefficient of consolidation and hydraulic conductivity (FI-CLAY-cv/8/774)  

This analysis uses the bias factors to compare different methods used to define cv or k. Figures 

8 and 9 compare the Taylor and Casagrande methods to define cv or k, respectively. Figures 8b and 9b 

show the histograms of bias factors (cvC/cvT or kC/kT ) and the fitted distribution(s). Normal distribution 

was fitted to the data using the method of moments (MoM), while a lognormal distribution was fitted 
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using the maximum likelihood estimation method (MLE). The results of the bias analysis are shown 

in Table 4. The arithmetic mean for the bias factor cvC/cvT is b = 0.8, meaning that the coefficient of 

consolidation cv defined using the Casagrande method is, on average, 0.8cvT. In other words, cv defined 

using the Taylor method tends to be higher, on average 1.25cvC (1/0.8 = 1.25). The bias factor kC/kT 

has quite very similar statistics, but the histogram shows a different shape: the lognormal distribution 

did not provide a good fit and was hence omitted from the results (see Figure 9b). The authors estimate 

that the main reason for the model bias is that while the Taylor method emphasizes the initial part of 

the time-settlement curve, the Casagrande method utilizes measurements all the way until U ≈ 100%, 

where creep also starts to influence the time-settlement behavior besides primary consolidation. 

 

Figure 6. Coefficient of consolidation cv as a function of stress ratio: (a) all observations; 

b) cv = 0–2 m2/year (FI-CLAY-cv/8/774). 

 

Figure 7. Creep coefficient Cαε as a function of stress ratio (FI-CLAY-cv/8/774). 
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Figure 10 describes the model bias for estimating k from the ILOT test (kC or kT) compared with 

the falling head test (kdirect). According to Figure 10, a lognormal distribution provides a better fit 

compared to a normal distribution. The mean bias factors for the Taylor and Casagrande methods are 

1.67 and 2.35, respectively; that is, kT is less biased on average. In addition, the COV value for the bias 

factor is smaller for kT (0.52 compared to 0.92), which indicates smaller model uncertainty. However, 

the studied sample size was rather small (n = 47–49 bias factors). 

 

Figure 8. Bias between Taylor (root time) and Casagrande (log-time) methods: (a) 

coefficient of consolidation cvT vs. cvC ; and (b) histogram and fitted distributions for bias 

cvC/cvT. 

 

Figure 9. Bias between Taylor (root time) and Casagrande (log-time) methods: (a) 

hydraulic conductivity kT vs. kC; (b) histogram and fitted distribution for bias kC/kT. 
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Figure 10. Bias between the incremental oedometer and falling head test methods: (a) 

hydraulic conductivity kdirect vs. koedo; (b) histogram and fitted distributions for bias 

kdirect/koedo. 

Table 4. Statistics for the bias factors and the parameters of the fitted lognormal distribution. 

Bias factor Statistics (arithmetic) Lognormal distribution 

n min 50% max mean (b) SD COV μln σln 

cvC/cvT 704 0.003 0.769 6.88 0.759 0.368 0.484 −0.3998 0.6096 

kC/kT 364 0.035 0.804 1.34 0.759 0.239 0.314 N/A N/A 

kdirect/kC 47 0.944 1.761 14.4 2.350 2.150 0.915 0.6662 0.5315 

kdirect/kT 49 0.547 1.381 4.55 1.669 0.870 0.521 0.3949 0.4771 

Notes: n = number of observations (bias factors); 50% = median; b = model bias; SD = standard deviation; COV = 

coefficient of variation; μln = mean (parameter for lognormal distribution); σln = standard deviation (parameter for 

lognormal distribution).  

3.3. Transformation models for consolidation properties 

3.3.1. Coefficient of consolidation and hydraulic conductivity  

This section investigates empirical correlations for consolidation properties that may be used to 

derive transformation models. Figure 11 shows that cv shows some correlation with wn: high cv values 

seem to be more common for soils with smaller wn, while soft soils with wn > 70% (Figure 11b) are 

characterized by smaller cv values (mostly cv < 2 m2/year). After ln-transformation, a regression 

function could be fitted to the data, but the transformation uncertainty was estimated to be too large 

(δ > 1) for practical use. Instead, typical value distributions were defined for soft soils and stiffer soils 

separately (see Section 3.4).  
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Some previous studies (e.g., [25]) found a correlation between cv and plasticity index. However, 

this transformation model could not be investigated because the compiled databases do not include a 

sufficient number of plasticity index values (as the Finnish geotechnical classification system [19] does 

not incorporate plasticity index). 

Hydraulic conductivity k has been demonstrated to be correlated with initial void ratio, liquid 

limit wL, and ratio wn/wL ([26]). Figure 12a shows the relationship between wL and k1 (this study), 

together with observations from the FG/KSAT-1358 database compiled by Feng and Vardanega [26,27]. 

Note that only the selected range of k is shown. Based on the notable overlap of the datasets in Figure 

12a, the data from the FI-CLAY-oedo/14/282 database is in accordance with FG/KSAT-1358. However, 

as illustrated in Figure 12b, even though FI-CLAY-oedo/14/282 data is, for the most part, in accordance 

with the transformation models derived by Feng and Vardanega [26], there is no notable correlation. 

The authors estimate that since FI-CLAY-oedo/14/282 consists mostly of soft marine clay soils, the 

range in k1 value is too narrow to show a significant correlation with wn/wL. Therefore, no 

transformation model for hydraulic conductivity was derived in this study.  

Figure 11. Relationship between wn and cv. (a) All observations (FI-CLAY-cv/8/774); (b) 

wn > 70% and cv ≤ 5 m2/year.  

3.3.2. Creep coefficient 

Figure 13a shows the relationship between the creep coefficient [Cαε in NC state (stress ratio > 

0.8) and Cαε,max] and wn. Maximum creep Cαε,max seems to form the upper bound, as expected. The 

figure also shows the area in which observations on Swedish soft soils are located [15]; data from FI-

CLAY-oedo/14/282 shows a similar positive correlation between wn and Cαε,max. Meanwhile, Figure 

13b shows the dependence between wn and Cαε in the OC state (stress ratio ≤ 0.8); some positive 

correlation can be observed, but the strength of the correlation and the amount of data were assessed 

to be too small to derive reliable transformation model for Cαε in the OC state. 
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Figure 12. Validation of the FI-CLAY-oedo/14/282 database against the FG/KSAT-1358 

database [26,27]. (a) Relationship between wL and k; (b) prediction of k based on wn/wL 

(cons. = consolidated disturbed specimen; undist. = undisturbed specimen).  

Figure 14 illustrates the relationship between compressibility and creep coefficient Cαε,max. Figure 

14b compares the data with Andersen’s [28] transformation model for Cαε, which uses compression 

ratio CR [= CC/(1+e0) given in %] as a predictor: this Danish model for clays, gyttjas, and peats is 

found to somewhat overestimate Cαε,max for Finnish clay and gyttja soils. When the Andersen’s best fit 

model (Cαε = 0.009CR1.58) was used to predict Cαε,max in FI-CLAY-oedo/14/282, the average model 

bias (Equation 5) was found to be 0.74 with transformation uncertainty δ = 0.57.  

Linear or polynomial transformation models for Cαε,max were derived using three predictors: CC, 

wn, and e0. The model statistics and regression coefficients are collected in Table 5. Figures 15a and 

16a illustrate the fitted transformation model with ln-transformed variables (wn or CC) as axes, while 

Figures 15b and 16a show the predicted vs. actual Cαε,max scatterplot with 1:1 line and ±50% boundaries. 

The mean bias values for the Cαε,max models are around 1.1, but the medians for the bias are 

approximately 1.0, which implies that the distributions of the biases are skewed (e.g., lognormal rather 

than normal distribution). A median or mean equal to 1 should be expected, as the transformation model 

is derived using the same dataset to which its prediction is compared; in other words, the studied model 

should be unbiased. One outlier was detected using the 3σ-threshold when fitting the Cαε,max(CC) model. 

For these transformation models, the transformation uncertainty is δ = 0.43–0.47, which implies medium 

transformation uncertainty [29].  

Next, the relationship between cv and Cαε was investigated. Such transformation model would be 

useful if the load increment has not been long enough to provide a reliable Cαε estimate; the cv for that 

load increment, defined with either Taylor or Casagrande methods, could then be used to estimate Cαε. 

Such a model may also be applied to the CRS test, as it provides a cv value. Figure 17 presents the 

derived linear Cαε(cvT) model and the detected outlier values. Table 5 presents the statistics for both 

Cαε(cvT) and Cαε(cvC) models; the transformation uncertainty is found to be smaller when cvC is the 

predictor (δ = 0.56 versus δ = 0.64).  
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Table 5. Statistics for derived transformation models for the coefficient of creep. 

Model variables Outliers Regression model: Y = b0 + b1X + b2(X)2 + ε Bias statistics 

Y X b0 b1 b2 σε n R2 50% Mean δ 

ln(Cαε,max) 

ln(CC) 1 0.2784 0.843 (0) 0.435 154 0.69 1.00 1.10 0.43 

ln(wn) 0 −13.157 4.746 −0.377 0.469 166 0.64 1.01 1.11 0.47 

ln(eo) 0 −0.9751 2.109 −0.423 0. 468 166 0.64 1.00 1.11 0.46 

ln(Cαε) ln(cvT) 4 −0.330 −0.445 (0) 0.596 694 0.66 0.99 1.19 0.64 

ln(cvC) 5 −0.522 −0.480 (0) 0.548 674 0.71 1.00 1.16 0.56 

Notes: n = number of observations used to fit the model; R2 = degree of determination; σε = standard deviation of the zero-

mean transformation error ε; 50% = median; δ = COV of the bias values. 

Finally, Figure 18a shows the Cαε,max(wn) model in linear scale together with ±2σε boundaries, 

showing that in small wn values, the model is characterized by smaller transformation uncertainty, 

which is in accordance with the observations [same for Cαε,max(CC) model, see Figure 14a]. Accordingly, 

Figure 18b shows the derived Cαε(cvT) model in linear scale. Due to the strong nonlinearity of the model, 

it is evident that the transformation model should not be applied blindly to very small cv values. If the 

transformation model predicts Cαε > 6, it is recommended to use an estimated maximum value instead. 

 

Figure 13. Relationship between wn and (a) Cαε in NC state (stress ratio > 0.8) and Cαε,max 

(this study), compared with max Cαε reported by Larsson [15]; and (b) Cαε in OC state 

(stress ratio ≤ 0.8). 
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Figure 14. Relationship between compressibility and creep. (a) compression index CC vs. 

Cαε,max (data and fitted model); (b) compression ratio CR vs. Cαε,max data together with 

Andersen’s [28] model for Cαε. 

 

Figure 15. Prediction of Cαε,max based on wn: (a) fitted polynomial regression model and 

(b) predicted vs. actual values. 
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Figure 16. Prediction of Cαε,max based on CC: (a) fitted linear regression model and (b) 

predicted vs. actual values. 

To compare, the transformation uncertainty in the models to predict creep coefficient (δ ≈ 0.4–

0.6) is found to be somewhat larger than the transformation models for compressibility (e.g., CC) of 

Finnish clay soils, δ ≈ 0.4 [6]. (To compare, the TC304 state-of-the-art report [30] observed that most 

clay models for CC and CS have high variability, i.e., 0.6 < δ < 0.9.)  

 

Figure 17. Prediction of Cαε based on cvT of the same stress increment: (a) fitted linear 

regression model and (b) predicted vs. actual values. 
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Figure 18. Transformation models to predict consolidation properties: (a) Cαε,max based on 

wn; (b) Cαε based on cvT of the same stress increment. 

3.4. Typical value distributions for consolidation properties 

The typical value distributions of cv were formed for two data groups: (1) soil specimens with wn > 

70%, categorized as soft soils (i.e., clay and gyttja soils), and (2) soil specimens with wn ≤ 70%, 

categorized as stiff clays and silts. In addition, cv values corresponding to OC or NC states were 

separated. However, instead of using stress ratio σvʹ/σpʹ = 1 as the defining boundary, to account for 

possible measurement error in σpʹ, the following definitions were used: σvʹ/σpʹ < 0.9 was categorized as 

OC state, while σvʹ/σpʹ > 1.1 was categorized as NC state. In the case of creep coefficient Cαε, load 

increment specific values were separated to OC and NC states using the critical stress 0.8σpʹ (that is, 

stress ratio σvʹ/σpʹ = 0.8). As above, to account for possible measurement errors, the datasets were 

formed using the criteria σvʹ/σpʹ < 0.7 and σvʹ/σpʹ > 0.9.  

In the determination of a typical value distribution of hydraulic conductivity k, an effort was made 

to evaluate the initial (natural state) k. The parameter k1 provides this estimate, but another dataset was 

formed by considering load increment specific k values: stress ratios σvʹ/σpʹ < 2 were estimated to 

provide approximations of k1. Estimates based on Taylor and Casagrande methods (kT and kC) were 

considered as separate datasets. After stress ratio filtering, the number of kdirect values (n = 49) was 

assessed to be too small to form a typical value distribution. Further division of data into soft soils and 

stiffer soil specimens was trialed, but the change in the typical value distribution was considered to be 

insignificantly small; these results were hence omitted.  

The typical value distributions for cv are shown in Figure 19 (soft soils) and Figure 20 (stiff clays 

and silts), and their statistics and parameters for lognormal distribution (MLE fit) are collected in Table 

6. The minimum cv from the CRS test (cv,min) was found to have a very similar distribution to the cv in 

NC state, and hence these datasets were combined to form a typical value distribution (Figure 19a). 

Nonetheless, the statistics are provided for distinct datasets also in Table 6. For soft soils, there is a clear 

distinction between the typical values in NC state compared to OC state; the mean value for cv in OC 

state is, on average, approximately 10 times greater. It is also observed that the mean value for cv in NC 
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state is rather small, on the scale of 0.5 m2/year. In stiff clays and silts, however, the difference between 

OC and NC states is much smaller. The mean cv value in NC state for stiff clays and silts (7 m2/year and 

13 m2/year) is in accordance with the typical values (for cv slightly above σpʹ) suggested for Danish 

inorganic clay (16 m2/year) and gyttja or organic clay (6 m2/year) [28]. Very high COV values are 

observed for all cv data groups, ranging from 0.9 to 2.1 (Table 6). Such high COV values can be 

expected because consolidation properties are known to have large inherent variability even within 

semi-homogeneous soil layers. For the inherent variability of cv, COVinh = 0.33–0.68 has been 

suggested [31], and COVinh = 0.28–0.61 has been observed to apply to soft Finnish clays [32]. 

 

Figure 19. Typical value distributions of cv for soft soils (wn > 70%) in (a) NC state and 

(b) OC state (FI-CLAY-cv/8/774). 

 

Figure 20. Typical value distributions of cv for stiff clays and silts (wn ≤ 70%) in (a) NC 

state and (b) OC state (FI-CLAY-cv/8/774). 
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Table 6. Statistics for the typical values and MLE distribution fit. 

Dataset Statistics (arithmetic) Lognormal distribution 

n min 50% max mean SD COV  μln σln 

Soft soils (clays and gyttja soils), wn = 70–190%: 

cvT in NC state (inlc. cvmin) 484 0.02 0.29 11.6 0.488 0.838 1.716 −1.165 0.8566 

cvT in NC state 402 0.02 0.30 11.60 0.504 0.857 1.701 −1.141 0.8772 

cvmin (in NC state) 82 0.05 0.25 6.50 0.412 0.736 1.736 −1.284 0.7361 

cvC in NC state 384 0.02 0.22 12.34 0.358 0.750 2.092 −1.491 0.8620 

cvT in OC state 57 0.15 2.15 64.46 8.897 13.57 1.525 1.226 1.3920 

cvC in OC state 50 0.13 1.92 27.85 5.328 6.741 1.265 0.814 1.4032 

Stiff clays and silts, wn = 20–70%: 

cvT in NC state 174 0.09 2.67 93.85 12.55 20.59 1.641 1.322 1.5887 

cvC in NC state 158 0.09 1.43 75.05 6.821 13.68 2.005 0.701 1.4863 

cvT in OC state 91 1.00 15.6 87.56 18.44 15.59 0.845 2.533 0.9781 

cvC in OC state 83 0.64 8.74 79.44 12.12 11.77 0.971 2.082 0.9933 

Clay and gyttja soils, wn = 20–190%: 

Cαε,max 168 0.13 1.48 7.73 1.902 1.358 0.714 0.369 0.7940 

Cαε in “NC” state 563 0.02 0.97 6.40 1.227 0.911 0.743 −0.070 0.7888 

Cαε in “OC” state 107 0.04 0.13 1.03 0.187 0.163 0.871 −1.931 0.6785 

k1 (oedometer) 282 0.07 0.86 30.2 1.373 2.226 1.620 −0.118 0.8573 

kT (stress ratio < 2) 202 0.011 0.59 4.39 0.740 0.661 0.893 −0.690 0.9894 

kC (stress ratio < 2) 185 0.017 0.39 2.773 0.491 0.445 0.906 −1.107 0.9842 

Notes on units: cv values are in m2/year, Cαε values are in %, and k values are in 10-9 m/s. 

Typical value distributions for creep coefficients of clay and gyttja soils (i.e., all the data in the 

compiled databases) are shown in Figure 21, and their statistics are collected in Table 6. There is 

approximately a ten-times difference in the mean and maximum values for Cαε in OC state compared 

to Cαε,max and Cαε in NC state. The COV value for creep coefficients varies between 0.7 and 0.9. As 

expected, this is a somewhat larger COV value compared to the inherent variability of Cαε observed in 

Finnish clays, COVinh = 0.26–0.52 [32]. 

Finally, typical value distributions for hydraulic conductivity k are shown in Figure 22. As 

expected, the mean value for k1 is greater than for the data groups with k values (even though the stress 

ratio is limited to 2). As for COV, k1 has the greatest value (1.6), while k values have COV ≈ 0.9. For 

the inherent variability of k, COVinh = 0.68–0.90 has been suggested [31]. Meanwhile, for k1 of soft 

Finnish clays, a range equal to COVinh = 0.29–0.56 has been observed [32]. 

According to Figures 19–22, a lognormal distribution seems to fit the datasets rather well. Note 

that for better readability of the histograms, the x-axes for NC cv of soft soils (Figure 19a) and k1 
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(Figure 22b) have been limited to a value smaller than the maximum observed value, since those high 

value occurrences were too rare to be seen in the histogram.  

 

Figure 21. Typical value distributions of Cαε for clay and gyttja soils: (a) Cαε,max and Cαε in 

NC state and (b) Cαε in OC state (FI-CLAY-cv/8/774 and FI-CLAY-oedo/14/282). 

 

Figure 22. Typical value distributions of k for clay and gyttja soils: (a) kT and kC for stress 

ratios < 2 (FI-CLAY-cv/8/774); and (b) interpreted k1 (FI-CLAY-oedo/14/282). 
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4. Conclusions 

This paper introduced and investigated two compiled databases of consolidation properties for 

Finnish clay and gyttja soils: FI-CLAY-oedo/14/282 contains oedometer test-specific parameters such 

as initial hydraulic conductivity k1 and maximum creep coefficient Cαε,max, while FI-CLAY-cv/8/774 

consists of load increment-specific parameters such as coefficient of consolidation cv and hydraulic 

conductivity k. The analysis of these databases provided three main results: 

1) Statistics for bias factors, which quantify the difference between methods to define cv and k (e.g., 

Taylor vs. Casagrande methods, oedometer test vs. falling head test). 

2) Linear or polynomial transformation models (and their transformation uncertainty) to predict the 

creep coefficient (Cαε,max or Cαε) from index or consolidation properties. 

3) Typical value distributions in the form of histograms and fitted lognormal distributions for various 

consolidation properties (cv, k, Cαε,max, and Cαε). 

All the results are given with statistical information, which allows their straightforward utilization 

as input data for probabilistic assessment (reliability-based design, RBD). After all, consolidation 

properties based on transformation models or typical value distributions are both characterized by 

significant uncertainty, and hence RBD enables assessing the corresponding uncertainty in the 

settlement prediction [33].  

The statistics of the bias factors revealed that the cv defined using the Casagrande (log time) 

method is, on average, 0.8 times the cv defined with the Taylor (square root time) method. A comparison 

between the falling head test (i.e., direct measurement) and incremental oedometer test showed that 

kdirect was, on average, 1.4 times the k value, according to Taylor. The Casagrande method was found 

to have an even greater bias (1.8). Meanwhile, the transformation uncertainty in the models to predict 

creep coefficient was found to be δ ≈ 0.4–0.6 (δ is the coefficient of variation COV for a transformation 

model). For example, the transformation uncertainty in the regression model to predict Cαε,max from wn 

was δ = 0.47 (i.e., 47%). The smallest transformation uncertainty (δ = 0.43) was acquired when the 

compression index CC was used as a predictor for Cαε,max. Since the dataset contained Finnish clay and 

gyttja soils only, the derived transformation models may be biased if applied outside of Finland. 

However, the authors estimate that the derived transformation models can be applied with relatively 

small bias to clay and gyttja deposits on the eastern coast of Sweden due to shared geological 

sedimentation history (i.e., post-glacial clays deposited in the Baltic Sea).  

It was observed that the typical value distributions of consolidation properties of Finnish soft 

soils, stiff clays, or silts are characterized by COV in the scale of 1.0–2.0 (i.e., 100–200%). In soft 

soils (wn = 70–190%), the mean value for cv in the over-consolidated state was found to be, on average, 

around ten times greater than cv in the normally consolidated state. To conclude, the consolidation 

properties of clay and gyttja soils are marked with considerable uncertainty. Hence, it is beneficial to 

consider the existing knowledge when determining the soil parameters either by supporting 

engineering judgement or via a more systematic framework such as Bayesian statistics [34].  

In the future, possibly reducing the considered transformation uncertainties by means of 

advanced machine learning algorithms should be investigated. Support vector machine, random 

forest, and artificial neural networks could be used to create transformation models for the 

consolidation rate and creep properties of clay and gyttja soils with reduced transformation 

uncertainty [35,36]. Moreover, with the novel machine learning algorithms’ capacity to analyze big 
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data (e.g., [35]), the compiled databases could be further extended, and the transformation models 

refitted with the complemented datasets.  
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