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Abstract: Having accurate knowledge on CO2 solubility in reservoir liquids plays a pivotal role in 
geoenergy harvest and carbon capture, utilization, and storage (CCUS) applications. Data-driven 
works leveraging artificial neural networks (ANN) have presented a promising tool for forecasting 
CO₂ solubility. In this paper, an ANN model was developed based on hundreds of documented data to 
predict CO₂ solubility in both pure water and saline solutions across a broad spectrum of temperatures, 
pressures, and salinities in reference to underground formation conditions. Multilayer perceptron 
(MLP) models were constructed for each system, and their prediction results were rigorously validated 
against the the literature data. The research results indicate that the ANN model is suitable for 
predicting the solubility of carbon dioxide under different conditions, with root mean square errors 
(RMSE) of 0.00108 and 0.00036 for water and brine, and a coefficient of determination (R²) of 0.99424 
and 0.99612, which indicates robust prediction capacities. It was observed from the ANN model that 
the saline water case could not be properly expanded to predict the CO₂ solubility in pure water, 
underscoring the distinct dissolution mechanisms in polar mixtures. It is expected that this study could 
provide a valuable reference and offer novel insights to the prediction of CO₂ solubility in complex 
fluid systems. 
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1. Introduction 

As global climate change intensifies, the search for and development of clean, sustainable energy 
solutions have become increasingly critical [1]. The expansion of renewable energy sources and the 
implementation of carbon capture, utilization, and storage (CCUS) technologies within various 
industries are deemed essential strategies for mitigating CO₂ emissions [2–8]. Geothermal energy, as 
a nearly carbon-neutral renewable energy source, is playing an increasingly prominent role in the 
global energy transition [9–13]. Concurrently, carbon dioxide (CO2) geological storage, as an effective 
means to mitigate climate change, has attracted widespread attention for its potential when combined 
with geothermal energy development.  

The CO₂-H₂O and CO₂-NaCl-H₂O fluid systems are of paramount importance in Earth’s systems 
and a variety of engineering geological processes, such as CO₂-enhanced oil recovery (EOR), and CO₂-
enhanced geothermal systems [14–19]. The phase behavior of CO₂-H₂O as well as H₂O-NaCl-CO₂ 
systems are therefore of significant industrial relevance [20–24]. The processes of dissolution, 
precipitation, and ion exchange within these fluid systems can markedly influence the phase 
equilibrium behavior in the geological media [25–27]. 

To predict the CO2 solubility in reservoir liquids, thermodynamic simulation stands as an 
effective branch in addition to the experimental studies. In thermodynamic simulation works 
involving CO₂, however, traditional cubic equations of state (EOS) and van der Waals mixing rules 
are commonly used for gas-liquid equilibrium calculations, and in most cases overlook the water 
phase’s effects. Given the importance of predicting CO₂ solubility, researchers have extensively 
studied with thermodynamic models, such as those proposed by Duan et al. (2006) [28], Spycher et 
al. (2003) [29], and Z. Liu et al. (2022) [30]. However, these models are limited to specific 
temperature, pressure, and salinity ranges. Therefore, developing a predictive model capable of 
handling polar mixtures and capturing complex nonlinear relationships still remains a challenge in 
terms of complexity and predictive accuracy. 

In recent years, data-driven models based on artificial neural networks (ANN) offer a new 
approach for predicting CO₂ solubility. Neural networks are large parallel systems composed of 
many highly interconnected components (called nodes or neurons). The structure of the connections 
between neurons and their arrangement effectively determine the system’s operation. The strength 
of the connections and how the network responds to instructions are determined by its learning 
algorithm. Compared to traditional thermodynamic models, ANN models can automatically learn 
complex nonlinear relationships through large-scale data training, avoiding cumbersome parameter 
adjustments, and provide greater flexibility and accuracy under various temperature and pressure 
conditions [31].This makes ANN-based predictive methods a powerful tool for addressing the 
current challenges of predicting CO₂ solubility.  

ANNs are typically divided into two main categories: feedforward neural networks and recurrent 
neural networks [32]. The multilayer perceptron (MLP) is a classic example of a feedforward neural 
network. MLP consists of an input layer, one or more hidden layers, and an output layer. The input 
layer receives external information, the hidden layers process the information, and the output layer 
generates the network’s response [33]. Each layer contains multiple neurons connected by weights. 
Each neuron receives input signals from the previous layer, applies weighted summation, and generates 
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an output signal through a nonlinear transformation, which is then passed to the next layer. This 
feedforward mechanism enables the network to perform complex classification and regression tasks.  

To optimize network parameters for specific tasks, training data is used to optimize these 
parameters. The backpropagation algorithm is the most commonly used training method. It iteratively 
adjusts network parameters to minimize the error between predicted and actual values, improving 
model accuracy and reliability [34]. An ANN’s parallel processing capabilities allow it to extract 
essential features and underlying patterns from input data. ANNs have achieved remarkable results in 
fields such as pattern recognition, image processing, and data mining. Classic network models like 
MLPs, convolutional neural networks (CNN), and recurrent neural networks (RNN) have performed 
exceptionally well in these areas [35]. 

In the prediction of CO₂ solubility, advancements in artificial intelligence provide new solutions. 
The nonlinear fitting ability and self-learning properties of ANNs give them significant advantages in 
modeling complex systems. Compared to traditional methods, ANN-based solubility prediction 
models offer improvements in accuracy, applicability, and computational efficiency. By designing 
appropriate network structures and training them with extensive experimental data, ANNs can establish 
complex nonlinear mapping relationships between input variables (e.g., temperature, pressure, and 
salinity) and output (CO₂ solubility). This data-driven modeling approach does not require in-depth 
analysis of complex physicochemical mechanisms between variables but allows ANNs to 
autonomously learn data patterns, making them highly applicable and robust [36]. In recent studies, 
machine learning models have been extensively applied to predict the solubility of gases in 
hydrocarbons, which is crucial for carbon capture and storage (CCS) and enhanced oil recovery (EOR) 
technologies in the oil and chemical industries. For instance, Madani [37] utilized five machine 
learning models, including CatBoost, random forest, LightGBM, k-nearest neighbors (k-NN), and 
XGBoost, along with five equations of state (EOS), to forecast the solubility of nitrogen (N2) in 
normal alkanes, revealing that the CatBoost model demonstrated the best predictive accuracy. 
Mohammadi [38] focused on the solubility of hydrogen in hydrocarbons, and through a comparison 
of five machine learning models, found that the XGBoost model stood out in terms of prediction 
accuracy. Additionally, Nakhaei-Kohani [39] employed six intelligent models to predict the solubility 
of CO2-N2 mixtures in aqueous solutions, with the random forest model showing the most accurate 
forecasting capabilities. Mahmoudzadeh [40] developed two intelligent models, gradient boosting 
(GBoost) and the light gradient boosting machine (LightGBM), to predict the solubility of pure CO2 
and impure CO2 in water, with the GBoost model exhibiting superior performance in both scenarios. 

This paper establishes an ANN-based method for studying the high-pressure phase behavior of 
gas-water and gas-saline solutions. Two systems, CO₂+H₂O and CO₂+H₂O+NaCl, are investigated, and 
the accuracy of the models is verified through comparison with literature data. Additionally, the study 
examines whether the saline model is applicable for predicting CO₂ solubility in pure water with zero 
salinity. A database is constructed from extensive gas-liquid equilibrium data for the CO₂+H₂O and 
CO₂+H₂O+NaCl systems, covering a wide range of pressure, temperature, and molar concentration of 
CO₂ and salts. 
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2. Methodology 

2.1. Data acquistion 

Literature-reported data on CO2 solubility in pure water systems [20,22,41–43] were collected, 
covering various conditions of temperature (273.15–573.15 K), pressure (0.19–120 MPa), and pure 
water. Table 1 provides a summary of the experimental studies, including the pressures of the 
respective applications, the amount of data and temperature ranges employed, and the methods used. 
The dataset size (number of samples) is 265, and the unit of the output variable (CO2 solubility) is the 
mole fraction of CO2. After excluding outliers, the data were divided into training, testing, and 
validation sets in a ratio of 16:4:5, with the validation set accounting for 20% (which represents 20% 
of the training set, or 16% of the total data). Therefore, the actual distribution of the data is as follows: 
64% for the training set (80% of the training set × 80% of the total data), 16% for the validation set, 
and 20% for the test set. The specific values in the table refer to Table A1. 

Table 1. Literature experiment studies on the determination of CO2 solubility in water. 

References Temperture (K) Pressure (MPa) Usage Method Data Volume

Bamberger et al., 2004 273.15–573.15 10–120 Quantitative Raman spectroscopy 131 

Chapoy et al., 2004 278.22–318.23 0.465–7.933 Gas-liquid equilibrium experiment 47 

Guo et al., 2014 323.2–353.1 4.05–14.11 Improved Peng-Robinson equation of state 29 

Y. Liu et al., 2011 308.15–328.15 2.10–15.99 Laboratory equipment measurement 31 

Valtz et al., 2004 274.14–351.31 0.190–5.261 VPT-EoS 27 

Table 2. Experimental studies in the literature on the determination of CO2 solubility in brine. 

References Salinity (mol/Kg) Temperture (K) Pressure (MPa) Usage Method Data Volume

Carvalho et al., 2015 1–6 313–433 0.5–30 Søreide-Whitson models 190 

Chabab et al., 2019 0–6 278.2–318.2 15 Stainless steel reactors 6 

Guo et al., 2016 1–6 313–353 30–40 High pressure equilibrium 

equipment 

5 

Z. Liu et al., 2022 0.25–2.0 293.08–353.13 1.02–14.29 Synthetic measurements 9 

Yan et al., 2011 1.13–3.01 323.03–373.41 2.10–15.99 Devices for “static 

analysis” methods 

5 

Zhaoa et al., 2015 1–5 273.15–473.15 10–40 Quantitative Raman 

spectroscopy 

25 

Experimental data on CO2 solubility in brine systems published in the literature [21,27,30,44–46] 
were collected, covering various conditions of temperature (273.15–453.15 K), pressure (0.46–40 
MPa), and salinity (0.25–6 mol/kg NaCl). Table 2 provides a summary of the experimental studies, 
including the pressures of the respective applications, the amount of data and temperature ranges 
employed, and the methods used. The dataset size (number of samples) is 240, and the unit of the 
output variable (CO2 solubility) is the mole fraction of CO2. After excluding outliers, the data were 
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divided into training, testing, and validation sets in a ratio of 16:4:5. The specific values in the table 
refer to Table A2. 

2.2. Modeling technique 

This study utilized a multilayer perceptron (MLP) model to predict the solubility of CO₂ in both 
pure water and saline water. Although both models share a similar basic structure, adjustments were 
made to the design details to accommodate the differing tasks of solubility prediction. 

Both models’ input layers contain 3 neurons, representing temperature and pressure. The water 
model introduces a third variable, the interaction term between temperature and pressure, to better 
capture their complex nonlinear relationship [47]. This is important because the effects of 
temperature and pressure on gas solubility are typically not independent, and there may be 
interactions between them. By introducing interaction terms, this complex relationship can be more 
effectively modeled [40]. In contrast, the saline water model includes an additional important 
variable: salt concentration. The data are normalized using MinMaxScaler, which scales the value of 
each feature to between [0, 1]. The purpose of this is to make different features have the same 
magnitude and to avoid the impact of too-large values for some features on the model training. In the 
prediction of pure water solubility, solubility is primarily influenced by temperature and pressure, and 
is mainly determined by these two factors. Including irrelevant or low-impact features may not have 
practical significance and may actually reduce the interpretability of the model. Introducing additional 
features could increase the complexity of the model, but it does not necessarily provide useful extra 
information and may even lead to overfitting. Both models use ReLU activation functions in their 
hidden layers to enhance the nonlinear expressive capabilities of the model. Moreover, to prevent 
overfitting, dropout regularization was applied, and an early stopping mechanism was introduced to 
control the training process. Due to different physical and chemical complexities, the two models show 
significant differences in architecture and optimization strategies. The pure water solubility model is 
relatively simple, consisting of 3 hidden layers with 1024 neurons per layer. This simpler structure is 
sufficient to capture the effects of temperature and pressure on solubility. In contrast, the saline water 
solubility model features a deeper network with 5 hidden layers, where the number of neurons 
decreases progressively (from 1024 to 64), better capturing the complex nonlinear relationships 
between temperature, pressure, and salt concentration. To improve the model’s generalization ability, 
the saline water model also incorporated random noise for data augmentation. 

Regarding optimization strategies, the saline water model used a higher initial learning rate (0.001) 
combined with a learning rate decay mechanism to ensure the model converged quickly and underwent 
fine-tuning in the later stages. The pure water model, on the other hand, employed a lower initial 
learning rate (0.0001) without using learning rate decay, as its solubility variations were relatively 
simple, allowing the model to converge in fewer iterations. Additionally, the saline water model was 
set with a higher patience parameter (50) to ensure sufficient time for learning complex relationships, 
whereas the pure water model used a lower patience parameter to accelerate convergence. 
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Figure 1. Illustration of the architecture of the MLP model. 

The design of the MLP (multilayer perceptron) is based on a large number of interconnected 
perceptrons or neurons, as shown in Figure 1. These neurons are distributed among the following three 
types of layers: 

Input Layer: The number of neurons depends on the number of input features (x1, x2, x3). For 
example, if the input data includes temperature, pressure, and their interaction term, the input layer 
will have three neurons. 

Hidden Layer: This is the core part of the model, consisting of one or more fully connected layers. 
The number of neurons and layers can be adjusted according to the complexity of the problem. 
Common activation functions include the ReLU (rectified linear unit), leaky ReLU, sigmoid, and tanh. 
The ReLU is the most commonly used activation function as it effectively introduces nonlinearity and 
avoids the vanishing gradient problem. However, it can cause the “dying ReLU” issue in the negative 
value region. Leaky ReLU addresses this limitation by allowing a small gradient in the negative region. 
Sigmoid and tanh are often used in scenarios where the output needs to be constrained within a specific 
range, but they may lead to the vanishing gradient problem. 

Output Layer: The number of neurons depends on the specific task. For instance, regression tasks 
usually have one output neuron, while classification tasks have neurons corresponding to the number 
of classes. Optimization strategies for the MLP model include adjusting the number of hidden layers 
and neurons, learning rate adjustment, and using dropout regularization to prevent overfitting. 
Normalizing the input data and using adaptive learning rate optimizers like Adam can improve training 
efficiency and model performance. 

It is worth noting that each neural connection between different layers is associated with a set of 
weights. Additionally, neurons in the output and hidden layers can include a bias term. The key to 
improving MLP model performance during the learning phase is to minimize the error between the 
target and the model prediction. The learning phase is considered a process of finding the optimal 
weights and biases. Many algorithms have been proposed to optimize the weights and biases of the 
MLP [48]. 
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In this study, in terms of data processing and enhancement, the pure water model first normalizes 
the input features (such as temperature and pressure) using MinMaxScaler, compressing them into the 
[0,1] interval to ensure that the scale of each feature is consistent. Meanwhile, the target variable 
(solubility) is standardized using a StandardScaler and adjusted to a distribution with a mean of 0 and 
a standard deviation of 1. In feature engineering, the pure water model introduces a temperature 
pressure interaction term to capture the nonlinear relationship between the two and improve the 
accuracy of the model. On the contrary, the saltwater model adopts data-augmentation techniques to 
expand the diversity of training data by adding random noise (noise-factor) to input features, aiming 
to improve the robustness of the model, avoid overfitting, and enhance the generalization ability. The 
saltwater model also uses the MinMaxScaler for data normalization to ensure that the scale of input 
features (temperature, pressure, salinity) is consistent, which ensure efficient training of the neural 
network. 

In terms of model structure, the neural network of the pure water model consists of three hidden 
layers, each layer containing 1024 neurons. The network structure is relatively large and aims to 
capture the complex nonlinear relationships between temperature, pressure, and their interaction terms. 
Dropout (0.2) layers were used after each hidden layer to reduce overfitting. The ReLU activation 
function is used for the hidden layer to accelerate training and avoid gradient vanishing problems, 
while the output layer uses a linear activation function because solubility is a continuous value. The 
pure water model has a relatively simple network structure, sufficient data volume, few features, and 
low nonlinear complexity, so the risk of overfitting is low. Therefore, the early stopping mechanism of 
overfitting was not used. However, the model still effectively reduces overfitting and enhances its 
generalization ability through the dropout (0.2 dropout rate). The neural network of the saltwater model 
consists of five hidden layers, with the number of neurons decreasing layer by layer (1024, 512, 256, 
128, 64). This deeper structure helps to capture the more complex relationships between salinity, 
temperature, and pressure. The model adopts an Adam optimizer with attenuation to gradually reduce 
the learning rate during training, thereby helping the model converge more stably. In addition, the 
saltwater model uses an early stopping strategy to monitor the loss of the validation set. When the loss 
does not improve in the specified patch round, training will stop, effectively avoiding overfitting and 
reducing training time. 

In terms of model training and evaluation, the pure water model had 2000 training rounds, a batch 
size of 32, and used validation_stplit = 0.2. 20% of the training data was used as the validation set to 
monitor the performance during the training process. The evaluation indicators include the root mean 
square error (RMSE), coefficient of determination (R²), and mean absolute percentage relative error 
(AAPRE), which help to comprehensively evaluate the fitting effect of the model. The training rounds 
of the saltwater model are set to 1000 and an early stopping mechanism is used, so the actual number 
of training rounds may be less than 1000, depending on changes in the validation set loss. The saltwater 
model also uses RMSE, R², and AAPRE as evaluation criteria. 

After training, both models were tested on the dataset. To evaluate the performance of the 
constructed neural network models in predicting CO₂ solubility, four common regression evaluation 
metrics were employed: root mean squared error (RMSE), coefficient of determination (R² score), 
average absolute percentage relative error (AAPRE)，and mean absolute error (MAE). 

Average absolute percent relative error (AAPRE): 
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𝐴𝐴𝑃𝑅𝐸 ൌ ଵ

ே
∑ |ሺሺ𝑆௜ா௑௉ െ 𝑆௜௉ோா஽ሻ 𝑆௜ா௑௉⁄ ሻ ൈ 100|ே

௜ୀଵ      (1) 

Coefficient of determination (R2): 

𝑅ଶ ൌ 1 െ
෌ ሺௌ೔ಶ೉ುିௌ೔ುೃಶವሻమಿ

೔సభ

෌ ሺௌ೔ಶ೉ುିௌഢಶ೉ುതതതതതതതതሻమಿ
೔సభ

        (2) 

Root mean square error (RMSE): 

𝑅𝑀𝑆𝐸 ൌ ටଵ

ே
∑ ሺ𝑆௜ா௑௉ െ 𝑆௜௉ோா஽ሻଶே

௜ୀଵ        (3) 

Mean absolute error (MAE): 

𝑀𝐴𝐸 ൌ ଵ

ே
∑ |𝑆௜ா௑௉ െ 𝑆௜௉ோா஽|ே

௜ୀଵ        (4) 

In the above equations, 𝑆௜ா௑௉ , 𝑆௜௉ோா஽ ,𝑆పா௑௉തതതതതതത, and 𝑁  refer to experimental solubility, predicted 
solubility, the mean of experimental solubilities, and the total number of data points, respectively. 

The RMSE of the models for predicting CO₂ solubility was X, indicating a certain degree of error 
between predicted and actual values. The R² value was Y, suggesting that the model could explain Y% 
of the data variance, indicating that the model performed well in capturing the relationship between 
the input and target variables. The AAPRE was Z%, representing a relatively low average relative 
prediction error, further confirming the model’s accuracy. By using RMSE, R², and AAPRE in 
combination, this study was able to assess the model’s performance from multiple perspectives. RMSE 
provides an absolute measure of prediction error, R² evaluates the goodness of fit, and AAPRE offers 
a measure of prediction accuracy in relative error form. The combined use of these metrics allows a 
comprehensive evaluation of the model’s predictive capabilities and provides a reference for further 
model optimization. 

3. Results and disussions 

3.1. ANN modeling results for CO2 solubility in water 

3.1.1. Model training results 

Figure 2 shows the trend of CO₂ solubility with pressure at different temperatures (318.23 K, 
333.15 K, and 353.15 K). As the pressure increases, solubility rises significantly, especially in the 0–
30 MPa range where the solubility increases most rapidly. Above 30 MPa, the rate of solubility increase 
begins to slow down. The effect of temperature on solubility shows some dependence: at lower 
pressures, the solubility is slightly lower at higher temperatures (353.15 K), but as pressure increases, 
the solubility at all temperatures tends to converge. The experimental data fits well with the model 
predictions, indicating that the model accurately captures the trend of solubility changes with pressure. 
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Figure 2. MLP predicted solubility vs. pressure curves at 318.23 K, 333.15 K, and 353.15 K. 

 

Figure 3. MLP predicted solubility vs. temperature curves at 10 MPa, 30 MPa, and 50 Mpa. 
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Figure 3 presents the relationship between CO₂ solubility and temperature at different pressures 
(10 MPa, 30 MPa, and 50 MPa). Under low-pressure conditions (10 MPa), CO₂ solubility decreases 
significantly with increasing temperature, especially between 300 K and 400 K, where temperature has 
a notable negative effect on solubility. However, under medium- and high-pressure conditions (30 MPa 
and 50 MPa), the solubility initially decreases with rising temperature but then begins to increase, 
especially when the temperature exceeds 450 K. This suggests that under high pressure, increasing 
temperature can significantly enhance solubility, particularly at very high temperatures and pressures, 
where the positive impact of temperature on solubility becomes most pronounced. 

 

Figure 4. MLP predicted solubility in a 3D plot of pressure and temperature. 

Figures 2–3 illustrate the nonlinear relationship between CO₂ solubility, pressure, and temperature. 
As pressure increases, especially under high-pressure conditions near 120 MPa, solubility increases 
significantly, whereas at lower pressures (below 20 MPa), the solubility increase is relatively gradual. 
Additionally, the impact of temperature on solubility depends on the pressure level. At low pressures 
(below 20 MPa), increasing temperature slightly decreases solubility, while at high pressures (above 
80 MPa), increasing temperature leads to a significant rise in solubility. This indicates that the positive 
effect of temperature becomes more pronounced under high-pressure conditions, particularly when 
temperatures exceed 500 K, where solubility increases rapidly. The combination of these three figures 
further reveals that CO₂ solubility increases with rising pressure and that under high-pressure and high-
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temperature conditions, solubility increases significantly. In contrast, under low-pressure conditions, 
increasing temperature generally causes a decrease in solubility. The trends depicted in both the 3D 
and 2D graphs are consistent in showing the changes in CO₂ solubility. 

Figure 4 presents a three-dimensional visualization illustrating the relationship between CO₂ 
solubility in pure water, temperature, and pressure, as predicted by the MLP model. The figure clearly 
depicts the notable nonlinear effects of pressure and temperature on CO₂ solubility. Specifically, as 
pressure increases, CO₂ solubility significantly rises, particularly under higher-pressure conditions 
approaching 120 MPa, whereas the increase in solubility is relatively gradual at lower pressures (below 
20 MPa). Additionally, the influence of temperature on CO₂ solubility varies depending on the pressure 
levels. At lower pressures (below 20 MPa), increasing temperature generally leads to a slight reduction 
in CO₂ solubility. In contrast, at higher pressures (above 80 MPa), increasing temperature significantly 
enhances solubility, especially when the temperature exceeds approximately 500 K. Overall, the plot 
demonstrates that CO₂ solubility increases markedly with pressure, and the impact of temperature is 
complex, reducing solubility at lower pressures but substantially increasing it under high-pressure 
conditions. 

3.2. ANN modeling results for CO2 solubility in brine 

3.2.1. Model training results 

 
(a) 1 mol/kg                 (b) 4 mol/kg                  (c) 6 mol/kg 

Figure 5. Temperature dependent curves for predicting solubility of the MLP at different 
salinities. 

Figure 5 illustrate the variation of CO₂ solubility with temperature across different salinity levels. 
Under all salinity conditions, CO₂ solubility increases with rising pressure. At lower pressures (10 
MPa), an increase in temperature generally leads to a decrease in solubility. Conversely, at higher 
pressures (50 MPa), solubility first decreases and then increases with the rising temperature. This trend 
is consistent across all three salinity conditions. Under low-pressure conditions of 10 MPa, solubility 
significantly decreases with increasing temperature, with the most pronounced decrease observed at a 
salinity of 1 mol/kg. At 30 MPa, the declining trend in solubility due to the rising temperature gradually 
weakens and may even level off or slightly increase at higher temperatures. At 50 MPa, the effect of 
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temperature on solubility becomes more complex, with solubility gradually increasing at elevated 
temperatures. 

As salinity (NaCl) increases from 1 mol/kg to 6 mol/kg, the overall level of CO₂ solubility 
decreases significantly. Even under the same temperature and pressure conditions, solubility is notably 
lower at higher salinity levels compared to lower ones. Under low-pressure conditions (10 MPa), an 
increase in temperature leads to a significant decrease in solubility. In contrast, under high-pressure 
conditions (50 MPa), rising temperatures may instead lead to an increase in solubility. This 
phenomenon is observed across different salinity conditions, indicating that the effects of temperature 
and pressure on CO₂ solubility are interdependent. 

 
(a) 313 K               (b) 333 K                  (c) 353 K         

Figure 6. Prediction of the CO2-NaCl brine solubility variation curve of the MLP with 
pressure at different temperatures. 

Figure 6 depict the relationship between CO₂ solubility and pressure at temperatures of 313 K, 
333 K, and 353 K, respectively. Across all these temperatures, CO₂ solubility increases with rising 
pressure. However, the rate at which solubility increases diminishes as pressure continues to rise. 
Notably, in the low-pressure range (0–10 MPa), solubility increases most rapidly. In the 10–20 MPa 
range, the growth rate of solubility slows down, and in the 20–30 MPa range, the increment becomes 
even smaller. This suggests that the impact of pressure on solubility is more pronounced at lower 
pressures, with the effect approaching saturation as pressure increases. 

For instance, Figure 6(b) shows that as salinity increases, the solubility curve rises gradually at 
various pressures, but the rate of increase slows down progressively. This indicates that while higher 
pressures continue to enhance CO₂ solubility, the incremental benefits decrease as pressure further 
escalates, reflecting a diminishing return effect. 
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(a) 313 K              (b) 333 K                 (c) 353 K 

Figure 7. Curve of MLP-predicted CO2-NaCl brine solubility with salinity variation at 
different temperatures. 

Figure 7 illustrate the trend of CO₂ solubility as salinity increases. Overall, CO₂ solubility 
decreases significantly with rising salinity, and the magnitude of this reduction diminishes as salinity 
continues to increase. Under low salinity conditions (1–2 mol/kg), the decrease in solubility is more 
pronounced, whereas at higher salinities (4 mol/kg and above), the decline in solubility tends to 
stabilize. 

For example, Figure 7(c) shows that at pressures of 10 MPa, 30 MPa, and 50 MPa, solubility 
gradually decreases as salinity increases, but the rate of decline slows down. This indicates that the 
inhibitory effect of high salinity on CO₂ solubility begins to stabilize at elevated salinity levels, 
suggesting that the negative impact of salinity on solubility reaches a point of diminishing returns at 
higher salinities. 

 

Figure 8. Three-dimensional relationship diagram of MLP-predicted solubility with 
temperature and pressure at a salinity of 1 mol/kg of NaCl brine. 
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Figure 9. Three-dimensional relationship diagram of MLP-predicted solubility with 
temperature and pressure at a salinity of 2 mol/kg of NaCl brine. 

 

Figure 10. Three-dimensional relationship diagram of MLP-predicted solubility with 
temperature and pressure at a salinity of 3 mol/kg of NaCl brine. 
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Figure 11. Three-dimensional relationship diagram of MLP-predicted solubility with 
temperature and pressure at a salinity of 4 mol/kg of NaCl brine. 

 

Figure 12. Three-dimensional relationship diagram of MLP-predicted solubility with 
temperature and pressure at a salinity of 5 mol/kg of NaCl brine. 
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Figure 13. Three-dimensional relationship diagram of MLP-predicted solubility with 
temperature and pressure at a salinity of 6 mol/kg of NaCl brine. 

Figures 8–13 depict the relationship between CO₂ solubility, temperature, and pressure under 
varying salinity conditions. Across all salinity levels, increased pressure consistently leads to higher 
CO₂ solubility. However, as salinity increases, the enhancing effect of pressure on solubility becomes 
less pronounced. At low pressures, rising temperatures typically result in a decrease in solubility, 
whereas at high pressures, increasing temperatures may cause solubility to increase. This effect is more 
noticeable at lower salinity levels, while at higher salinities, the positive impact of temperature on 
solubility is diminished. 

As salinity increases, CO₂ solubility significantly declines. Higher salinity not only reduces the 
overall solubility levels but also attenuates the combined effects of temperature and pressure on 
solubility, especially under high-pressure and high-temperature conditions, where the impact of 
salinity becomes more pronounced. This consistency between the 3D and 2D plots confirms that the 
observed trends in CO₂ solubility changes are reliably depicted in both types of visualizations. The 
trends shown in the 3D plots align well with the phenomena observed in the 2D plots, with both 
collectively revealing the patterns of CO₂ solubility variation under different conditions. 

3.2.2. Model predictive performance 

The MLP nonlinear regression model was utilized to capture the complex relationships between 
CO₂ solubility and the independent variables, allowing for the prediction and visualization of these 
relationships through the charts. The presented figures clearly demonstrate the generalization 
capability of the trained model on unseen data and how temperature, pressure, and salinity influence 
CO₂ solubility. 
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Figure 14. Scatter plot of MLP-predicted water solubility vs. experimental data in the 
validation set. 

 

Figure 15. Changes in the loss function of the MLP model with training times. 

 

Figure 16. Scatter plot of MLP-predicted brine solubility vs. experimental data in the 
validation set. 
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Figure 17. Changes in the loss function of the MLP model with training times. 

Table 3. Performance evaluation of the models. 

  AAPRE RMSE R2 

MLP-Water Training 4.77416 0.00286 0.98587 

 Testing 3.44168 0.00114 0.99362 

 Total 4.11874 0.00108 0.99424 

Table 4. Performance evaluation of the models. 

  AAPRE RMSE R2 

MLP-Brine Training 5.76440 0.00027 0.99751 

 Testing 4.05568 0.00045 0.99472 

 Total 4.91004 0.00036 0.99612 

Figures 14 and 16, respectively, show the comparison between the predicted solubility and 
experimental values for the pure water and brine models in the validation set based on the MLP. These 
predicted validation set data can be obtained from Table A3 and Table A4. It can be observed that the 
predicted values of the water MLP model are closely distributed along the diagonal line, with most 
prediction points closely adhering to the ideal fit line, indicating small discrepancies between the 
predicted and experimental values. This demonstrates the model’s strong predictive performance. 
Similarly, the predicted values of the brine MLP model are also closely distributed along the diagonal, 
with most points tightly following the ideal fit line, showing minimal differences between the 
predictions and experimental values. 

Tables 3 and 4 report the performance evaluation of both models, indicating that the proposed 
machine learning models have achieved excellent predictive performance, as reflected by high R-
squared values and low root mean square errors throughout the paradigm. 

Figures 15 and 17 display the convergence processes of training and validation losses for CO₂ 
solubility models in water and brine, respectively. In Figure 6, which shows the water model, the loss 
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decreases at a relatively slower rate, especially within the first 200 epochs, with both validation and 
training losses gradually converging. However, the validation loss exhibits significant fluctuations, 
possibly due to the model containing many neurons, making it sensitive to noise during training, which 
causes these variations. The training loss is slightly lower than the validation loss, suggesting mild 
overfitting, although the predictive performance remains good. 

In Figure 17, which shows the brine model, both training and validation losses rapidly decrease 
within the initial few epochs, reaching very low values in just a few training rounds, indicating quick 
convergence of the model. This phenomenon suggests that the brine model quickly learns the features 
within the data, and the consistency between training and validation performance indicates strong 
generalization ability without evident overfitting or underfitting issues. 

In summary, the brine model exhibits rapid convergence, with stable loss curves and validation 
loss closely matching the training loss, suggesting that the model effectively captures the complex 
nonlinear relationships in brine. In contrast, the water model, with its relatively simpler input features 
(only temperature and pressure), despite including temperature-pressure interaction terms, shows more 
fluctuations when faced with a deeper neural network structure. The stability during the training 
process is somewhat lower, but the predictive performance still reflects a relatively low average error 
percentage, indicating accurate predictions. 

3.3. Discussion 

3.3.1. The improper expansion of the CO2-brine solubility prediction model to the CO2-water case 

This section is used to compare the difference between predicting 0 salinity and pure water, and 
verify whether the 0 salinity model can be used to predict pure water. 

The salinity variable (set to zero) was introduced into the pure water data to meet the three-
variable requirement of the brine model. These newly generated data were then applied to the brine 
prediction model, and the prediction results are shown in Figures 18 and 19. 

 

Figure 18. Scatter plot of MLP-predicted solubility and experimental data distribution in 
the validation set. 
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Figure 19. Changes in the loss function of the MLP model with training times. 

Table 5. Performance evaluation of pure water data in brine modeling. 

 AAPRE RMSE R2 

Training 6.64132 0.00353 0.97179 

Testing 7.66653 0.00448 0.97400 

Total 7.15392 0.00401 0.97289 

In Figure 18, most data points are concentrated near the red dashed line, especially in the lower 
CO₂ solubility range, where the model’s predictions closely match the actual values, demonstrating 
good performance. However, as the solubility values increase, particularly in the higher CO₂ solubility 
range (greater than 0.06), some prediction points deviate from the ideal line, indicating that the model's 
predictive performance is poor at high solubility levels, with noticeable bias. Table 5 shows that the 
R2 value is small relative to the brine model, and the large AAPRE leads to large errors and poor 
prediction performance, which leads to the preliminary determination that the brine model is not 
applicable to the prediction of solubility at salinity 0. 

In Figure 19, the training loss and validation loss initially decrease rapidly, showing that the model 
can quickly fit some features of the training data. However, as training progresses, the loss values level 
off at a relatively low level but still exhibit some fluctuations, particularly in later epochs, where losses 
increase, indicating the model's limited generalization capability in aqueous solutions. This suggests 
that while the model is well-trained in saline environments, it fails to effectively capture the variation 
of CO₂ solubility in pure water, leading to persistent errors. This further confirms the model's 
inadequate adaptability to pure water environments. 

Although the brine model performs well within its training environment (brine), in aqueous 
solutions, it lacks proper modeling of the physical and chemical mechanisms governing CO₂ solubility 
in pure water, resulting in losses that do not effectively converge, indicating insufficient generalization 
ability. On the other hand, models specifically trained for aqueous environments show lower losses 
and better generalization capabilities. Physically, the solubility of CO₂ in water and brine is influenced 
by different mechanisms, with the presence of salt ions significantly altering CO₂ solubility behavior. 
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Therefore, a unified prediction using the same machine learning model for both environments is not 
feasible. 

From the detailed descriptions provided earlier, we have clearly understood that structural 
differences not only affect the training complexity of the models but also have a significant impact on 
their generalization ability and prediction performance. In the following section, the focus will be on 
comparing the performance differences between the two models, especially in assessing whether the 
saline water model can accurately predict the solubility in pure water when the salt concentration is 
zero. This will further explore why different model designs are needed for different environments. 

By measuring errors (such as RMSE and R²), the differences in model adaptability to various 
solution environments can be quantified. Analysis based on these metrics shows that the brine model 
performs exceptionally well in saline environments, with RMSE and R² values indicating that its 
predictions closely match the actual conditions in brine. However, when this model is used to predict 
CO₂ solubility in water (i.e., at zero salinity), its performance deteriorates significantly, with increased 
prediction errors, especially in regions of high solubility. In contrast, models specifically designed for 
aqueous solutions exhibit better predictive accuracy in pure water, with lower errors and R² values 
close to 1, indicating a high degree of agreement between predicted and actual values. These results 
further confirm that the brine and water models have different adaptabilities and cannot be used 
interchangeably. 

The predictive models suggest that pure water can dissolve a substantial amount of CO₂, with 
solubility increasing rapidly as pressure rises and being more pronounced at lower temperatures. This 
is attributed to the absence of ionic interferences in pure water, which facilitates the dissolution of CO₂ 
molecules. Conversely, the solubility of CO₂ in brine is considerably lower than in pure water due to 
the salting-out effect, where higher salinity levels hinder the solubility of CO₂. As salinity escalates, 
ions present in the water, such as Na⁺ and Cl⁻, compete for positions that CO₂ would otherwise occupy 
to interact with water molecules, thereby diminishing CO₂ solubility. This effect becomes especially 
noticeable at elevated salinity levels, and with increasing pressure, the enhancement of CO₂ solubility 
in brine is less significant compared to that in pure water. 

3.3.2. Differences supported by physical and chemical principles 

Even when the salinity is nominally zero in the brine model, the predicted CO₂ solubility may 
still deviate slightly from the pure water model. This discrepancy can be attributed to two factors: (1) 
Parameter discrepancies: The parameters of the brine model are calibrated to account for the influence 
of salinity on solubility. Even at zero salinity, these parameters may differ from those of the pure water 
model, resulting in minor prediction variations. (2) Residual ionic influences: In computational models, 
properties related to the presence of ions in brine might persist even when salinity is set to zero, leading 
to minor deviations from the pure water model. This could encompass factors such as the activity 
coefficient of water and underlying effects in ion interaction models. These subtle differences 
underscore the complexity of accurately modeling CO₂ solubility in various aqueous environments. 

From a physico-chemical perspective, on the other hand, the mechanisms governing CO₂ 
solubility in water and brine are fundamentally different. In water, CO₂ molecules primarily form 
hydrogen bonds with water molecules and are influenced by van der Waals forces, resulting in a 
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relatively linear relationship between solubility and changes in temperature and pressure [49,50]. In 
brine, ions such as Na⁺ and Cl⁻ alter the interactions between water and CO₂ through solvation and 
shielding effects, leading to the salting-out effect [49], where CO₂ solubility decreases as salinity 
increases. The salting-out effect refers to the phenomenon where the solubility of a solute, particularly 
a gas, decreases when salts are added to a solution. This effect typically occurs in solutions containing 
dissolved gases, nonpolar solutes, or organic solutes. When salt is added to a solution, the ions from 
the salt form strong interactions with water molecules, reducing the freedom of movement of the water 
molecules. As a result, the interaction between water molecules and gas molecules is diminished, 
leading to a decrease in the solubility of the gas. 

When salts dissolve in water, they dissociate into ions, creating an ionic environment that affects 
interactions between solvent and solute molecules. In the salting-out effect, the presence of ions 
weakens interactions between the solute and water molecules, reducing CO₂ solubility by altering the 
solvation free energy of the solute, making it less favorable [51]. Consequently, CO₂ solubility in brine 
exhibits more complex nonlinear variations with temperature, pressure, and salinity. Due to these 
differing solubility mechanisms and significant differences in physical and chemical processes, 
features learned by the model in brine cannot effectively generalize to aqueous solutions, and vice 
versa. Combining experimental and theoretical studies, these differences support the conclusion that 
brine and water models cannot share the same MLP model. 

3.3.3. Comparative analysis of MLP and CatBoost 

We found that Yang [52] no longer focused on studying black box models, so we introduce a new 
model, called CatBoost, and compare it with those models. The prediction results are shown in the 
Table 6: 

Table 6. Performance evaluation of CatBoost and MLP models in pure water and brine 
modeling. 

Model Data point Testing set 

R2 AAPRE RMSE MAE 

CatBoost-Water 265 0.93524 11.88348 0.00635 0.00286 

MLP-Water 265 0.99424 4.11874 0.00108 0.00159 

CatBoost-Brine 240 0.97867 16.94977 0.00072 0.00057 

MLP-Brine 240 0.99612 4.91004 0.00036 0.00031 

As can be seen from the table above, the predictions of the CatBoost model do not achieve the 
accuracy of the MLP, and the MLP’s prediction results are more reliable. 

4. Conclusions 

This study investigated MLP artificial neural networks for the CO₂ + H₂O and CO₂ + H₂O + NaCl 
systems. Model accuracy was validated through comparison with literature data. The CO₂ solubility 
prediction model in water achieved an RMSE of 0.00108, R² of 0.99424, and AAPRE of 4.11874%. The 
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CO₂ solubility prediction model in brine achieved an RMSE of 0.00041, R² of 0.99473, and AAPRE of 
4.7243%. Both models demonstrated commendable predictive abilities. Testing whether the brine model 
could predict CO₂ solubility in pure water (salinity of 0) revealed an RMSE of 0.00548, R² of 0.96118, 
and AAPRE of 9.59813% for the brine model, with a lower R² and an average error approaching 10%, 
indicating higher errors and reduced model performance. Therefore, the brine model is unsuitable for 
predicting CO₂ solubility in pure water, as there are notable differences between the two. 

Several key differences exist between the solubility models of CO₂ in water and brine. Regarding 
neural network architecture, the water model uses a three-input layer configuration, including 
temperature, pressure, and their interaction terms, focusing on optimizing data preprocessing (e.g., 
feature engineering). In contrast, the brine model adds “salinity” as a variable and adopts a more 
complex structure and regularization strategies (e.g., data augmentation and additional hidden layers) 
to better fit the solubility changes in brine. 

Experimental data further confirmed that when predicting solubility in water by setting salinity 
to zero in the brine model, the results were inferior to those of the pure water model. This is because 
the physico-chemical mechanisms of the two are different; the solubility mechanism of CO₂ in pure 
water is simpler, while the brine model considers complex factors such as the salting-out effect. Even 
with zero salinity, residual effects within the brine model can influence predictions. 
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