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Abstract: Having accurate knowledge on CO: solubility in reservoir liquids plays a pivotal role in
geoenergy harvest and carbon capture, utilization, and storage (CCUS) applications. Data-driven
works leveraging artificial neural networks (ANN) have presented a promising tool for forecasting
CO: solubility. In this paper, an ANN model was developed based on hundreds of documented data to
predict CO: solubility in both pure water and saline solutions across a broad spectrum of temperatures,
pressures, and salinities in reference to underground formation conditions. Multilayer perceptron
(MLP) models were constructed for each system, and their prediction results were rigorously validated
against the the literature data. The research results indicate that the ANN model is suitable for
predicting the solubility of carbon dioxide under different conditions, with root mean square errors
(RMSE) 0f 0.00108 and 0.00036 for water and brine, and a coefficient of determination (R?) of 0.99424
and 0.99612, which indicates robust prediction capacities. It was observed from the ANN model that
the saline water case could not be properly expanded to predict the CO: solubility in pure water,
underscoring the distinct dissolution mechanisms in polar mixtures. It is expected that this study could
provide a valuable reference and offer novel insights to the prediction of CO: solubility in complex
fluid systems.
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1. Introduction

As global climate change intensifies, the search for and development of clean, sustainable energy
solutions have become increasingly critical [1]. The expansion of renewable energy sources and the
implementation of carbon capture, utilization, and storage (CCUS) technologies within various
industries are deemed essential strategies for mitigating CO- emissions [2—8]. Geothermal energy, as
a nearly carbon-neutral renewable energy source, is playing an increasingly prominent role in the
global energy transition [9—13]. Concurrently, carbon dioxide (CO:2) geological storage, as an effective
means to mitigate climate change, has attracted widespread attention for its potential when combined
with geothermal energy development.

The CO2-H20 and CO2-NaCl-H-O fluid systems are of paramount importance in Earth’s systems
and a variety of engineering geological processes, such as COz-enhanced oil recovery (EOR), and CO:-
enhanced geothermal systems [14—19]. The phase behavior of CO.-H20 as well as H.O-NaCl-CO-
systems are therefore of significant industrial relevance [20-24]. The processes of dissolution,
precipitation, and ion exchange within these fluid systems can markedly influence the phase
equilibrium behavior in the geological media [25-27].

To predict the CO2 solubility in reservoir liquids, thermodynamic simulation stands as an
effective branch in addition to the experimental studies. In thermodynamic simulation works
involving CO., however, traditional cubic equations of state (EOS) and van der Waals mixing rules
are commonly used for gas-liquid equilibrium calculations, and in most cases overlook the water
phase’s effects. Given the importance of predicting CO: solubility, researchers have extensively
studied with thermodynamic models, such as those proposed by Duan et al. (2006) [28], Spycher et
al. (2003) [29], and Z. Liu et al. (2022) [30]. However, these models are limited to specific
temperature, pressure, and salinity ranges. Therefore, developing a predictive model capable of
handling polar mixtures and capturing complex nonlinear relationships still remains a challenge in
terms of complexity and predictive accuracy.

In recent years, data-driven models based on artificial neural networks (ANN) offer a new
approach for predicting CO- solubility. Neural networks are large parallel systems composed of
many highly interconnected components (called nodes or neurons). The structure of the connections
between neurons and their arrangement effectively determine the system’s operation. The strength
of the connections and how the network responds to instructions are determined by its learning
algorithm. Compared to traditional thermodynamic models, ANN models can automatically learn
complex nonlinear relationships through large-scale data training, avoiding cumbersome parameter
adjustments, and provide greater flexibility and accuracy under various temperature and pressure
conditions [31].This makes ANN-based predictive methods a powerful tool for addressing the
current challenges of predicting CO: solubility.

ANN:Ss are typically divided into two main categories: feedforward neural networks and recurrent
neural networks [32]. The multilayer perceptron (MLP) is a classic example of a feedforward neural
network. MLP consists of an input layer, one or more hidden layers, and an output layer. The input
layer receives external information, the hidden layers process the information, and the output layer
generates the network’s response [33]. Each layer contains multiple neurons connected by weights.
Each neuron receives input signals from the previous layer, applies weighted summation, and generates
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an output signal through a nonlinear transformation, which is then passed to the next layer. This
feedforward mechanism enables the network to perform complex classification and regression tasks.

To optimize network parameters for specific tasks, training data is used to optimize these
parameters. The backpropagation algorithm is the most commonly used training method. It iteratively
adjusts network parameters to minimize the error between predicted and actual values, improving
model accuracy and reliability [34]. An ANN’s parallel processing capabilities allow it to extract
essential features and underlying patterns from input data. ANNs have achieved remarkable results in
fields such as pattern recognition, image processing, and data mining. Classic network models like
MLPs, convolutional neural networks (CNN), and recurrent neural networks (RNN) have performed
exceptionally well in these areas [35].

In the prediction of CO: solubility, advancements in artificial intelligence provide new solutions.
The nonlinear fitting ability and self-learning properties of ANNs give them significant advantages in
modeling complex systems. Compared to traditional methods, ANN-based solubility prediction
models offer improvements in accuracy, applicability, and computational efficiency. By designing
appropriate network structures and training them with extensive experimental data, ANNs can establish
complex nonlinear mapping relationships between input variables (e.g., temperature, pressure, and
salinity) and output (CO: solubility). This data-driven modeling approach does not require in-depth
analysis of complex physicochemical mechanisms between variables but allows ANNs to
autonomously learn data patterns, making them highly applicable and robust [36]. In recent studies,
machine learning models have been extensively applied to predict the solubility of gases in
hydrocarbons, which is crucial for carbon capture and storage (CCS) and enhanced oil recovery (EOR)
technologies in the oil and chemical industries. For instance, Madani [37] utilized five machine
learning models, including CatBoost, random forest, LightGBM, k-nearest neighbors (k-NN), and
XGBoost, along with five equations of state (EOS), to forecast the solubility of nitrogen (N2) in
normal alkanes, revealing that the CatBoost model demonstrated the best predictive accuracy.
Mohammadi [38] focused on the solubility of hydrogen in hydrocarbons, and through a comparison
of five machine learning models, found that the XGBoost model stood out in terms of prediction
accuracy. Additionally, Nakhaei-Kohani [39] employed six intelligent models to predict the solubility
of CO2-N2 mixtures in aqueous solutions, with the random forest model showing the most accurate
forecasting capabilities. Mahmoudzadeh [40] developed two intelligent models, gradient boosting
(GBoost) and the light gradient boosting machine (LightGBM), to predict the solubility of pure CO2
and impure COz2 in water, with the GBoost model exhibiting superior performance in both scenarios.

This paper establishes an ANN-based method for studying the high-pressure phase behavior of
gas-water and gas-saline solutions. Two systems, CO2>+H-0 and CO»+H>0O+NacCl, are investigated, and
the accuracy of the models is verified through comparison with literature data. Additionally, the study
examines whether the saline model is applicable for predicting CO: solubility in pure water with zero
salinity. A database is constructed from extensive gas-liquid equilibrium data for the CO.+H-O and
CO>+H20+NaCl systems, covering a wide range of pressure, temperature, and molar concentration of
CO: and salts.

AIMS Geosciences Volume 11, Issue 1, 201-227.



204

2.  Methodology
2.1. Data acquistion

Literature-reported data on COz solubility in pure water systems [20,22,41-43] were collected,
covering various conditions of temperature (273.15-573.15 K), pressure (0.19-120 MPa), and pure
water. Table 1 provides a summary of the experimental studies, including the pressures of the
respective applications, the amount of data and temperature ranges employed, and the methods used.
The dataset size (number of samples) is 265, and the unit of the output variable (CO2 solubility) is the
mole fraction of CO.. After excluding outliers, the data were divided into training, testing, and
validation sets in a ratio of 16:4:5, with the validation set accounting for 20% (which represents 20%
of the training set, or 16% of the total data). Therefore, the actual distribution of the data is as follows:
64% for the training set (80% of the training set x 80% of the total data), 16% for the validation set,
and 20% for the test set. The specific values in the table refer to Table Al.

Table 1. Literature experiment studies on the determination of COz solubility in water.

References Temperture (K) Pressure (MPa) Usage Method Data Volume
Bamberger et al., 2004 273.15-573.15 10-120 Quantitative Raman spectroscopy 131

Chapoy et al., 2004 278.22-318.23  0.465-7.933 Gas-liquid equilibrium experiment 47

Guo et al., 2014 323.2-353.1 4.05-14.11 Improved Peng-Robinson equation of state 29

Y. Liuetal., 2011 308.15-328.15 2.10-15.99 Laboratory equipment measurement 31

Valtz et al., 2004 274.14-351.31  0.190-5.261 VPT-EoS 27

Table 2. Experimental studies in the literature on the determination of COz solubility in brine.

References Salinity (mol/Kg) Temperture (K)  Pressure (MPa) Usage Method Data Volume
Carvalho et al., 2015 1-6 313-433 0.5-30 Sereide-Whitson models 190
Chabab et al., 2019  0-6 278.2-318.2 15 Stainless steel reactors 6
Guo et al., 2016 1-6 313-353 3040 High pressure equilibrium 5
equipment
Z.Liuetal., 2022 0.25-2.0 293.08-353.13 1.02-14.29 Synthetic measurements 9
Yanetal., 2011 1.13-3.01 323.03-373.41 2.10-15.99 Devices for “static
analysis” methods
Zhaoa et al., 2015 1-5 273.15-473.15 1040 Quantitative Raman 25
spectroscopy

Experimental data on COz solubility in brine systems published in the literature [21,27,30,44—46]
were collected, covering various conditions of temperature (273.15-453.15 K), pressure (0.46—40
MPa), and salinity (0.25—6 mol/kg NaCl). Table 2 provides a summary of the experimental studies,
including the pressures of the respective applications, the amount of data and temperature ranges
employed, and the methods used. The dataset size (number of samples) is 240, and the unit of the
output variable (COz2 solubility) is the mole fraction of COz. After excluding outliers, the data were
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divided into training, testing, and validation sets in a ratio of 16:4:5. The specific values in the table
refer to Table A2.

2.2. Modeling technique

This study utilized a multilayer perceptron (MLP) model to predict the solubility of CO: in both
pure water and saline water. Although both models share a similar basic structure, adjustments were
made to the design details to accommodate the differing tasks of solubility prediction.

Both models’ input layers contain 3 neurons, representing temperature and pressure. The water
model introduces a third variable, the interaction term between temperature and pressure, to better
capture their complex nonlinear relationship [47]. This is important because the effects of
temperature and pressure on gas solubility are typically not independent, and there may be
interactions between them. By introducing interaction terms, this complex relationship can be more
effectively modeled [40]. In contrast, the saline water model includes an additional important
variable: salt concentration. The data are normalized using MinMaxScaler, which scales the value of
each feature to between [0, 1]. The purpose of this is to make different features have the same
magnitude and to avoid the impact of too-large values for some features on the model training. In the
prediction of pure water solubility, solubility is primarily influenced by temperature and pressure, and
is mainly determined by these two factors. Including irrelevant or low-impact features may not have
practical significance and may actually reduce the interpretability of the model. Introducing additional
features could increase the complexity of the model, but it does not necessarily provide useful extra
information and may even lead to overfitting. Both models use ReLU activation functions in their
hidden layers to enhance the nonlinear expressive capabilities of the model. Moreover, to prevent
overfitting, dropout regularization was applied, and an early stopping mechanism was introduced to
control the training process. Due to different physical and chemical complexities, the two models show
significant differences in architecture and optimization strategies. The pure water solubility model is
relatively simple, consisting of 3 hidden layers with 1024 neurons per layer. This simpler structure is
sufficient to capture the effects of temperature and pressure on solubility. In contrast, the saline water
solubility model features a deeper network with 5 hidden layers, where the number of neurons
decreases progressively (from 1024 to 64), better capturing the complex nonlinear relationships
between temperature, pressure, and salt concentration. To improve the model’s generalization ability,
the saline water model also incorporated random noise for data augmentation.

Regarding optimization strategies, the saline water model used a higher initial learning rate (0.001)
combined with a learning rate decay mechanism to ensure the model converged quickly and underwent
fine-tuning in the later stages. The pure water model, on the other hand, employed a lower initial
learning rate (0.0001) without using learning rate decay, as its solubility variations were relatively
simple, allowing the model to converge in fewer iterations. Additionally, the saline water model was
set with a higher patience parameter (50) to ensure sufficient time for learning complex relationships,
whereas the pure water model used a lower patience parameter to accelerate convergence.
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Input layer Hidden layer Output layer

Figure 1. Illustration of the architecture of the MLP model.

The design of the MLP (multilayer perceptron) is based on a large number of interconnected
perceptrons or neurons, as shown in Figure 1. These neurons are distributed among the following three
types of layers:

Input Layer: The number of neurons depends on the number of input features (xi, x2, x3). For
example, if the input data includes temperature, pressure, and their interaction term, the input layer
will have three neurons.

Hidden Layer: This is the core part of the model, consisting of one or more fully connected layers.
The number of neurons and layers can be adjusted according to the complexity of the problem.
Common activation functions include the ReLU (rectified linear unit), leaky ReLU, sigmoid, and tanh.
The ReLU is the most commonly used activation function as it effectively introduces nonlinearity and
avoids the vanishing gradient problem. However, it can cause the “dying ReLU” issue in the negative
value region. Leaky ReLU addresses this limitation by allowing a small gradient in the negative region.
Sigmoid and tanh are often used in scenarios where the output needs to be constrained within a specific
range, but they may lead to the vanishing gradient problem.

Output Layer: The number of neurons depends on the specific task. For instance, regression tasks
usually have one output neuron, while classification tasks have neurons corresponding to the number
of classes. Optimization strategies for the MLP model include adjusting the number of hidden layers
and neurons, learning rate adjustment, and using dropout regularization to prevent overfitting.
Normalizing the input data and using adaptive learning rate optimizers like Adam can improve training
efficiency and model performance.

It is worth noting that each neural connection between different layers is associated with a set of
weights. Additionally, neurons in the output and hidden layers can include a bias term. The key to
improving MLP model performance during the learning phase is to minimize the error between the
target and the model prediction. The learning phase is considered a process of finding the optimal
weights and biases. Many algorithms have been proposed to optimize the weights and biases of the
MLP [48].
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In this study, in terms of data processing and enhancement, the pure water model first normalizes
the input features (such as temperature and pressure) using MinMaxScaler, compressing them into the
[0,1] interval to ensure that the scale of each feature is consistent. Meanwhile, the target variable
(solubility) is standardized using a StandardScaler and adjusted to a distribution with a mean of 0 and
a standard deviation of 1. In feature engineering, the pure water model introduces a temperature
pressure interaction term to capture the nonlinear relationship between the two and improve the
accuracy of the model. On the contrary, the saltwater model adopts data-augmentation techniques to
expand the diversity of training data by adding random noise (noise-factor) to input features, aiming
to improve the robustness of the model, avoid overfitting, and enhance the generalization ability. The
saltwater model also uses the MinMaxScaler for data normalization to ensure that the scale of input
features (temperature, pressure, salinity) is consistent, which ensure efficient training of the neural
network.

In terms of model structure, the neural network of the pure water model consists of three hidden
layers, each layer containing 1024 neurons. The network structure is relatively large and aims to
capture the complex nonlinear relationships between temperature, pressure, and their interaction terms.
Dropout (0.2) layers were used after each hidden layer to reduce overfitting. The ReLU activation
function is used for the hidden layer to accelerate training and avoid gradient vanishing problems,
while the output layer uses a linear activation function because solubility is a continuous value. The
pure water model has a relatively simple network structure, sufficient data volume, few features, and
low nonlinear complexity, so the risk of overfitting is low. Therefore, the early stopping mechanism of
overfitting was not used. However, the model still effectively reduces overfitting and enhances its
generalization ability through the dropout (0.2 dropout rate). The neural network of the saltwater model
consists of five hidden layers, with the number of neurons decreasing layer by layer (1024, 512, 256,
128, 64). This deeper structure helps to capture the more complex relationships between salinity,
temperature, and pressure. The model adopts an Adam optimizer with attenuation to gradually reduce
the learning rate during training, thereby helping the model converge more stably. In addition, the
saltwater model uses an early stopping strategy to monitor the loss of the validation set. When the loss
does not improve in the specified patch round, training will stop, effectively avoiding overfitting and
reducing training time.

In terms of model training and evaluation, the pure water model had 2000 training rounds, a batch
size of 32, and used validation_stplit = 0.2. 20% of the training data was used as the validation set to
monitor the performance during the training process. The evaluation indicators include the root mean
square error (RMSE), coefficient of determination (R?), and mean absolute percentage relative error
(AAPRE), which help to comprehensively evaluate the fitting effect of the model. The training rounds
of the saltwater model are set to 1000 and an early stopping mechanism is used, so the actual number
of training rounds may be less than 1000, depending on changes in the validation set loss. The saltwater
model also uses RMSE, R?, and AAPRE as evaluation criteria.

After training, both models were tested on the dataset. To evaluate the performance of the
constructed neural network models in predicting CO: solubility, four common regression evaluation
metrics were employed: root mean squared error (RMSE), coefficient of determination (R? score),
average absolute percentage relative error (AAPRE), and mean absolute error (MAE).

Average absolute percent relative error (AAPRE):
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1
AAPRE = NZ?:ll((SiEXP — Siprep)/Sigxp) X 100] (1)

Coefficient of determination (R?):
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N —
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Root mean square error (RMSE):

1
RMSE = \/;Z?Ll(suzxp — SipreD)? ©)

Mean absolute error (MAE):
1
MAE = NZ?,:ﬂSiEXP — Sipren| “4)

In the above equations, Sizyp, Siprep-Sizxp.and N refer to experimental solubility, predicted
solubility, the mean of experimental solubilities, and the total number of data points, respectively.

The RMSE of the models for predicting CO: solubility was X, indicating a certain degree of error
between predicted and actual values. The R? value was Y, suggesting that the model could explain Y%
of the data variance, indicating that the model performed well in capturing the relationship between
the input and target variables. The AAPRE was Z%, representing a relatively low average relative
prediction error, further confirming the model’s accuracy. By using RMSE, R?, and AAPRE in
combination, this study was able to assess the model’s performance from multiple perspectives. RMSE
provides an absolute measure of prediction error, R? evaluates the goodness of fit, and AAPRE offers
a measure of prediction accuracy in relative error form. The combined use of these metrics allows a
comprehensive evaluation of the model’s predictive capabilities and provides a reference for further
model optimization.

3. Results and disussions
3.1. ANN modeling results for CO: solubility in water
3.1.1. Model training results

Figure 2 shows the trend of CO: solubility with pressure at different temperatures (318.23 K,
333.15 K, and 353.15 K). As the pressure increases, solubility rises significantly, especially in the 0—
30 MPa range where the solubility increases most rapidly. Above 30 MPa, the rate of solubility increase
begins to slow down. The effect of temperature on solubility shows some dependence: at lower
pressures, the solubility is slightly lower at higher temperatures (353.15 K), but as pressure increases,
the solubility at all temperatures tends to converge. The experimental data fits well with the model
predictions, indicating that the model accurately captures the trend of solubility changes with pressure.

AIMS Geosciences Volume 11, Issue 1, 201-227.



209

Solubility vs Pressure at Different Temperatures
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Figure 2. MLP predicted solubility vs. pressure curves at 318.23 K, 333.15 K, and 353.15 K.
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Figure 3. MLP predicted solubility vs. temperature curves at 10 MPa, 30 MPa, and 50 Mpa.
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Figure 3 presents the relationship between CO- solubility and temperature at different pressures
(10 MPa, 30 MPa, and 50 MPa). Under low-pressure conditions (10 MPa), CO: solubility decreases
significantly with increasing temperature, especially between 300 K and 400 K, where temperature has
anotable negative effect on solubility. However, under medium- and high-pressure conditions (30 MPa
and 50 MPa), the solubility initially decreases with rising temperature but then begins to increase,
especially when the temperature exceeds 450 K. This suggests that under high pressure, increasing
temperature can significantly enhance solubility, particularly at very high temperatures and pressures,
where the positive impact of temperature on solubility becomes most pronounced.

CO: Solubility Prediction (Model + 30 Experimental Data Points)
e 30 Experimental Data Points
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Figure 4. MLP predicted solubility in a 3D plot of pressure and temperature.

Figures 23 illustrate the nonlinear relationship between CO: solubility, pressure, and temperature.
As pressure increases, especially under high-pressure conditions near 120 MPa, solubility increases
significantly, whereas at lower pressures (below 20 MPa), the solubility increase is relatively gradual.

Additionally, the impact of temperature on solubility depends on the pressure level. At low pressures
(below 20 MPa), increasing temperature slightly decreases solubility, while at high pressures (above
80 MPa), increasing temperature leads to a significant rise in solubility. This indicates that the positive
effect of temperature becomes more pronounced under high-pressure conditions, particularly when
temperatures exceed 500 K, where solubility increases rapidly. The combination of these three figures
further reveals that CO: solubility increases with rising pressure and that under high-pressure and high-
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temperature conditions, solubility increases significantly. In contrast, under low-pressure conditions,
increasing temperature generally causes a decrease in solubility. The trends depicted in both the 3D
and 2D graphs are consistent in showing the changes in CO: solubility.

Figure 4 presents a three-dimensional visualization illustrating the relationship between CO:
solubility in pure water, temperature, and pressure, as predicted by the MLP model. The figure clearly
depicts the notable nonlinear effects of pressure and temperature on CO: solubility. Specifically, as
pressure increases, CO: solubility significantly rises, particularly under higher-pressure conditions
approaching 120 MPa, whereas the increase in solubility is relatively gradual at lower pressures (below
20 MPa). Additionally, the influence of temperature on CO: solubility varies depending on the pressure
levels. At lower pressures (below 20 MPa), increasing temperature generally leads to a slight reduction
in CO:z solubility. In contrast, at higher pressures (above 80 MPa), increasing temperature significantly
enhances solubility, especially when the temperature exceeds approximately 500 K. Overall, the plot
demonstrates that CO: solubility increases markedly with pressure, and the impact of temperature is
complex, reducing solubility at lower pressures but substantially increasing it under high-pressure
conditions.

3.2. ANN modeling results for CO: solubility in brine

3.2.1. Model training results
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Figure 5. Temperature dependent curves for predicting solubility of the MLP at different
salinities.

Figure 5 illustrate the variation of CO:z solubility with temperature across different salinity levels.
Under all salinity conditions, CO: solubility increases with rising pressure. At lower pressures (10
MPa), an increase in temperature generally leads to a decrease in solubility. Conversely, at higher
pressures (50 MPa), solubility first decreases and then increases with the rising temperature. This trend
is consistent across all three salinity conditions. Under low-pressure conditions of 10 MPa, solubility
significantly decreases with increasing temperature, with the most pronounced decrease observed at a
salinity of 1 mol/kg. At 30 MPa, the declining trend in solubility due to the rising temperature gradually
weakens and may even level off or slightly increase at higher temperatures. At 50 MPa, the effect of
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temperature on solubility becomes more complex, with solubility gradually increasing at elevated
temperatures.

As salinity (NaCl) increases from 1 mol/kg to 6 mol/kg, the overall level of CO: solubility
decreases significantly. Even under the same temperature and pressure conditions, solubility is notably
lower at higher salinity levels compared to lower ones. Under low-pressure conditions (10 MPa), an
increase in temperature leads to a significant decrease in solubility. In contrast, under high-pressure
conditions (50 MPa), rising temperatures may instead lead to an increase in solubility. This
phenomenon is observed across different salinity conditions, indicating that the effects of temperature
and pressure on CO: solubility are interdependent.
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Figure 6. Prediction of the CO2-NaCl brine solubility variation curve of the MLP with
pressure at different temperatures.

Figure 6 depict the relationship between CO: solubility and pressure at temperatures of 313 K,
333 K, and 353 K, respectively. Across all these temperatures, CO: solubility increases with rising
pressure. However, the rate at which solubility increases diminishes as pressure continues to rise.
Notably, in the low-pressure range (0—10 MPa), solubility increases most rapidly. In the 10-20 MPa
range, the growth rate of solubility slows down, and in the 20-30 MPa range, the increment becomes
even smaller. This suggests that the impact of pressure on solubility is more pronounced at lower
pressures, with the effect approaching saturation as pressure increases.

For instance, Figure 6(b) shows that as salinity increases, the solubility curve rises gradually at
various pressures, but the rate of increase slows down progressively. This indicates that while higher
pressures continue to enhance CO: solubility, the incremental benefits decrease as pressure further
escalates, reflecting a diminishing return effect.
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Figure 7. Curve of MLP-predicted CO2-NaCl brine solubility with salinity variation at

different temperatures.

Figure 7 illustrate the trend of CO: solubility as salinity increases. Overall, CO: solubility
decreases significantly with rising salinity, and the magnitude of this reduction diminishes as salinity
continues to increase. Under low salinity conditions (1-2 mol/kg), the decrease in solubility is more
pronounced, whereas at higher salinities (4 mol/kg and above), the decline in solubility tends to
stabilize.

For example, Figure 7(c) shows that at pressures of 10 MPa, 30 MPa, and 50 MPa, solubility
gradually decreases as salinity increases, but the rate of decline slows down. This indicates that the
inhibitory effect of high salinity on CO: solubility begins to stabilize at elevated salinity levels,
suggesting that the negative impact of salinity on solubility reaches a point of diminishing returns at

higher salinities.
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Figure 8. Three-dimensional relationship diagram of MLP-predicted solubility with
temperature and pressure at a salinity of 1 mol/kg of NaCl brine.
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Figure 9. Three-dimensional relationship diagram of MLP-predicted solubility with
temperature and pressure at a salinity of 2 mol/kg of NaCl brine.
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Figure 10. Three-dimensional relationship diagram of MLP-predicted solubility with
temperature and pressure at a salinity of 3 mol/kg of NaCl brine.
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Figure 11. Three-dimensional relationship diagram of MLP-predicted solubility with
temperature and pressure at a salinity of 4 mol/kg of NaCl brine.
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Figure 12. Three-dimensional relationship diagram of MLP-predicted solubility with
temperature and pressure at a salinity of 5 mol/kg of NaCl brine.
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Figure 13. Three-dimensional relationship diagram of MLP-predicted solubility with
temperature and pressure at a salinity of 6 mol/kg of NaCl brine.

Figures 813 depict the relationship between CO: solubility, temperature, and pressure under
varying salinity conditions. Across all salinity levels, increased pressure consistently leads to higher
CO: solubility. However, as salinity increases, the enhancing effect of pressure on solubility becomes
less pronounced. At low pressures, rising temperatures typically result in a decrease in solubility,
whereas at high pressures, increasing temperatures may cause solubility to increase. This effect is more
noticeable at lower salinity levels, while at higher salinities, the positive impact of temperature on
solubility is diminished.

As salinity increases, CO: solubility significantly declines. Higher salinity not only reduces the
overall solubility levels but also attenuates the combined effects of temperature and pressure on
solubility, especially under high-pressure and high-temperature conditions, where the impact of
salinity becomes more pronounced. This consistency between the 3D and 2D plots confirms that the
observed trends in CO: solubility changes are reliably depicted in both types of visualizations. The
trends shown in the 3D plots align well with the phenomena observed in the 2D plots, with both
collectively revealing the patterns of CO: solubility variation under different conditions.

3.2.2. Model predictive performance

The MLP nonlinear regression model was utilized to capture the complex relationships between
CO: solubility and the independent variables, allowing for the prediction and visualization of these
relationships through the charts. The presented figures clearly demonstrate the generalization
capability of the trained model on unseen data and how temperature, pressure, and salinity influence
CO: solubility.
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Figure 16. Scatter plot of MLP-predicted brine solubility vs.

validation set.
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Figure 17. Changes in the loss function of the MLP model with training times.

Table 3. Performance evaluation of the models.

AAPRE RMSE R?
MLP-Water Training 4.77416 0.00286 0.98587
Testing 3.44168 0.00114 0.99362
Total 4.11874 0.00108 0.99424

Table 4. Performance evaluation of the models.

AAPRE RMSE R?
MLP-Brine Training 5.76440 0.00027 0.99751
Testing 4.05568 0.00045 0.99472
Total 4.91004 0.00036 0.99612

Figures 14 and 16, respectively, show the comparison between the predicted solubility and
experimental values for the pure water and brine models in the validation set based on the MLP. These
predicted validation set data can be obtained from Table A3 and Table A4. It can be observed that the
predicted values of the water MLP model are closely distributed along the diagonal line, with most
prediction points closely adhering to the ideal fit line, indicating small discrepancies between the
predicted and experimental values. This demonstrates the model’s strong predictive performance.
Similarly, the predicted values of the brine MLP model are also closely distributed along the diagonal,
with most points tightly following the ideal fit line, showing minimal differences between the
predictions and experimental values.

Tables 3 and 4 report the performance evaluation of both models, indicating that the proposed
machine learning models have achieved excellent predictive performance, as reflected by high R-
squared values and low root mean square errors throughout the paradigm.

Figures 15 and 17 display the convergence processes of training and validation losses for CO2
solubility models in water and brine, respectively. In Figure 6, which shows the water model, the loss
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decreases at a relatively slower rate, especially within the first 200 epochs, with both validation and
training losses gradually converging. However, the validation loss exhibits significant fluctuations,
possibly due to the model containing many neurons, making it sensitive to noise during training, which
causes these variations. The training loss is slightly lower than the validation loss, suggesting mild
overfitting, although the predictive performance remains good.

In Figure 17, which shows the brine model, both training and validation losses rapidly decrease
within the initial few epochs, reaching very low values in just a few training rounds, indicating quick
convergence of the model. This phenomenon suggests that the brine model quickly learns the features
within the data, and the consistency between training and validation performance indicates strong
generalization ability without evident overfitting or underfitting issues.

In summary, the brine model exhibits rapid convergence, with stable loss curves and validation
loss closely matching the training loss, suggesting that the model effectively captures the complex
nonlinear relationships in brine. In contrast, the water model, with its relatively simpler input features
(only temperature and pressure), despite including temperature-pressure interaction terms, shows more
fluctuations when faced with a deeper neural network structure. The stability during the training
process is somewhat lower, but the predictive performance still reflects a relatively low average error
percentage, indicating accurate predictions.

3.3. Discussion
3.3.1. The improper expansion of the COz-brine solubility prediction model to the CO2-water case

This section is used to compare the difference between predicting 0 salinity and pure water, and
verify whether the 0 salinity model can be used to predict pure water.

The salinity variable (set to zero) was introduced into the pure water data to meet the three-
variable requirement of the brine model. These newly generated data were then applied to the brine
prediction model, and the prediction results are shown in Figures 18 and 19.
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Figure 18. Scatter plot of MLP-predicted solubility and experimental data distribution in
the validation set.
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Figure 19. Changes in the loss function of the MLP model with training times.

Table 5. Performance evaluation of pure water data in brine modeling.

AAPRE RMSE R?
Training 6.64132 0.00353 0.97179
Testing 7.66653 0.00448 0.97400
Total 7.15392 0.00401 0.97289

In Figure 18, most data points are concentrated near the red dashed line, especially in the lower
CO: solubility range, where the model’s predictions closely match the actual values, demonstrating
good performance. However, as the solubility values increase, particularly in the higher CO: solubility
range (greater than 0.06), some prediction points deviate from the ideal line, indicating that the model's
predictive performance is poor at high solubility levels, with noticeable bias. Table 5 shows that the
R? value is small relative to the brine model, and the large AAPRE leads to large errors and poor
prediction performance, which leads to the preliminary determination that the brine model is not
applicable to the prediction of solubility at salinity 0.

In Figure 19, the training loss and validation loss initially decrease rapidly, showing that the model
can quickly fit some features of the training data. However, as training progresses, the loss values level
off at a relatively low level but still exhibit some fluctuations, particularly in later epochs, where losses
increase, indicating the model's limited generalization capability in aqueous solutions. This suggests
that while the model is well-trained in saline environments, it fails to effectively capture the variation
of CO: solubility in pure water, leading to persistent errors. This further confirms the model's
inadequate adaptability to pure water environments.

Although the brine model performs well within its training environment (brine), in aqueous
solutions, it lacks proper modeling of the physical and chemical mechanisms governing CO: solubility
in pure water, resulting in losses that do not effectively converge, indicating insufficient generalization
ability. On the other hand, models specifically trained for aqueous environments show lower losses
and better generalization capabilities. Physically, the solubility of CO- in water and brine is influenced
by different mechanisms, with the presence of salt ions significantly altering CO: solubility behavior.
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Therefore, a unified prediction using the same machine learning model for both environments is not
feasible.

From the detailed descriptions provided earlier, we have clearly understood that structural
differences not only affect the training complexity of the models but also have a significant impact on
their generalization ability and prediction performance. In the following section, the focus will be on
comparing the performance differences between the two models, especially in assessing whether the
saline water model can accurately predict the solubility in pure water when the salt concentration is
zero. This will further explore why different model designs are needed for different environments.

By measuring errors (such as RMSE and R?), the differences in model adaptability to various
solution environments can be quantified. Analysis based on these metrics shows that the brine model
performs exceptionally well in saline environments, with RMSE and R? values indicating that its
predictions closely match the actual conditions in brine. However, when this model is used to predict
CO: solubility in water (i.e., at zero salinity), its performance deteriorates significantly, with increased
prediction errors, especially in regions of high solubility. In contrast, models specifically designed for
aqueous solutions exhibit better predictive accuracy in pure water, with lower errors and R? values
close to 1, indicating a high degree of agreement between predicted and actual values. These results
further confirm that the brine and water models have different adaptabilities and cannot be used
interchangeably.

The predictive models suggest that pure water can dissolve a substantial amount of CO-, with
solubility increasing rapidly as pressure rises and being more pronounced at lower temperatures. This
is attributed to the absence of ionic interferences in pure water, which facilitates the dissolution of CO:
molecules. Conversely, the solubility of CO: in brine is considerably lower than in pure water due to
the salting-out effect, where higher salinity levels hinder the solubility of CO:. As salinity escalates,
ions present in the water, such as Na* and CI-, compete for positions that CO: would otherwise occupy
to interact with water molecules, thereby diminishing CO: solubility. This effect becomes especially
noticeable at elevated salinity levels, and with increasing pressure, the enhancement of CO: solubility
in brine is less significant compared to that in pure water.

3.3.2. Differences supported by physical and chemical principles

Even when the salinity is nominally zero in the brine model, the predicted CO: solubility may
still deviate slightly from the pure water model. This discrepancy can be attributed to two factors: (1)
Parameter discrepancies: The parameters of the brine model are calibrated to account for the influence
of salinity on solubility. Even at zero salinity, these parameters may differ from those of the pure water
model, resulting in minor prediction variations. (2) Residual ionic influences: In computational models,
properties related to the presence of ions in brine might persist even when salinity is set to zero, leading
to minor deviations from the pure water model. This could encompass factors such as the activity
coefficient of water and underlying effects in ion interaction models. These subtle differences
underscore the complexity of accurately modeling CO: solubility in various aqueous environments.

From a physico-chemical perspective, on the other hand, the mechanisms governing CO:
solubility in water and brine are fundamentally different. In water, CO. molecules primarily form
hydrogen bonds with water molecules and are influenced by van der Waals forces, resulting in a
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relatively linear relationship between solubility and changes in temperature and pressure [49,50]. In
brine, ions such as Na* and CI™ alter the interactions between water and CO: through solvation and
shielding effects, leading to the salting-out effect [49], where CO: solubility decreases as salinity
increases. The salting-out effect refers to the phenomenon where the solubility of a solute, particularly
a gas, decreases when salts are added to a solution. This effect typically occurs in solutions containing
dissolved gases, nonpolar solutes, or organic solutes. When salt is added to a solution, the ions from
the salt form strong interactions with water molecules, reducing the freedom of movement of the water
molecules. As a result, the interaction between water molecules and gas molecules is diminished,
leading to a decrease in the solubility of the gas.

When salts dissolve in water, they dissociate into ions, creating an ionic environment that affects
interactions between solvent and solute molecules. In the salting-out effect, the presence of ions
weakens interactions between the solute and water molecules, reducing CO: solubility by altering the
solvation free energy of the solute, making it less favorable [51]. Consequently, CO: solubility in brine
exhibits more complex nonlinear variations with temperature, pressure, and salinity. Due to these
differing solubility mechanisms and significant differences in physical and chemical processes,
features learned by the model in brine cannot effectively generalize to aqueous solutions, and vice
versa. Combining experimental and theoretical studies, these differences support the conclusion that
brine and water models cannot share the same MLP model.

3.3.3. Comparative analysis of MLP and CatBoost

We found that Yang [52] no longer focused on studying black box models, so we introduce a new
model, called CatBoost, and compare it with those models. The prediction results are shown in the
Table 6:

Table 6. Performance evaluation of CatBoost and MLP models in pure water and brine

modeling.
Model Data point Testing set
R? AAPRE RMSE MAE
CatBoost-Water 265 0.93524 11.88348 0.00635 0.00286
MLP-Water 265 0.99424 4.11874 0.00108 0.00159
CatBoost-Brine 240 0.97867 16.94977 0.00072 0.00057
MLP-Brine 240 0.99612 4.91004 0.00036 0.00031

As can be seen from the table above, the predictions of the CatBoost model do not achieve the
accuracy of the MLP, and the MLP’s prediction results are more reliable.

4. Conclusions

This study investigated MLP artificial neural networks for the CO. + H20 and CO: + H>O + NaCl
systems. Model accuracy was validated through comparison with literature data. The CO: solubility
prediction model in water achieved an RMSE of 0.00108, R? 0 0.99424, and AAPRE of 4.11874%. The
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CO: solubility prediction model in brine achieved an RMSE of 0.00041, R? of 0.99473, and AAPRE of
4.7243%. Both models demonstrated commendable predictive abilities. Testing whether the brine model
could predict CO: solubility in pure water (salinity of 0) revealed an RMSE of 0.00548, R* of 0.96118,
and AAPRE of 9.59813% for the brine model, with a lower R? and an average error approaching 10%,
indicating higher errors and reduced model performance. Therefore, the brine model is unsuitable for
predicting CO: solubility in pure water, as there are notable differences between the two.

Several key differences exist between the solubility models of CO: in water and brine. Regarding
neural network architecture, the water model uses a three-input layer configuration, including
temperature, pressure, and their interaction terms, focusing on optimizing data preprocessing (e.g.,
feature engineering). In contrast, the brine model adds “salinity” as a variable and adopts a more
complex structure and regularization strategies (e.g., data augmentation and additional hidden layers)
to better fit the solubility changes in brine.

Experimental data further confirmed that when predicting solubility in water by setting salinity
to zero in the brine model, the results were inferior to those of the pure water model. This is because
the physico-chemical mechanisms of the two are different; the solubility mechanism of CO: in pure
water is simpler, while the brine model considers complex factors such as the salting-out effect. Even
with zero salinity, residual effects within the brine model can influence predictions.
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