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Abstract: In this study, we used monitoring data on six representative pollutants, meteorological data, 

and socioeconomic data from January 2018 to December 2023 to clarify the spatiotemporal 

characteristics of air pollution in Changchun, Jilin Province, China, and to establish a short-term 

prediction model. First, correlation analysis (CA) was used to identify the key factors affecting 

pollution characteristics. Then, wavelet analysis (WA) was applied to capture the major periodic 

coupling characteristics of the time series, thereby analyzing the variation law of air quality. The results 

showed that the six air pollutants in Changchun exhibited significant seasonal differences. The peak 

concentration of O₃ occurred in summer, while the peaks of other pollutants were concentrated in 

winter and spring. The average air quality index (AQI) exhibited a downward, overall fluctuating trend, 

with PM₂.₅ and PM₁₀ as the major pollutants. Urbanization rate and green space coverage area were 

identified as key social driving factors, while temperature, relative humidity, and wind speed were 

identified as key meteorological driving factors. Furthermore, WA revealed a coupling phenomenon 

between the major periods of the AQI sequence and the PM₂.₅ and PM₁₀ sequences. Additionally, the 

low-frequency wavelet signals showed an overall downward trend, confirming that composite 

pollution is a typical feature of air pollution in Changchun, while the regional air quality is gradually 

improving. A short-term AQI forecasting equation based on ordinary least squares (OLS) was 

constructed. Unlike previous AQI prediction models that used only meteorological factors as 

independent variables, this model included "AQI data of the same period in the previous year" as a key 

independent variable. Verification showed that the model's fit outperformed that of traditional 

meteorologically driven models, yielding more accurate short-term AQI predictions for Changchun, 

driven by the following two major innovations. First, combined wavelet and CA comprehensively 

determined the periodic coupling characteristics between AQI and major pollutants, providing an 

efficient tool for analyzing the causes of composite pollution. Second, incorporating historical AQI 
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data into the OLS prediction model mitigated the limitation of traditional models that rely solely on 

meteorological factors. 

Keywords: urban air pollution; short-term air quality index; socioeconomic factors; meteorological 

factors; Northeast China Plain 

 

1. Introduction 

Fossil fuels, including coal, oil, and natural gas, have been crucial to promoting economic 

development worldwide, though air pollution has steadily worsened. Burning fossil fuels, biomass, 

and minerals is the primary cause of air pollutants. The pollutants emitted by vehicles mostly include 

hydrocarbons, nitric oxides, and carbon monoxide. Coal burning results in the emissions of hazardous 

substances, such as SO2, NOx, and CO2. Regional air pollution characteristics are not only influenced 

by pollution sources but also by several other factors. Identifying the driving factors of regional air 

pollution characteristics is the first step toward a more accurate prediction of air quality changes. 

The driving factors of temporal and spatial air pollution characteristics on different scales have 

been extensively studied in recent years [1–3]. These driving factors are roughly divided into two 

categories, namely socioeconomic and meteorological. Socioeconomic factors, including population 

aggregation [4], urbanization level [5], and urban green coverage [6], determine the total amount of 

pollutants emitted into the atmosphere. 

Fang et al. reported that urbanization harms China's air quality through factors such as population 

size, urbanization rate, vehicle density, and the proportion of secondary industries [7]. Fernando et al. 

performed a spectral analysis that identified the 36- to 77-day period of air quality in Southern Brazil, 

with 18- to 28-day oscillations. Moreover, the anthropogenic emissions exhibited distinct periodic 

characteristics [8]. Lei et al. discovered temporal variability in anthropogenic emissions of air 

pollutants, as manifested in "morning/evening peak hours", "day-of-the-week effect", and "holiday 

effect" [9]. Due to the periodic changes in weather systems and anthropogenic emissions, air pollutant 

concentrations also display marked periodicity. Research has examined the characteristics of air 

pollution and their influence on various environmental factors during smog weather. It has been 

generally accepted that industrial production and automotive exhaust emissions cause smog, 

deterioration of urban air quality, and reduced atmospheric visibility. Investigations have also been 

conducted into the optical characteristics and local distribution of aerosols during a haze      

outbreak [10–12]. Revealing the variation characteristics and the driving factors of regional air quality 

provides scientific evidence and support for environmental management. 

China underwent rapid urbanization as the country shifted to an industrial economy following the 

1980s reform and "opening up" policies. Ten million people a year migrated from rural areas to China's 

large cities during this period. This unprecedented scale and accelerated pace of China's urbanization, 

linked to the country's energy consumption, have led to serious resource, energy, and environmental 

crises, as well as significant increases in air pollutants and carbon dioxide emissions over the past three 

decades. Given that China's urbanization trend will likely continue for another 30 years, the conflict 

between urbanization and the atmosphere will persist into the foreseeable future. 

Natural factors, including wind velocity [13], air temperature [14], and precipitation [15], usually 

affect the duration of air pollutants and pollutant concentrations. 

Tan analyzed air quality monitoring data from Sichuan and Chongqing, China, from 2015 to 2021, 

and performed WA. They found that the air quality index (AQI) had a significant positive correlation 
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with air temperature and sunshine index in the short term, but a significantly negative correlation with 

wind velocity and precipitation [16]. The formation of air pollutants is also closely related to 

meteorological elements, including relative atmospheric humidity, temperature, and wind velocity. 

Meteorological elements influence the diffusion and transport of air pollutants [17]. Decreased 

atmospheric diffusion capacity will cause aerosols to accumulate near the ground, aggravating near-

surface air pollution. Moreover, the meteorological elements directly influence the formation of 

secondary aerosols. For example, increased relative atmospheric humidity during smog weather 

promotes the heterogeneous reaction of liquid-phase SO2 to produce sulfates. Strong photochemical 

reactions in summer facilitate the conversion of NO2 in the atmosphere into particulate matter, that is, 

the conversion of gaseous precursors into particulate matter [18]. Li et al. identified Rossby waves 

with an oscillatory period of about 7 days in the mid- and high-latitude regions of the Northern 

Hemisphere, driven by the combined effects of emissions, meteorological diffusion, and chemical 

reaction processes. The low-frequency oscillations mostly consisted of quasi-biweekly oscillations 

(10-20 d) and intraseasonal oscillations (30-60 d) [19]. Li et al. employed the reverse trajectory method 

to analyze the major features and sources of air pollutants in Urumchi [20]. Xu et al. used a generalized 

additive model (GAM) to quantify the contributions of each meteorological factor and its gaseous 

precursors to PM2.5 and ozone. They found that meteorological factors primarily influenced daily 

changes in ozone concentration [21]. 

Atmospheric relative humidity (RH) can regulate air quality, with its influence mechanisms 

involving the conversion of gaseous pollutants into secondary aerosols and the hygroscopic growth of 

particulate matter. High RH accelerates sulfate and nitrate formation by promoting liquid-phase 

oxidation of sulfur dioxide (SO₂) and nitrogen oxides (NOₓ), thereby increasing PM₂.₅ 

concentrations [22]. For instance, when RH exceeds 70%, the sulfur oxidation rate (SOR) and nitrogen 

oxidation rate (NOR) increase by 40% and 19%, significantly exacerbating fine particulate 

pollution [23]. 

In addition, water clusters (WCs) catalyze the formation of nitroaromatic compounds (NACs) in 

the gas phase. As important components of secondary organic aerosols (SOA), the formation of NACs 

is more prominent in high-humidity environments. Moreover, humidity exerts a dual effect on the 

hygroscopic properties of particulate matter: under low humidity, hygroscopic growth is limited; under 

high humidity, however, hydrophilic particulates increase in size after absorbing moisture, further 

reducing visibility and aggravating haze. These studies reveal the complex interaction between 

atmospheric relative humidity and aerosol chemistry. 

Geographically weighted regression (GWR) [24] and geographic detectors are favored methods 

for determining pollution's temporal and spatial features at different levels [25]. However, these 

methods can detect only small-scale changes in pollutant concentrations and are hardly adequate for 

analyzing periodic changes in pollutants. WA is a time-frequency analysis method that emerged in the 

past two decades and provides a reliable tool for identifying the evolution law of nonstationary time 

series at different time scales [26]. Offering time and frequency resolution, the WA enables multi-scale 

refinement of discrete data while eliminating the influence of accidental factors on the variation 

law [27]. The wavelet transform enables us to analyze nonstationary time series effectively and to 

identify different frequency components and their periodic changes. When studying the characteristics 

of air pollution over a specific period, the rationality of WA can be fully demonstrated by its unique 

multi-scale time-frequency resolution, which far surpasses the limitations of traditional time-series 

methods to single-dimensional analysis. Unlike the Fourier transform, which captures only overall 

trends, the wavelet transform can simultaneously localize the local characteristics of pollution signals 

in both the time and frequency domains; this is crucial for analyzing nonstationary pollutant 
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concentration sequences with multi-scale fluctuations. 

For example, Kumar et al. successfully identified the 330-day main cycle of PM₂.₅ concentration 

and the daily fluctuation peak at 19:00–20:00 using Morlet wavelets, revealing the coupling impact 

mechanism of seasonal emissions and human activities. Moreover, Zhang et al. [28] reported that 

wavelet decomposition can decompose complex pollution sequences into approximate trend and 

detailed fluctuation components [29]. Combining this method with the ARMA model improved the 

prediction accuracy of heavy pollution events by 27% compared with a single model, effectively 

addressing the bottleneck of traditional methods in analyzing transient pollution processes. In addition, 

the robustness of the wavelet transform to noise enables it to perform excellently in the integrated 

analysis of multi-site monitoring data, providing a more reliable quantitative tool for pollution source 

tracing and spatiotemporal characteristic mapping. Analyzing periodic changes in air pollutants and 

understanding the multiple mechanisms underlying their formation, based on a long time series, is 

paramount for determining and predicting heavy pollution. 

In summary, WA can identify the temporal characteristics of air pollution across temporal scales, 

which distinguishes it from traditional research methods. However, this method is often applied to 

study the characteristics of a single pollutant or a category of pollutants. It is rarely used to explore the 

variation relationship between air quality and its influencing factors. Therefore, based on the relevant 

socioeconomic data, AQI data, and monitoring data of major pollutants in Changchun, the 

geographical center of the Northeast China Plain, from January 2018 to December 2023, combined 

with the surface meteorological data of Changchun, we employed wavelet denoising analysis to 

investigate the variation characteristics of air quality in Changchun and its influencing factors, thereby 

addressing this research gap. 

In addition, researchers who used prediction models to forecast air quality changes relied solely 

on meteorological conditions. In contrast, the impact of historical AQI data on future air quality was 

rarely considered. This practice ignores the cumulative effect of pollutants. Therefore, in constructing 

the air quality prediction model for Changchun, we incorporated historical AQI data to improve model 

accuracy and enrich the content of model prediction research. 

2. Materials and methods 

2.1 Study area 

Changchun City (43°10′- 45°15 N, 124°01′- 127°05′ E) is in the mid-latitude temperate zone in 

the Northern Hemisphere, in the middle of Northeast China. As the political, economic, and cultural 

center of Jilin Province, Changchun City covers an area of 24,744 square kilometers. Its main urban 

area is on the Yitong River tableland within the Songliao Plain, where low mountains and hills 

dominate the landscape. Lying in the southeast of Changchun city, the main urban area belongs to the 

Big Black Mountain. Changchun extends from northeast to southwest, with an altitude of 250 m to 

350 m and a relative height of 50 m to 100 m. Changchun has a four-season, monsoon-influenced, 

humid continental climate. The spring is windy in Changchun, with a maximum wind velocity of 30 

m/s. The southeast wind prevails in summer, with an average temperature of 21.9C°. Despite 

considerable temperature differences, the weather is sunny and warm in autumn over several 

consecutive days. Besides, the wind velocity is usually smaller in autumn than in spring. The weather 

is sunny and dry in winter, with light winds and an average temperature of -12 °C. As for the industrial 

structure, the secondary sector is the dominant sector in Changchun, followed by the tertiary sector. 

The added value of the primary sector is the lowest. The location of the study area is shown in Figure 

1. 
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Figure 1. Study area and locations of atmospheric pollutant sampling points 

2.2. Data sources and processing 

In accordance with China's Regulations on the Delimitation of Ambient Air Quality Functional 

Zones in the Changchun Planning Area, the Changchun Municipal Bureau of Ecology and 

Environment has established a total of 9 automatic monitoring stations in the urban area. These stations 

cover the urban built-up area and suburban regions, and their site selection complies with the Technical 

Specifications for Layout of Ambient Air Quality Monitoring Sites (HJ664—2013), fully covering 

Class I areas (ecological protection zones) and Class II areas (residential, industrial, and traffic zones). 

They provide reliable data support for urban air quality assessment, pollution control, and public health 

protection. 

We also used monitoring data from the nine stations listed above. This ensured that the monitoring 

data covered all types of urban areas and were highly representative. The pollutants monitored were 

PM10, PM2.5, CO, O3, NO2, and SO2. The automatic air quality monitoring systems operated 365 days 

a year for at least 18 hours daily. The locations of the sampling points are shown in Figure 1. 

According to the Technical Regulations on Ambient Air Quality Index (in Chinese) (HJ633-2012), 

the six major pollutants detected for air quality assessment are fine particulate matter, inhalable 

particulate matter, sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide. 

The selected meteorological factors were air temperature, atmospheric pressure, wind velocity, 

and relative humidity. Data on meteorological factors from January 1, 2018, to December 31, 2023, 

were obtained from the China Meteorological Data Network (https://data.cma.cn/). 

The socioeconomic factors considered were Changchun's GDP, urbanization rate, urban green 

coverage, and industrial electricity consumption from 2018 to 2023. Data on socioeconomic factors 

were from the Changchun Statistical Yearbook 2023 [30]. 
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In China, the urbanization rate is defined as the percentage of the permanent urban population in 

the total permanent population of a city and serves as a core indicator of urbanization development. 

The permanent urban population generally refers to residents who have lived in urban areas (including 

urban downtown areas and seats of established towns) for more than half a year, covering registered 

residents and migrant populations that meet statistical standards. The total population refers to all 

permanent residents within the administrative region. The urbanization rate is a key foundational 

indicator in research fields such as regional development planning, ecological environment governance, 

and public policy formulation. 

The urban green coverage area is the sum of the vertical projection areas of a city's vegetation 

(including arbors, shrubs, and lawns). 

Industrial electricity consumption is the total electricity consumed by all industrial legal entities 

within a city's administrative region during production and operation activities in a reporting period 

(usually one year). It is one of the core energy indicators reflecting the vitality of a city's industrial 

economy and energy use efficiency. 

Gross domestic product (GDP) is defined as the total value of final goods and services produced 

by all resident units within a city's administrative region during a reporting period (usually one year). 

It is a core macroeconomic indicator for measuring a city's economic volume, development scale, and 

growth rate. 

2.3. Methodology 

2.3.1. Wavelet coefficient analysis 

The wavelet transform can characterize signal features in both time and frequency domains and 

has been widely used to analyze nonstationary, discontinuous time series in various fields [31], 

including hydrology [32], geology [33], and meteorology [34,35]. Continuous wavelet transform of 

any time series function is represented as follows: 

wf(a,b) =  

a ∈ R+ , b ∈ R 

(1) 

                        

where a is the scaling factor for stretching or compressing the wavelet; b is the translation factor for 

shifting the wavelet in time; wf (a,b) is the wavelet coefficient. According to Torrence, the scale is 

related to the period of the wavelet in the following way [36]: 

T ≈ 1.033a   (2) 

where T is the period. 

2.3.2. Wavelet variance 

Integrating the square of the wavelet transform coefficient in the time domain gives wavelet 

variance: 

Var(a) = db     (3) 

 

where Var(a) is the wavelet variance. The plot of wavelet variances by scale shows the variation in 
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wavelet variance with scale, reflecting the scale-based energy distribution. Wavelet variance can be 

used to determine the relative intensity and dominant time scale of signal disturbances at different 

scales, the latter known as the dominant period. We performed a wavelet analysis of variance using 

MATLAB. 

2.3.3. Wavelet denoising 

In this study, the AQI values under investigation were non-measured raw data whose trends were 

not readily apparent to the naked eye. These AQI values constituted a highly irregular time series, 

which was decomposed and reconstructed by wavelet transform to reveal the hidden trend. Among the 

commonly used wavelet families, we chose the Daubechies wavelets (hereafter referred to as db 

wavelets) to decompose and reconstruct the variation characteristics of air pollution. The Daubechies 

wavelet is a family of binary wavelets proposed by Daubechies in 1988 [37]. Daubechies wavelets 

construct orthogonal and localized bases using discrete filters, which are represented by dbN in 

MATLAB. Here, N is the wavelet's serial number, taking values 2, 3, ..., 9, 10. We further studied the 

periodic variation characteristics of air pollution in Changchun. The db3 wavelets were applied to AQI 

and meteorological factors. Wavelet denoising is essential when using wavelet analysis to study air 

pollution characteristics during a specific period. The purpose of wavelet denoising is to separate and 

eliminate irrelevant interference information from noisy time-series data of air pollutant concentrations 

while retaining valid signals that reflect the true variation patterns of pollution. This lays a high-quality 

data foundation for subsequent pollution characteristic analysis, source apportionment, and prediction 

modeling. 

Specifically, monitoring data of air pollutant concentrations are susceptible to various types of 

noise interference. On the one hand, there are systematic errors, such as electronic noise from the 

monitoring equipment itself and environmental electromagnetic interference. On the other hand, there 

are irregular accidental interferences, such as transient traffic exhaust pulses and local temporary 

pollution sources (e.g., sudden construction dust). Such noise can obscure the true trends of pollutant 

concentrations (e.g., seasonal and diurnal variation patterns) and key mutation information (e.g., the 

start and end nodes of heavy pollution events), making wavelet decomposition-based denoising 

analysis necessary. 

The db3 wavelet, a member of the Daubechies wavelet family, is widely used in air pollution 

research. The primary reason lies in its high compatibility between its characteristics and the features 

of air pollution data, which can be summarized as follows: 

The db3 wavelet has a compact support property (short support length), which makes it highly 

capable of capturing local mutations in signals (e.g., sudden increases or decreases in concentration 

during heavy pollution events). 

As a low-order wavelet (order 3), db3 balances a certain degree of smoothness and anti-

interference capability. For "nonstationary, high-frequency noise-containing" data such as air pollution 

data, low-order db3 filters can effectively remove high-frequency noise without excessive smoothing 

that would lead to the loss of valid details (e.g., short-term fluctuation patterns of pollutant 

concentrations). 

The decomposition and reconstruction of low-order Daubechies wavelets require less 

computational effort. This can significantly improve analysis efficiency and reduce computational 

costs for long-term time-series air pollution data (e.g., multi-year daily/hourly data). The Daubechies 

wavelets were applied to signals in MATLAB. 

2.3.4. Correlation analysis 



1038 

AIMS Environmental Science  Volume 12, Issue 6, 1031–1058. 

The Pearson Correlation Coefficient (PCC) of air pollutant concentrations with socioeconomic 

and meteorological factors was performed using GraphPad Prism 8.0. 

We used Pearson's correlation analysis to examine the pairwise associations between two 

categories of factors and air pollutants. The first category included associations between 4 

meteorological conditions (atmospheric relative humidity, average wind speed, atmospheric pressure, 

and air temperature) and six pollutants (PM₁₀, PM₂.₅, SO₂, CO, NO₂, and O₃). The second category 

covered associations between 4 socioeconomic factors (GDP, industrial electricity consumption, urban 

green coverage area, and urbanization rate) and six pollutants. A total of (4×6) + (4×6) = 48 

independent tests were conducted. 

To control the risk of false-positive results from multiple tests and ensure the rigor of statistical 

conclusions, the FDR correction method was applied to adjust all original P-values, with the adjusted 

significance level set at α = 0.05. 

2.3.5. Constructing the predictive models 

A variety of natural factors influence short-term air pollution. We employed OLS to estimate the 

coefficient that minimizes the difference between the predicted and actual values, and the optimal 

linear model was established accordingly. The OLS model assumes a linear relationship between 

dependent and independent variables and finds the optimal regression coefficients by minimizing the 

residual sum of squares. Minimization is usually achieved by differentiation and the extreme value 

theorem, and the chosen regression coefficient minimizes the residual sum of squares. The 

mathematical expression of the OLS regression is the function of the sum of squares of the residuals 

between the predicted and true values during minimization. The concept of best subset selection was 

employed for OLS regression, and the optimal equation for short-term air quality prediction was 

established with and without superimposing the previous year's AQI, respectively. 

When constructing the prediction models, we used SPSSAU software to perform ANOVA 

calculations for the two models separately, obtained the sum of squared residuals, and further derived 

R² and adjusted R². We also calculated the models' RMSE and Durbin-Watson (DW) values, as shown 

in Table 1. The R² values of the two models were 0.908 and 0.861, respectively, and the adjusted R² 

values were 0.832 and 0.782, respectively. 

Table 1. Model validation parameters. 

AQI prediction model R2 Adjusted R² RMSE DW 

Y1(AQI) 0.861 0.782 8.119 2.107 

Y2(AQI) 0.908 0.832 6.602 2.057 

Note：Y1 (AQI) model did not incorporate the AQI values from the previous year; Y2 (AQI) model incorporated the AQI 

values from the previous year 

In air pollution research, dependent variables (e.g., AQI) are often influenced by multiple 

meteorological factors, including atmospheric temperature, relative humidity, atmospheric pressure, 

and average wind speed. While these factors were briefly discussed in the introduction, we also 

proposed adding a fifth variable, AQI, and verifying whether it is a confounding factor. The judgment 

criterion is whether the change range of the regression coefficient of the core independent variable 

exceeds 10%–20% before and after introducing the new variable. Since air pollution data often exhibit 

natural fluctuations, the threshold for confounding factors can be flexibly relaxed to 20%. 

Among the variables in the prediction models, the atmospheric relative humidity has the smallest 
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P-value, so it is the core independent variable. The change range of its regression coefficient after 

introducing the AQI variable is less than 10%, indicating that the AQI variable is not a confounding 

factor. In addition, we used the DW test to rule out residual autocorrelation in the models. 

3. Results and discussion 

3.1. Temporal variation characteristics of AQI and pollutant concentrations 

The day-to-day variations of the concentrations of the six air pollutants (SO2, NO2, O3, CO, PM2.5, 

and PM10) in Changchun from 2018 to 2023 are shown in Figure 2.  

 

Figure 2. Daily variation trends of concentrations of six air pollutants (SO₂, NO₂, O₃, CO, 

PM₂.₅, and PM₁₀) from 2018 to 2023. 

All six pollutants displayed strong seasonal variations but no distinct interannual variation. Two 

distribution patterns were identified for the daily mean concentrations of the six pollutants throughout 

the year, namely unimodal and bimodal. Except for the daily mean O3 concentration, which showed a 

unimodal distribution pattern, the daily mean concentrations of all other pollutants peaked in winter 

and spring, followed by a decrease afterward. This is because O3 pollution is more common in summer, 

when high temperatures and strong sunlight more readily mediate photochemical reactions that 

produce O3. During the winter heating season, SO2 and other pollutant emissions increase dramatically, 

and pollutant dispersion conditions are worse in winter than in other seasons due to unfavorable 

meteorological conditions. For the above reasons, the peak season of ozone pollution was not 

synchronized with those of other pollutants. 

Given the daily limits of pollutants for second-grade air quality specified in the Ambient Air 

Quality Standard, the number of days when PM2.5 and PM10 concentrations exceeded the second-grade 

daily limits was greater than that of other pollutants. PM2.5 and PM10 pollutants were found in all four 

seasons, indicating severe atmospheric particulate matter pollution in Changchun. The time series of 

PM2.5 and PM10 concentrations showed trends similar to those of AQI values, indicating that particulate 

matter was the primary pollutant in Changchun. As shown by the annual mean and extreme 
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concentrations of the other four pollutants, there were insignificant changes in the mean pollutant 

concentrations and the annual numbers and percentages of days with good and moderate air quality 

from 2018 to 2023. Besides, the concentrations of these four pollutants did not exceed the daily mean 

limit for second-grade air quality most of the time. As analyzed above, these four pollutants were not 

the major air pollutants in Changchun. 

According to annual AQI statistics, the mean AQI first increased and then decreased, fluctuating 

from 2018 to 2023. The annual number of air pollution days was 34 in 2018, 59 in 2019, and 61 in 

2020, indicating that the annual number peaked in 2020. After that, the annual number of air pollution 

days was 35 in 2021, 29 in 2022, and 51 in 2023. 

3.2. CA of air pollutants, socioeconomic factors, and meteorological factors 

3.2.1. Correlation between air pollutants and socioeconomic factors 

A PCC was performed between the annual mean concentrations of six air pollutants (SO2, NO2, 

O3, CO, PM2.5, and PM10) and socioeconomic data for Changchun in the same periods. The results of 

the correlation analysis are presented in Figure 3. 

 

Figure 3. Correlation between concentration of air pollutants and social factors. 

During this period, the urban green coverage, urbanization rate, and industrial electricity 

consumption in Changchun increased. The urbanization rate significantly influenced PM2.5 

concentration, which positively correlated with it (P<0.05). The higher the urbanization rate, the higher 
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the PM2.5 concentration, and increasing urbanization led to a growing population. Additionally, the 

higher the population, the higher the energy consumption, thereby indirectly increasing atmospheric 

PM2.5 concentrations. Urban green coverage showed a significant negative correlation with NO2 and 

CO concentrations (P<0.05). Plants absorb NO2 through stomata on their leaves, converting it into 

nitrates, a nutrient necessary for plant survival. NO2 absorption varies across plant species, with daily 

values of 1.9 mg for cherry and 0.6 mg for Chinese maple [38]. Moreover, plants absorb carbon dioxide 

through photosynthesis and release oxygen into the atmosphere, helping regulate CO₂ levels. While 

CO₂ and CO share a carbon–oxygen bond, their atmospheric behavior differs. CO levels are mostly 

affected by combustion processes and atmospheric chemical reactions, not by photosynthesis. 

However, long-term changes in CO₂ concentration and climate can indirectly influence CO levels by 

altering temperature and the abundance of oxidizing agents such as hydroxyl radicals (OH). In a word, 

the urbanization rate and the urban green coverage were important socioeconomic driving factors of 

changes in air pollutant concentrations in Changchun. Furthermore, GDP and industrial electricity 

consumption exerted only a weak influence. 

The purification effect of green spaces on pollutants may exhibit significant "lag effects" or 

seasonal variations across different seasons. For instance, vegetation is lush in summer, and its 

absorption and deposition effects on pollutants are far stronger than in winter. 

Therefore, to capture the relationship between socioeconomic factors and air quality from a macro 

and long-term perspective, we conducted a correlation analysis using annual average pollutant 

concentrations (2018-2023, 6 years) and the corresponding annual average values of socioeconomic 

indicators over the same period. The inherent logic of this analysis method, based on multi-year 

averages, is to smooth and offset short-term (e.g., monthly, seasonal) fluctuations and lag effects to the 

greatest extent possible. Specifically, compressing 6-year data into an annual average effectively 

averages out differences in purification efficiency caused by seasonal changes (such as variation in the 

ecological activity of green spaces between January and June) each year. 

Thus, the significant negative correlation we identified between green space area and 

concentrations of NO₂ and CO does not reflect an instantaneous effect in a specific season, but rather 

a long-term, stable macro-statistical association that transcends seasonal fluctuations. This helps us 

determine whether green space area is a significant social driving factor over a longer time scale. This 

method effectively reduces the interference of short-term lag effects on the study conclusions. 

We consider the spatial heterogeneity of green space distribution to be a key factor affecting local 

air quality. Our original objective of this study was to treat Changchun as an integrated system to 

explore the relationship between its macro socioeconomic indicators and overall ambient air quality. 

Therefore, at the data analysis stage, we conducted correlation analysis using the total green coverage 

area of the entire Changchun administrative region and the municipal-level annual average pollutant 

concentrations (which represent the overall air quality of Changchun). This approach revealed the 

overall regularity at the city level. From a city-wide perspective, an increase in the total amount of 

green space resources is associated with a decrease in background concentrations of NO₂ and CO in 

the urban atmosphere. This conclusion provides a reference for urban top-level planners to formulate 

macro ecological construction strategies. 

Certainly, we are well aware that to reveal the micro-mechanisms by which green spaces deeply 

affect pollutants, it is necessary to introduce more refined data (e.g., zoned green space data and 

monitoring station data) and analytical methods (e.g., Geographically Weighted Regression) in 

subsequent studies. We have also stated in the "Discussion and Prospects" section of the paper that the 

spatial heterogeneity pattern is a research direction warranting further in-depth exploration. 

In summary, within our framework, we initially aimed to identify key socioeconomic driving 
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factors from a long-term, overall perspective by adopting macro-correlation analysis based on multi-

year averages. Although this method has limitations in exploring mechanisms, it can effectively avoid 

interference from short-term lags and spatial heterogeneity when judging macro trends, thereby 

providing robust decision-making support for urban-level environmental management. 

3.2.2. CA between air pollutants and meteorological factors 

The results of PCC between air pollutant concentrations and meteorological factors in Changchun 

from January 2018 to December 2023 are shown in Figure 4. 

 

Figure 4. Correlation between concentration of air pollutants and meteorological factors. 

Some pollutant concentrations showed strong correlations with meteorological factors. The O3 

and NO2 concentrations had a strong positive correlation (P<0.01). The higher the temperature, the 

higher the O3 and NO2 concentrations would be, though a lower atmospheric pressure was not 

conducive to pollutant dispersion in winter. As a primary air pollutant, O3 is not directly emitted into 

the atmosphere; it is produced through photochemical reactions. To produce ozone, volatile organic 

compounds (VOCs) and nitrogen oxides (NOx) undergo photochemical reactions at high temperatures 

and under strong illumination. Therefore, the photochemical reactions are more pronounced in summer 

for the above reasons, and summer is the ozone season. Relative atmospheric humidity showed 

significant negative correlations with PM2.5 and PM10 concentrations (P<0.05) and with SO2 

concentration (P<0.01). The results indicated that higher atmospheric humidity was associated with 

lower concentrations of the three pollutants. At higher relative atmospheric humidity, water molecules 
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bind to particulate matter, increasing its weight and causing it to settle. PM2.5 and PM10 can absorb 

water vapor from the air, which can cause them to expand and settle. When relative humidity exceeds 

80%, particulate matter settles out of the air, reducing atmospheric concentrations. The correlation 

between the relative atmospheric humidity and SO2 concentration mainly manifests as the former 

promoting the conversion of SO2 into the sulfuric acid mist. SO2 usually exists as a gas at a lower 

relative atmospheric humidity. As the relative atmospheric humidity increases, SO2 is more likely to 

bind to water vapor to produce sulfuric acid and settle out of the air. Wind velocity showed a negative 

correlation with PM2.5 and PM10 concentrations. The higher the wind velocity, the more dispersed 

PM2.5 and PM10 pollutants are, improving air quality [39]. 

3.3. Periodic features of air pollutant concentrations based on wavelet transform 

Morlet wavelet transform was applied to the AQI values and daily mean concentrations of six 

pollutants in Changchun from 2018 to 2023, and the real part of the wavelet coefficient was obtained, 

as shown in Fig.5. The intensity of the oscillatory signals is represented as follows: The higher the 

wavelet coefficient, the darker the color, and the higher the pollutant concentration, and vice versa.  

 

Figure 5. Wavelet Coefficients and Wavelet Variance of AQI during 2018–2023. 

Figure 5. shows that in 2018, 2019, 2021, and 2023, the first dominant period of the AQI time 

series was 25 days; in 2020 and 2022, it was 20 days. From 2018 to 2023, the second dominant period 

of the time series was 16, 40, 10, 10, 12, and 12 days, respectively. 

The real parts of the wavelet coefficient and wavelet variance for the time series of AQI values 

and concentrations of six pollutants (PM2.5, PM10, NO2, O3, SO2, and CO) in Changchun are plotted in 

Figs. 6-11, respectively.  
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Figure 6. Wavelet Coefficients and Wavelet Variance of PM2.5 during 2018–2023 

Figure 6 shows that in 2018, 2019, 2021, and 2023, the first dominant period of the time series of 

PM2.5 concentrations was 26 days; in 2020 and 2022, the first dominant period of the time series of 

PM2.5 concentration was 20 and 15 days, respectively. From 2018 to 2023, the second dominant period 

of the time series of PM2.5 concentrations was 15, 40, 10, 10, 20, and 14 days, respectively. 

 

Figure 7. Wavelet coefficients and wavelet variance of PM10 during 2018–2023. 

It can be inferred from Figure 7 that in 2018, 2021, and 2023, the first dominant period of the 

PM10 concentrations time series was 26 days. In 2019, the first dominant period of the time series of 

the PM10 concentrations was 40 days. In 2020 and 2022, the first dominant period of the PM10 

concentrations time series was 20 days; from 2018 to 2023, the second dominant period was 17, 25, 

10, 10, 10, and 10 days, respectively. 
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As shown in Figure 8, the first dominant period in the time series of NO2 concentrations was 40 

days in 2018. In 2019, the first dominant period of the time series of the NO2 concentrations was 60 

days. In 2020 and 2021, the first dominant period of the NO2 concentrations time series was 20 days; 

in 2022, 34 days; and in 2023, 50 days. From 2018 to 2023, the second most dominant period in the 

time series of NO2 concentrations was 24, 40, 10, 10, 24, and 24 days, respectively. 

 

Figure 8. Wavelet coefficients and wavelet variance of NO2 during 2018–2023 

The analysis in Figure 9 shows that the first dominant periods of the time series of the O3 

concentrations were 35 days in 2018 and 2022, and 20 days in 2020 and 2021. The first dominant 

periods of the time series of the O3 concentrations were 16 days in 2023 and 50 days in 2019. From 

2018 to 2023, the second dominant periods of the time series were 17, 30, 10, 30, 24, and 0 days, 

respectively. 

 

Figure 9. Wavelet coefficients and wavelet variance of O3 during 2018–2023. 
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In Figure 10, the first dominant period of the time series of SO2 concentrations was 20 days in 

2018 and 2022, versus 25 days in 2019. The first dominant period of SO2 concentrations was 55 days 

in 2021, 33 days in 2022, and 47 days in 2023. From 2018 to 2023, the second-most dominant periods 

in the time series of SO2 concentrations were 16, 17, 8, 40, 16, and 10 days, respectively. 

 

Figure 10. Wavelet coefficients and wavelet variance of SO2 during 2018–2023. 

As shown in Figure 11, the first dominant periods of CO concentrations in Changchun were 20 

days in 2018 and 2020, and 40 days in 2019. The first dominant periods of the time series of the CO 

concentrations were 24 days in 2021, 24 days in 2022, and 47 days in 2023. From 2018 to 2023, the 

second-most dominant periods in the time series of CO concentrations were 7, 60, 10, 26, 30, and 20 

days, respectively. 

 

Figure 11. Wavelet coefficients and wavelet variance of CO during 2018–2023. 
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The dominant periods of the time series of AQI values and pollutant concentrations were 

compared, revealing that the AQI's first and second dominant periods were very similar to those of 

PM2.5 and PM10 concentrations. A main periodic coupling phenomenon was observed, indicating that 

combined pollution caused by PM2.5 and P10 persisted in Changchun during this period. However, the 

pollution situation in 2020 was an exception. The main periodic coupling phenomenon was observed 

between the first dominant periods of the AQI time series and the concentrations of six pollutants. This 

finding indicated poor air quality in Changchun in 2020, when pollution from all six pollutants lingered. 

For the first main cycle of 25–26 days (e.g., AQI, PM₂.₅, and PM₁₀ in 2018 and 2019), an analysis 

of Changchun's meteorological data shows that this cycle is highly consistent with the local "intra-

monthly cold air activity cycle". When cold air passes through, wind speed increases and diffusion 

conditions improve, decreasing pollutant concentrations. During cold-air intervals, stable weather 

occurs more frequently, enabling pollution to accumulate, thus forming a roughly 25-day fluctuation 

cycle. 

In 2023, Changchun experienced more precipitation in summer and higher winter wind speeds, 

resulting in better meteorological diffusion conditions than in previous years. This slowed the rate of 

pollutant accumulation and extended the fluctuation cycle. Moreover, the growth in local motor vehicle 

ownership and adjustments to the industrial emission structure in 2023 also altered the emission cycles 

of gaseous pollutants such as NO₂ and CO compared to previous years. These factors manifested as a 

longer main cycle. 

In 2020, the annual average concentration of PM₂.₅ in Changchun was 42 μg/m³, the highest value 

of this indicator during the 2018–2023 period. Moreover, the number of days with good air quality 

stood at 305, accounting for 83.3% of the total monitoring days; lower than the 83.8% in 2019 and the 

levels in 2021–2023. The following three groups of factors primarily control this trend: 

1. Meteorological factors. In 2020, meteorological conditions unfavorable to pollutant dispersion 

(e.g., frequent stable weather) led to easy accumulation of pollutants over the city and hindered their 

dispersion. For example, during winter, persistent temperature inversions occurred several times. 

These inversions blocked vertical air convection, making it difficult for pollutants to rise and 

increasing the concentration of ground-level pollutants. 

2. Socioeconomic factors. Although industrial production and traffic decreased in 2020 due to the 

COVID-19 pandemic, pollutant emissions were not effectively controlled by other factors. For 

instance, some enterprises relaxed their environmental protection measures to compensate for 

production losses during the pandemic. Additionally, residents spent more time at home, increasing 

domestic energy consumption and, in turn, the levels of coal- and gas-combustion pollutants. 

Furthermore, reductions in nitrogen oxides (NOₓ, mainly NO₂) from vehicle exhaust disrupted the 

original photochemical balance, increasing ozone concentrations (rather than decreasing them) in 

certain periods and regions. 

3. Pollution control factors. While Changchun had been advancing air pollution control efforts, 

the effectiveness of some control measures in 2020 had not yet been fully realized. For example, in 

terms of dust pollution control, the progress of urban construction projects led to increased dust 

emissions. Still, the corresponding dust prevention measures failed to keep pace promptly. 

The combined effect of these adverse factors led to an abnormal decline in air quality in 2020. 

Based on the discovery of the 20–26-day main cycle of major air pollutants, this study provides a 

scientific basis for the government to formulate precise air pollution prevention and control strategies. 

First, this cycle reveals the high-frequency fluctuations in PM₁₀ and PM₂.₅ concentrations, indicating 

that a complete cycle of pollution accumulation and diffusion occurs approximately every 26 days. 

The government can establish a short-term pollution early warning mechanism based on this and 



1048 

AIMS Environmental Science  Volume 12, Issue 6, 1031–1058. 

launch emergency emission-reduction measures in advance during high-concentration periods (e.g., 

dry, cold winter weather with low wind speed), such as restricting the movement of high-emission 

vehicles and strengthening control of construction dust. 

Second, considering the positive correlation between meteorological factors (e.g., low wind speed 

and high humidity, which are prone to inversion layer formation) and urbanization rate, it is suggested 

to optimize the layout of green spaces in urban planning to improve humidity regulation capacity and 

reduce local pollution source emissions through industrial structure adjustment. In addition, sensitive 

populations can be reminded in advance to reduce outdoor activities; this can shift from a passive 

emergency mode that relies solely on current pollution levels to an active, pre-regulatory approach to 

pollution. 

Finally, this periodicity can guide environmental supervision departments in optimizing 

monitoring frequency and law enforcement intensity. For example, strengthening inspections of 

pollution sources 3–5 days before the periodic peak can transform management from "passive 

response" to "active prevention and control." The systematic implementation of these measures will 

significantly improve the timeliness and accuracy of air quality improvements and support the city's 

sustainable development. 

3.4. Recognition of air quality variation trend based on wavelet decomposition 

We further studied the periodic variation characteristics of air pollution in Changchun. The db3 

wavelets were applied to AQI and meteorological factors. Figure 12 shows the plots after the three-

layer wavelet decomposition using db3 for AQI, atmospheric pressure, wind velocity, outdoor humidity, 

and outdoor temperature. 

 

Figure 12. Three-layer wavelet decomposition diagrams: (a) AQI values; (b) atmospheric 

pressure; (c) wind velocity; (d) outdoor humidity; and (e) outdoor temperature. 

The x-axis is time (Mth). A variety of factors influence air quality variations. The db wavelet 

decomposes a complex time series consisting of components of different frequencies into subseries of 

different frequencies, including a low-frequency component, a3, and three high-frequency components, 

d1, d2, and d3. The low-frequency component a3 captures the major features of the signals, namely 
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stability and the dominant air quality trend over time. 

In signal processing based on the db3 wavelet, each symbol represents the decomposition result 

at a different scale, with specific definitions as follows: 

1. s: Approximation Coefficients 

"s" typically denotes the original, undecomposed input signal, which reflects only the overall 

variation pattern of data over long time scales. In this study, "s" refers to the original monthly AQI 

series or meteorological indicators (atmospheric pressure, humidity, wind speed, temperature). It is the 

sum of all decomposed components (d1, d2, d3, a3), i.e., s = a3 + d3 + d2 + d1. 

2. a3: Approximation Coefficients at Level 3 

It filters out all high-frequency and medium-frequency fluctuations represented by d1, d2, and d3. 

a3 mainly illustrates the overall evolution trend of AQI or meteorological indicators throughout the 

entire study period (2018–2023), such as whether AQI shows a continuous decrease, remains stable, 

or increases. 

3. d1, d2, d3: Detail Coefficients 

These correspond to the high-frequency components of the signal, reflecting short-term 

fluctuations at different scales in the 3-level decomposition. The higher the level (d3 > d2 > d1), the 

longer the fluctuation period: 

d1: Detail Coefficients at Level 1, corresponding to high-frequency fluctuations with the shortest 

period. It reflects the random changes in data over a month, such as small fluctuations in AQI caused 

by sudden pollution events (e.g., straw burning, short-term unfavorable weather). 

d2: Detail Coefficients at Level 2, corresponding to fluctuations with a medium period. It reflects 

the seasonal variation pattern of data, such as quarterly fluctuations in AQI caused by seasonal changes 

(e.g., winter heating pollution, summer rainfall purification). 

d3: Detail Coefficients at Level 3, corresponding to fluctuations with a longer period. It reflects 

changes in data over half a year, such as phased fluctuations in AQI caused by annual meteorological 

anomalies (e.g., drought or heavy rainfall). 

By observing the a3 component of AQI, we can determine the change trend of Changchun's 

overall air quality over the 6-year time scale. For example, if the AQI a3 curve shows a downward 

fluctuation, it indicates the effectiveness of air pollution control policies in Changchun during this 

period. We can identify the impact scales of different meteorological factors by comparing the 

consistency of fluctuations between the high-frequency components (d1, d2, and d3) of meteorological 

indicators and AQI. This more accurately reveals the main meteorological drivers of AQI changes at 

different time scales, avoiding confusion between short-term fluctuations and long-term trends. 

The AQI values of Changchun were higher in winter and lower in summer across the years from 

January 2018 to December 2023. There were two peak seasons of air pollution within a year, one in 

spring and the other in winter. Air pollution is more serious in winter than in spring. This phenomenon 

can be attributed to Changchun's distinctive pollution-emission characteristics and the influence of 

meteorological factors during this period. Changchun's heating period lasts from winter to spring the 

next year, and coal burning results in massive production of suspended particulate matter, reducing air 

quality. The above finding coincided with the correlation analysis between air pollutants and 

meteorological factors. As for interannual variations, the a3 component generally showed a decreasing 

trend, indicating that Changchun's air quality was much better in 2023 than in other years. Changchun 

has improved in urban air quality in recent years. 

3.5. AQI prediction model elaboration 
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The AQI values were predicted for Changchun using best-subset regression, which selects the 

most effective subset of independent variables from the set influencing the dependent variable, 

following specific criteria. A regression equation was established using the selected independent 

variables, and the model with the highest coefficient of determination was considered the best subset 

regression model [40]. 

We found that if air pollutant emissions were very high the previous year, air quality the following 

year was more likely to worsen without effective emissions-reduction measures. Since meteorological 

factors significantly impacted short-term pollutant concentrations and their interannual changes, the 

distributions and concentrations of the pollutants in the following year would be affected by 

meteorological factors, as determined by the concentrations of these pollutants in the preceding 

year [41–44]. The predictive models for AQI, influenced by two meteorological factors, were built 

using OLS regression. The first model used data on current-year meteorological factors to predict 

future AQI values; the second model used current-year meteorological factors and the previous year's 

AQI values to predict future AQI values. The coefficient of determination assessed the goodness-of-

fit of the two models, and the optimal model was determined. The core purpose of including the AQI 

of the same period in the previous year as an independent variable in this study is to proactively capture 

and control the "intertemporal dependence effect of air quality," rather than enabling temporal 

autocorrelation to persist. 

Logically, short-term air quality (AQI) exhibits a significant "path dependence" characteristic. 

Specifically, the pollutant stock from the previous year and diffusion foundations (e.g., the cumulative 

effect of pollutants under a long-term, stable meteorological background, which exerts intertemporal 

impacts) are important antecedent factors influencing the current year's AQI. This belongs to an 

"observable and explicit temporal correlation," rather than "unobserved and implicit temporal 

autocorrelation omitted by the model." 

From the perspective of model design, if this variable is not included, the "impact of the previous 

year’s AQI on the current year’s AQI" will be "omitted" and transferred to the residuals, which would 

instead lead to "residual autocorrelation" (i.e., the residuals implicitly contain unexplained temporal 

dependence). By explicitly incorporating it as an independent variable, we essentially convert this 

"implicit temporal correlation" into an "explicit and quantifiable explanatory variable," which is 

fundamentally aimed at "eliminating potential temporal autocorrelation in the residuals" rather than 

"introducing" it. 

To verify that "no residual autocorrelation occurs in the model after adding the previous year’s 

AQI," we conducted the Durbin-Watson (D-W) test. For the "basic model containing only 

meteorological variables," the D-W value is 2.107; for the "extended model with the previous year’s 

AQI added," the D-W value increases to 2.057 (close to the ideal value of 2). The above results indicate 

that adding the previous year's AQI not only does not introduce temporal autocorrelation but also 

improves the model's rationality and prediction accuracy by "making the temporal dependence 

explicit." The results using the two Regression models are listed in Tables 2 and 3. 
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Table 2. The regression results of predicting future AQI values using current-year 

meteorological factors (monthly data). 

 

Unstandardized 

coefficients 

Standardized 

coefficients 
t p 

Collinearity 

diagnosis 

B Standard 

error 

Beta VIF Tolerance 

Constant 534.329 553.196 - 0.966 0.366 - - 

Atmospheric pressure 
-0.480 0.563 -0.133 

-

0.852 
0.422 1.221 0.819 

Air temperature 0.142 0.248 0.090 0.571 0.586 1.252 0.799 

Relative atmospheric 

humidity 
-0.907 0.310 -0.559 

-

2.927 
0.022* 1.838 0.544 

Mean wind velocity 22.124 9.063 0.471 2.441 0.045* 1.880 0.532 

R 2 0.861 

Adjusted R 2 0.782 

F F (4,7) =10.865, p =0.004 

D-W Statistic 2.107 

CI 95% 

Note：Dependent variable = AQI 

* P<0.05 ** P <0.01 

 

In Table 2, atmospheric pressure (hPa), air temperature, relative atmospheric humidity, and mean 

wind velocity were treated as independent variables, and AQI was the dependent variable. A regression 

analysis was performed, correspondingly, and the model was built as follows:  

Y1(AQI) = 534.329-0.480 X1 + 0.142X2-0.907X3 + 22.124 X4       (4) 

where Y1(AQI) is the AQI value to be predicted for the target year; X1 is atmospheric pressure((hPa)); X2 

is air temperature(℃); X3 is relative atmospheric humidity (%); and X4 is mean wind velocity(m/s). 

The model's R2 was 0.861, indicating that atmospheric pressure (hPa), air temperature, relative 

atmospheric humidity, and mean wind velocity explained 86.1% of the variation in AQI. The model 

passed the F-test (F=10.865, p=0.004<0.05). The mean wind velocity significantly positively 

influenced AQI, and relative atmospheric humidity significantly negatively influenced AQI. 

With a superposition of the AQI values of the previous year, that is, by treating the AQI of the 

previous year, atmospheric pressure (hPa), air temperature, relative atmospheric humidity, and mean 

wind velocity of the previous year as independent variables. The results of the regression analysis are 

listed in Table 3. 
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Table 3. The regression results of predicting future AQI values using current-year 

meteorological factors and previous-year AQI values (monthly data). 

 

Unstandardized 

coefficients 

Standardized 

coefficients 
t p 

Collinearity 

diagnosis 

B 
Standard 

error 
Beta 

VIF 
Tolerance 

Constant 471.809 516.688 - 0.913 0.396 - - 

AQI0 0.555 0.248 0.439 2.235 0.067 2.523 0.396 

Atmospheric pressure -0.401 0.527 -0.120 
-

0.761 
0.476 1.632 0.613 

Air temperature 0.738 0.289 0.447 2.551 0.043* 2.005 0.499 

Relative atmospheric 

humidity 
-0.941 0.420 -0.737 

-

3.671 
0.010* 2.640 0.379 

Mean wind velocity 13.258 7.551 0.273 1.756 0.130 1.587 0.630 

R 2 0.908 

Adjusted R 2 0.832 

F F (5,6) =11.885, p=0.005 

D-W Statistic 2.057 

CI 95% 

Note: Dependent variable = AQI; AQI0 is the AQI value of the year preceding the target year 

* P <0.05 ** P <0.01 

 

The constructed model can be expressed as follows:  

Y2(AQI)=471.809 + 0.555 X5 -0.401 X1 + 0.738 X2 -0.941 X3 + 13.258 X4 (5) 

where Y2(AQI) is the AQI value prediction for the target year; X1 is atmospheric pressure (hPa); X2 is air 

temperature (℃); X3 is relative atmospheric humidity (%); X4 is mean wind velocity (m/s); and X5 is 

the AQI value of the year preceding the target year. 

The R2 of the model was 0.908, indicating that AQI of the previous year, atmospheric pressure 

(hPa), air temperature, relative atmospheric humidity, and mean wind velocity explained 90.8% of the 

variations of AQI. The model passed the F-test (F=11.885, p=0.005<0.05). This indicated that air 

temperature significantly positively influenced AQI, and relative atmospheric humidity significantly 

negatively influenced AQI. 

The 1/VIF ratio was consistently above 0.2 for both models, indicating the absence of 

multicollinearity. As shown in Figure 13, the residuals from the two models were randomly distributed 

around the line at zero on the Y-axis.  
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Figure13. Random distribution of residual values via different models: (a) Y1(AQI; and (b) 

Y2(AQI) 

As shown in the quantile-quantile plot in Figure 14, the residuals approximately followed a normal 

distribution, satisfying the assumption of normal errors in the multiple linear regression model. Thus, 

the proposed model was reliable. 

 

Figure 14. Normal distribution of residual values via different models: (a) Y1(AQI; (b) Y2(AQI). 

Based on the above analysis, the predictive equation's R2 correlation coefficient increased after 

superimposing AQI values from previous years. This predictive equation was more accurate in the 

short-term AQI prediction in Changchun. 

4. Conclusions and limitations 

4.1. Conclusions 

The results obtained in this study made it possible to draw the following conclusions: 

1. Concentrations of six air pollutants (PM2.5, PM10, NO2, O3, SO2, and CO) and short-term AQI 

in nine administrative regions of Changchun, China, displayed distinct seasonal patterns from 2018 to 

2023. Except for the daily mean O3 concentration, which showed a unimodal distribution, the daily 

mean concentrations of all other pollutants peaked in winter and spring, then decreased afterward. 
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2. The correlation analysis revealed that some socioeconomic and meteorological factors 

significantly correlated with pollutant concentrations. The urbanization rate showed a significant 

positive correlation with PM2.5 concentration; urban green coverage showed a significant negative 

correlation with NO2 and CO concentrations. Air temperature had a significant positive correlation 

with both O3 and NO2 concentrations. Relative atmospheric humidity significantly negatively 

correlated with PM2.5, PM10, and SO2 concentrations. Wind velocity had a significant negative 

correlation with PM2.5 and PM10 concentrations. The above driving factors controlled the variation 

characteristics of air pollution in the area under study. 

3. The wavelet transform analysis revealed the main periodic coupling phenomenon between the 

first and the second dominant periods of the time series of AQI value and PM2.5 and PM10 

concentrations, respectively. The main periodic coupling phenomenon was identified between the time 

series of AQI values and those of six pollutants in 2020, indicating that combined pollution was a 

major feature of atmospheric pollution in Changchun. The low-frequency components of wavelet 

signals were attenuated over time, indicating a significant improvement in air quality in Changchun. 

The main periodic coupling indicates that the same type of periodic driving factors regulates multiple 

air pollutants. This characteristic can directly guide coordinated control of pollution sources, avoiding 

a focus on single-pollutant control while ignoring coordinated emissions from other pollutants, thereby 

improving control efficiency. Moreover, the coordinated early warning mechanism for multiple 

pollutants can be optimized based on the consistent rhythm of the coupling period.  

The regression analysis results indicate that the regression equation incorporating the AQI value of the 

previous year helps optimize the short-term air quality prediction results. 

4.2. Limitations 

The above conclusions are based on the air quality analysis of Changchun from 2018 to 2023. 

However, this study has the following three major limitations. 

(1) Limitation in research time scope: The data of this study spans 6 years (2018–2023), which 

can reflect the variation characteristics of air quality and short-term prediction rules during this period. 

However, it does not cover the impacts of long-term driving factors, such as climate cycles over longer 

time scales (e.g., 10 years or more) and in-depth adjustments to the industrial structure. The long-term 

applicability of the conclusions needs further verification. 

(2) Lack of emission inventory data: We do not include Changchun's pollution source emission 

inventory data and only conducts analysis based on monitored concentration data, meteorological data, 

and socioeconomic data. It is difficult to accurately quantify the contribution ratio of different pollution 

sources (such as industry, transportation, and dust) to air quality, which limits the depth of analysis on 

the causes of pollution. 

(3) Lack of verification with external datasets: The short-term AQI prediction equation 

constructed in this study is only fitted and verified based on internal data from 9 monitoring stations 

in Changchun. It has not been cross-validated using independent external datasets (e.g., monitoring 

data from surrounding cities and air quality data from third-party platforms). The equation's external 

applicability and prediction stability need further improvement. 

The follow-up study envisages mitigating these limitations as follows: 

The research period will be extended, and data with longer time series can be included to reveal 

the long-term evolution rules of air quality and its correlation with macro-climatic driving factors. 

Furthermore, high-resolution spatiotemporal emission inventories (e.g., the MEIC inventory) can be 

integrated, and environmental concentration data can be combined with source emission data to more 
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accurately assess the contribution rates of various pollution sources, thereby providing a direct 

scientific basis for source-specific control. 

In the future, researchers can further explore the nonlinear, synergistic, and antagonistic effects 

among pollutants, especially in the context of composite pollution. In addition, advanced data mining 

technologies, such as machine learning (e.g., random forest, neural networks), can be used to handle 

complex nonlinear relationships among variables, or numerical simulations can be conducted using 

chemical transport models. These efforts aim to build a more accurate prediction and source-tracking 

system and, eventually, shift from statistical correlation to mechanism-based cognition. 
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