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Abstract: The deployment of real-time sensor calibration models for air pollution monitoring on
resource-constrained Industrial Internet of Things (IIoT) edge devices presents significant challenges
due to the computational complexity and memory requirements of deep learning models. This paper
addressed these challenges by proposing a time-series-generative approach that integrated model
quantization, generative artificial intelligence (AI), and temporal deep learning architectures to ensure
efficient deployment. Specifically, we introduced a TimeGAN-augmented temporal fusion transformer
(TFT) model optimized for edge devices. By leveraging model quantization, the approach reduces
the memory footprint and computational demands of the model without compromising calibration
accuracy. Furthermore, the integration of generative adversarial networks (GANs) enhances the
robustness of the model by generating high-quality synthetic time-series data, compensating for sparse
or noisy sensor readings. This ability to generate synthetic data mirrors the real sensor trends, ensuring
reliable model performance even in data-limited environments. A comprehensive evaluation of the
proposed model, comparing its performance against both float and quantized versions, demonstrates
the effectiveness of the TimeGAN-augmented quantized TFT. This model achieves a significant 88%
reduction in size (from 800.04 KB to 97.34 KB) while maintaining excellent predictive performance,
evidenced by a mean squared error (MSE) of 0.3212 and a mean absolute error (MAE) of 0.4375.
Additionally, the TimeGAN-augmented Float TFT model emerges as a strong contender for real-time
applications, offering an optimal balance between inference speed and accuracy, with a rapid inference
time of 23.4 ms, making it ideal for real-time pollution monitoring.
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1. Introduction

Air quality monitoring has become a critical global concern due to its significant environmental
and health implications, with polluted air affecting both communities and industries alike [1].
Traditional air pollution monitoring methods, such as stationary reference stations, have provided
accurate measurements but are limited by high costs, restricted coverage, and an inability to capture
spatiotemporal variations in air quality, which fluctuate rapidly across different locations and times [2].

To overcome these limitations, low-cost wireless sensor networks (WSNs) have been developed
as an affordable and scalable solution for real-time air pollution monitoring. These sensors can be
deployed in large numbers across urban and industrial environments, providing improved coverage and
richer data. However, the accuracy of data collected by these low-cost sensors can be compromised
due to factors such as signal interference, environmental noise, and calibration errors [3, 4].

Sensor calibration has thus become a key strategy to ensure the reliability and accuracy of data
from low-cost sensors. Calibration techniques align the raw measurements from these sensors with the
true values observed by high-precision reference stations [5]. Typically, calibration involves both pre-
deployment adjustments to fine-tune the sensors and post-deployment maintenance to ensure sustained
accuracy over time. Given the challenges inherent in manual calibration, automatic techniques such
as blind and non-blind calibration methods have been developed to improve the reliability of sensor
networks for large-scale deployments [6].

The performance of low-cost sensors in WSNs is strongly influenced by sensor type, environmental
variability, and deployment conditions. For instance, metal-oxide sensors, though affordable and
compact, are particularly susceptible to environmental cross-sensitivities, such as fluctuations in
temperature and humidity. These sensors may also suffer from signal drift and aging effects over
time. Deployment in uncontrolled outdoor environments further exacerbates these issues, introducing
noise from factors such as ambient particulate matter, precipitation, or inconsistent maintenance. These
challenges can lead to measurement biases and reduced sensor reliability [7].

As air pollution monitoring expands, there is growing demand for real-time sensor calibration in
Industrial Internet of Things (IIoT) environments, where timely, accurate data is crucial for informed
decision-making [8]. Traditional sensor calibration methods, reliant on centralized data processing,
are increasingly impractical due to the massive data volume and need for rapid processing. Edge
computing offers a solution by processing data closer to the source, allowing real-time calibration on
edge devices. This reduces the need for large data transfers, minimizes latency, and enhances privacy
and security, thus improving air pollution monitoring [9].

However, deploying calibration algorithms on resource-constrained edge devices like IIoT sensors
or smartphones is challenging due to limitations in memory, processing power, and energy. Research
is focused on optimizing deep learning models for edge deployment. Idrissi et al. [10] proposed
lightweight models for intrusion detection in IoT, while Singh et al. [9] developed a hybrid framework
to improve real-time security in mobile edge computing, addressing the need for efficient model
deployment in resource-limited environments.

Yandouzi et al. demonstrated the value of edge computing for real-time applications by using
drones and lightweight deep learning models for forest fire detection [11]. Similarly, Abusitta et al.
showed how deep learning enhances anomaly detection in IoT systems, improving system reliability
[12]. Further work by Aversano et al. [13] and Ahmad et al. [14] emphasized optimizing models
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for edge efficiency. Konaite et al. [15] and Sharma et al. [16] expanded these findings to various
domains, confirming the broader potential of deep learning on edge devices. To overcome edge
device constraints, techniques such as model quantization, weight pruning, and knowledge distillation
have been employed to reduce model size and computational load without significantly sacrificing
performance [17–19]. Among these, quantization is especially impactful—reducing weight and
activation precision lowers memory usage, speeds up inference, and decreases energy consumption,
making it ideal for real-time sensor calibration on edge devices [17]. Although quantization may
introduce slight accuracy loss, careful tuning can preserve model performance. Tools like TensorFlow
Lite enable the deployment of such optimized models on resource-limited devices, supporting accurate
real-time calibration [20]. However, temporal models like recurrent neural networks (RNNs) and long
short-term memory (LSTM), while effective at modeling time-series data, remain challenging to deploy
on edge devices due to their high computational and memory demands [21].

A further challenge in IIoT applications is the issue of insufficient or poor-quality data, which
can undermine the accuracy of sensor calibration. Generative AI, especially generative adversarial
networks (GANs), offers a promising solution by generating synthetic time-series data that mimics
real-world sensor readings. This enables data augmentation when real-world sensor data is sparse,
noisy, or of low quality [22]. By augmenting training datasets with synthetic data, GANs enhance the
robustness of calibration models, enabling them to make accurate adjustments even in the presence of
unreliable or incomplete data.

This work proposes a TimeGAN-augmented temporal fusion transformer (TFT) model optimized
for IIoT edge deployment through quantization. The proposed approach is compared against other
temporal models, using both float and quantized versions of the model for calibration tasks. By pushing
intelligence to the edge, these temporal models enhance the efficiency of environmental monitoring,
making air quality monitoring systems more sustainable and responsive. Notably, the TimeGAN-
augmented Float TFT strikes a balance between inference speed and accuracy, achieving an inference
time of just 23.4 ms, making it ideal for real-time decision-making in pollution control.

The paper is structured as follows: Section 2 reviews related work on sensor calibration, time-
series models, and edge deployment optimization techniques. Section 3 details the materials, datasets,
and methods, including the TimeGAN-augmented TFT model and quantization strategies for IIoT
edge deployment. Section 4 presents results, evaluating TimeGAN-generated data and comparing
the proposed model’s performance with other temporal models in terms of accuracy, inference time,
and resource efficiency. Finally, Section 5 concludes with a summary of findings and future work
directions.

2. Related works

Air quality prediction is crucial for addressing environmental and public health concerns, especially
in IIoT and edge computing contexts. Various studies have explored machine learning (ML) techniques
and edge devices to enhance air quality monitoring systems, addressing challenges like limited
resources, sparse data, and real-time prediction needs.

In the study by Sun C et al. [21], the authors propose a hybrid methodology combining multi-
factor LSTM, deep reinforcement learning (DRL), and optimal stopping theory (OST) for efficient
task offloading in edge computing. Data is acquired from multiple monitoring stations, followed by
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preprocessing steps like normalization and feature selection using the Boruta algorithm [23]. While
the methodology is robust, challenges arise from the variability and sparsity of data across stations,
which can impact data quality. Additionally, while OST-based K-best selection aids task distribution,
network stability concerns in remote or congested areas limit its efficiency. Furthermore, while the
LSTM model with attention mechanisms effectively captures temporal dependencies and addresses
missing data, its computational demands pose scalability issues, particularly on resource-constrained
edge devices.

Moursi et al. introduced an IoT-enabled system for real-time PM2.5 concentration prediction,
combining edge devices and cloud computing [24]. Using a nonlinear auto regression with eXogenous
input (NARX) framework, the system integrates past PM2.5 data with meteorological inputs to predict
the next hour’s air quality. While effective for short-term pollution events, the one-hour forecasting
horizon limits its ability to capture long-term trends, which are crucial for sustainable air quality
management. Additionally, performance tests on a PC and Raspberry Pi highlight the ongoing
challenge of balancing computational demands with real-time constraints on edge devices.

A group of researchers developed a cost-effective AI-IoT system for air quality monitoring aimed at
individuals with respiratory problems [25]. The system uses low-cost wireless sensor nodes based on
ESP32 microcontrollers and ZPHS01B air quality modules to measure pollutants and environmental
factors. While the system is cost-efficient and accessible, the trade-off in sensor accuracy remains a
significant challenge. The LSTM model used for 24-hour forecasting performs well with time-series
data but faces computational challenges for deployment on resource-constrained IoT devices. The
dataset, covering just two months, may limit the model’s ability to account for seasonal variations
or extreme pollution events. Furthermore, LSTM’s computational demands, especially for long-
term forecasting or large datasets, impose burdens on edge devices, potentially hindering real-time
predictions. Transformer-based models [26], known for their ability to handle long-range dependencies
in time-series data, could offer a more promising solution. These models could be optimized for edge
deployment using techniques such as model pruning or knowledge distillation, which would reduce
computational requirements.

Gong et al. proposed a hybrid predictive maintenance model combining convolutional neural
networks for spatial feature extraction and LSTM networks for sequential data analysis, aimed
at enhancing predictive maintenance for wind turbines [27]. While effective, the model’s high
computational demands hinder its deployment in resource-constrained edge environments. Similarly,
Aggarwal et al. developed a hybrid P-LSTM model for urban air quality forecasting, integrating
LSTM with particle swarm optimization (PSO) to optimize hyperparameters [28]. Despite its improved
performance, the combined complexity of LSTM and PSO results in increased computational burden,
limiting its feasibility for real-time urban air quality prediction on edge devices.

Wardana et al. optimized a hybrid CNN-LSTM model for edge-based air quality forecasting,
using post-training quantization techniques to reduce model size and improve execution on low-
power devices like Raspberry Pi boards [29]. While this optimization enabled efficient operation
on resource-constrained devices, the trade-off between model size reduction and accuracy became
apparent, particularly with full integer quantization, which resulted in some loss of predictive precision.
Although quantization improved execution speed and reduced model size, it raised concerns about
sacrificing accuracy for real-time air quality predictions.

In a similar vein, Hu et al. introduced FedDeep, a federated deep learning approach for multi-
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urban PM2.5 forecasting, which utilizes edge computing to process local data and reduce cloud
dependency [30]. By incorporating a novel gating fusion layer to adapt weather data for PM2.5
predictions, FedDeep enhances accuracy and alleviates computational pressure on cloud servers.
However, while the federated architecture offers advantages in data privacy and reduced cloud reliance,
it introduces complexity in coordination and communication between edge servers and the cloud,
which can challenge scalability and operational efficiency.

Koziel et al. proposed a machine learning-based calibration method for low-cost nitrogen
dioxide sensors using neural network (NN) surrogates, specifically multi-layer perceptrons, to predict
correlation coefficients from environmental parameters [31]. Although the approach demonstrated
high calibration efficiency with a correlation coefficient over 0.9 and RMSE below 3.2 µg/m3, its
complexity, requiring multiple sensors and advanced techniques, limits scalability, especially in
resource-limited or large-scale deployments.

Yu et al. introduced AirNet, a dual encoder architecture that maps the calibration task into
a sequence-to-point format, utilizing data from both mobile and static stations [32]. While it
outperformed several baseline approaches in reducing forecasting errors and improving accuracy,
the increased complexity, incorporating gated recurrent units (GRU), convolutional layers, and a
social-based guidance mechanism, raises concerns about computational intensity. Extended training
times and high computational requirements make it unsuitable for real-time applications or resource-
constrained environments.

In the study by Yar A et al. [33], the authors explored the use of graph convolutional betworks
(GCN) and extreme learning machines (ELM) for self-calibration in large-scale WSNs. GCN achieved
95% accuracy by capturing spatial and temporal features, while ELM, with faster learning times
(109 seconds), offered lower accuracy (70%). This illustrates the trade-off between accuracy and
computational efficiency in environmental monitoring. Schmitz et al. compared multiple linear
regression and random forest (RF) models for calibrating low-cost metal oxide gas-phase sensors [34].
Both models achieved R2 values above 0.8, but RF outperformed linear regression by capturing non-
linear relationships. However, RF’s increased complexity poses computational challenges, particularly
for real-time or resource-constrained applications. Wang et al. applied RF to enhance calibration
in low-cost air quality monitoring systems, achieving R2 values between 0.70 and 0.99 for multiple
pollutants [35]. While the model demonstrates high accuracy, its computational intensity makes it
impractical for large-scale, real-time deployment, especially in resource-limited environments. In the
study by Rahardja U et al. [36], the authors proposed AIKU, a transfer learning and meta-learning-
based approach for calibrating low-cost PM2.5 sensors. AIKU outperformed traditional methods by
enabling rapid adaptation to new sensor locations with minimal training data. However, it remains
computationally demanding, with longer training times than simpler models.

A different approach, GenCast, a probabilistic weather forecasting model, significantly
outperformed traditional ensemble systems, generating sharper, more realistic weather trajectories in
about 8 minutes [37]. However, GenCast’s high computational demands raise scalability concerns,
particularly for real-time forecasting in resource-limited settings, emphasizing the need for models
that balance high predictive accuracy with computational efficiency. Li et al. introduced the scalable
ensemble envelope diffusion sampler (SEEDS), a deep generative model for generating large weather
forecast ensembles quickly [38]. While SEEDS outperformed operational ensemble forecasts in
reliability and skill, its significant computational requirements limit its applicability in environments
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with limited resources.
The reviewed literature emphasizes advancements in ML for low-cost air quality monitoring

and weather forecasting, highlighting the trade-offs between prediction accuracy and computational
efficiency. Techniques such as neural networks [31] and transfer learning [36] deliver high accuracy
but are computationally demanding, which limits their deployment in real-time, resource-constrained
environments. Models like GCN [33] and generative AI systems [37] show promise, but their
substantial computational requirements hinder their practical use in edge applications within the IIoT.
Furthermore, many generative models struggle with reconstruction loss, affecting their generalization
ability in dynamic and noisy environments. These challenges emphasize the need for lightweight,
scalable models that strike a balance between accuracy and operational feasibility, particularly for
edge-based IIoT air quality systems that demand real-time processing and low power consumption.

3. Materials and method

This section presents the proposed approach for calibrating air pollution sensor networks, which
includes the TimeGAN TFT model and its deployment on edge devices for the IIoT.

3.1. Time generative adversarial network (TimeGAN)

In this section, we apply the TimeGAN to the task of generating synthetic air pollution data for
sensor calibration. The TimeGAN was selected due to the temporal nature of sensor readings, as it
uniquely combines adversarial training with explicit temporal supervision. This enables the model
to preserve both the time-dependent structure and the statistical properties of multivariate sensor
data. Unlike conventional GANs, the TimeGAN captures long-term dependencies through recurrent
architectures, ensuring the generation of realistic and temporally coherent sequences, an essential
requirement for accurate calibration. As a result, it is particularly effective in replicating the dynamic
behavior of environmental data, outperforming other generative models in terms of both fidelity and
downstream utility.

Figure 1 illustrates the architecture of the TimeGAN model, which consists of several key
components that work together to model and replicate the complex patterns observed in time series
data, especially those associated with fluctuations in air quality measurements. The core of the model
consists of multiple modules, each designed to handle a specific aspect of the data generation task.
The Embedder module, built using an LSTM network, processes the input time series and transforms it
into a latent space representation, capturing the temporal dependencies within the data. This embedded
representation is then passed to the Generator, which also uses LSTM layers to generate synthetic latent
sequences. The Generator’s goal is to learn the underlying distribution of the input data and generate
new time series sequences that closely resemble the real data. The Recovery module, another LSTM-
based component, is responsible for transforming the generated latent representations back into the
original feature space, producing synthetic time series data that mirrors the original measurements [39].
Finally, the Discriminator module evaluates the generated sequences, distinguishing between real and
synthetic data by learning to identify which sequences belong to the original dataset. During the
training process, the model is optimized through a combination of reconstruction loss, adversarial
loss, and other specialized losses. The reconstruction loss ensures that the generated time series are
as similar as possible to the original data, while the adversarial loss helps the model distinguish real

AIMS Environmental Science Volume 12, Issue 3, 526–556.



531

Figure 1. The TimeGAN architecture for generating synthetic air pollution data for sensor
calibration. The model consists of an Embedder that encodes time series into a latent
space, a Generator that creates synthetic sequences, a Recovery module that reconstructs
the generated data, and a Discriminator that distinguishes real from synthetic data.

from fake data through the interaction between the Generator and the Discriminator. This interplay
encourages the Generator to improve its data generation capabilities and produce sequences that are
increasingly difficult for the Discriminator to differentiate from real data. These losses are minimized
over several epochs, gradually refining the model’s ability to generate synthetic time series that
are indistinguishable from real sensor data. The algorithm for training the TimeGAN, detailed in
Algorithm 1, outlines the step-by-step process of data preprocessing, model initialization, and training.
The algorithm emphasizes the iterative nature of the training process, where the model is optimized
over multiple epochs. After training, the Generator and Recovery modules work together to produce
synthetic time series that are then denormalized to match the scale of the original data. This approach
preserves the crucial temporal and structural characteristics of the original air pollution measurements,
ensuring that the generated data can be used for accurate sensor calibration and effective air quality
monitoring.

3.2. Temporal fusion transformer model

The TFT module combines several advanced components to improve the predictive performance of
the calibration of air pollution monitoring as given in Figure 2. Its different components are explained
below.
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Algorithm 1 TimeGAN for Time Series Data Generation
Input: Time series data D, Sequence length L, Samples N, Epochs E, Batch size B, Hidden dimension
H, Latent dimension Z, Learning rate α
Output: Synthetic time series data S

1: Preprocessing:
2: Normalize D and create sequences of length L
3: Model Initialization:
4: Initialize models: Embedder E, Recovery R, Generator G, Discriminator D
5: Define loss functions LMSE and LBCE

6: Training:
7: for epoch = 1 to E do
8: for each batch of size B from D do
9: Step 1: Reconstruction Loss

10: H ← E(batch) ▷ Encode batch
11: B̂← R(H) ▷ Reconstruct batch
12: Compute Lrecon = LMSE(B̂, batch)
13: Update E and R using Lrecon

14: Step 2: Generator Loss
15: Z ∼ N(0, 1) ▷ Generate latent noise
16: H′ ← G(Z) ▷ Generate hidden states
17: B̂′ ← R(H′) ▷ Recover synthetic data
18: Compute Lgen = LMSE(B̂′, batch)
19: Update G using Lgen

20: Step 3: Discriminator Loss
21: Compute Ldisc using H and H′

22: Update D using Ldisc

23: end for
24: end for
25: Synthetic Data Generation:
26: Sample Z ∼ N(0, 1)
27: Compute H′ ← G(Z) and S ← R(H′)
28: Denormalize S to the original scale
29: return S

3.2.1. Gated residual networks

The Gated Residual Network (GRN) is a core building block in TFT, which allows the model to
perform adaptive non-linear transformations. The GRN enables the model to decide which parts of
the input should be transformed, making it flexible for various types of data [40]. The GRN applies
a residual connection combined with gating mechanisms. Specifically, for a given feature x, and an
optional context vector c (static metadata or context), the GRN is computed as:

GRNω(x, c) = LayerNorm(x + GLUω(η1)) (1)
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where the output of the GRN is the result of a gated linear unit (GLU), applied to a transformation
of the input as given in two steps:

η1 = W1,ωη2 + b1,ω (2)

where η2 is an intermediate result computed as:

η2 = ELU(W2,ωa +W3,ωc + b2,ω) (3)

The exponential linear unit (ELU) is the activation function, which introduces non-linearity into the
transformation in the first step. W2,ω and W3,ω are learned weight matrices for the input data x and the
context vector c, respectively, while b2,ω is a bias term.

The GLU function applies a non-linearity to the intermediate result η1. The GLU operation is
expressed as:

GLUω(γ) = σ(W4,ωγ + b4,ω) ⊙ (W5,ωγ + b5,ω) (4)

where σ is the sigmoid activation, and ⊙ denotes element-wise multiplication. The GLU controls
the extent of non-linearity applied to the input data.

3.2.2. Variable selection network

The variable selection network (VSN) is responsible for identifying and selecting the most relevant
input variables at each time step. By focusing on the most important features, it helps the model
minimize the influence of irrelevant or noisy variables, thereby enhancing overall performance.

At each time step t, the variable selection weight vχ(t) for each variable in Xcombined, derived from
Xreal and Xsynthetic, is computed as:

vχ(t) = Softmax(GRNv(xt, cs)) (5)

where xt denotes the transformed input features for all variables at time t, with x j
t representing the

feature corresponding to the j-th variable. The static context vector cs contains additional metadata or
fixed information. The Softmax function normalizes the weights across all variables at time t, ensuring
the model focuses on the most relevant ones. Each feature x is processed independently by its own
GRN:

x̃(t) = GRN((x(t)) (6)

This transformation allows each feature to be processed in a way that emphasizes its most important
aspects. The transformed features are then weighted by their corresponding weights:

x̃(t) =
mχ∑
j=1

vχ, j(t)x̃ j(t) (7)

This weighted sum helps the model focus on the most relevant variables while reducing the effect
of irrelevant features.
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3.2.3. Multi-head attention mechanism in TFT

The attention mechanism computes the output as a weighted sum of the values V , where the weights
are determined by the similarity between the query matrix Q and the key matrix K. This mechanism
enables the model to selectively focus on the most relevant parts of the time series input sequence by
evaluating the degree of similarity between the query and each part of the sequence, thereby allocating
attention dynamically. The model learns to emphasize the most important features, which enhances its
ability to capture long-range dependencies within the data. The output of the attention mechanism is
given by:

Attention(Q,K,V) = A(Q,K)V (8)

Here, A(Q,K) represents the attention function, which computes the attention scores based on the
relationship between the query and key matrices. This function is implemented through the scaled
dot-product attention mechanism, formulated as:

A(Q,K) = Softmax
(

QKT

√
dattn

)
(9)

In this context, Q is the query matrix, which encodes the time series features at the current time
step that the model is attending to. The key matrix K represents the various parts of the time series
input sequence that might be relevant to the current query. The value matrix V , in turn, contains
the actual information associated with each corresponding key. By calculating the similarity between
the query and key, and normalizing the resulting scores, the attention mechanism facilitates a weighted
aggregation of values from the most relevant parts of the sequence, thus improving the model’s capacity
to capture meaningful temporal relationships.

The parameter dattn denotes the dimension of the attention vectors, and the scaling factor QKT
√

dattn
plays a crucial role in stabilizing the model’s training process by normalizing the dot product. This
normalization ensures that the attention scores remain within a manageable range and helps prevent
the gradients from becoming excessively large. After computing the scaled dot product, the Softmax
function normalizes the attention scores into a probability distribution, ensuring they sum to one.

To capture multiple aspects of the time series data, the multi-head attention mechanism splits the
attention process into mH parallel heads. Each attention head captures different subspaces of the input
sequence, allowing the model to learn richer representations of the time series features. The multi-head
attention is computed as:

MultiHead(Q,K,V) = [H1, . . . ,Hm]WH (10)

where each head Hh computes attention as:

Hh = Attention(QW (h)
Q ,KW (h)

K ,VW (h)
V ) (11)

In this case, W (h)
Q ,W (h)

K ,W (h)
V are learned weight matrices for each head, which allow the model to

capture different aspects of the time series data at each attention head. The final output of the multi-
head attention mechanism is obtained by applying a linear transformation to the concatenated heads:
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MultiHead(Q,K,V) =
1

mH

mH∑
h=1

Attention(QW (h)
Q ,KW (h)

K ,VW (h)
V ) (12)

This approach allows the model to focus on different aspects of the time series data, capturing
long-term dependencies across different time steps while preserving interpretability.

3.2.4. Static covariate encoders

In contrast with other time-series forecasting architectures, the TFT integrates information from
static metadata, using separate GRN encoders to produce four different context vectors, c1, c2, c3, and
c4. These context vectors are given as input to the temporal fusion decoder through GRNs. Specifically,
this includes contexts for temporal variable section c1, locally processed temporal features c2, c3, and
enriched temporal features with static information c4.

3.2.5. Temporal fusion decoder

The temporal fusion decoder combines the outputs from previous layers to model temporal
dynamics and generate final predictions. It first applies a sequence-to-sequence layer to capture the
local context, as shown in the equation:

ŷ(t, n) = LayerNorm(xt + GLUθ(φ(t, n))) (13)

Here, ŷ(t, n) is the output at time step t for the n-th feature. xt is the raw input time series
data at time t, while φ(t, n) is the transformed feature at time t for the n-th variable. The GLU,
GLUφ(φ(t, n)), modulates the importance of different parts of the transformed feature. Layer
normalization, LayerNorm(·), is applied to the sum of xt and the GLU-transformed feature to stabilize
training and ensure consistent input distributions. This operation helps the model capture short-term
dependencies in the data. The temporal features are then enhanced with static metadata by using a
GRN, as shown in the equation:

θ(t, n) = GRNθ(ŷ(t, n), c2) (14)

In this expression, θ(t, n) represents the enriched feature at time step t for the n-th variable. ξ̃(t, n)
is the transformed temporal feature, and c2 is the static context vector, which contains fixed, non-time-
varying information about the data. The GRN helps integrate these static features with the dynamic
temporal data, providing the model with additional context to improve the accuracy and interpretability
of the predictions.

3.2.6. Self-attention and feed-forward processing

After applying multi-head attention to the enriched features, the decoder applies a feed-forward
layer:

ψ(t, n) = GRNθ(δ(t, n)) (15)
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Figure 2. The figure illustrates the different components of the TimeGAN-augmented
temporal transformer model, including the VSN, GRN, covariate encoder, and temporal
fusion.

where δ(t, n) is the result of the self-attention layer. This final layer further refines the temporal features.
The quantile forecast for a given quantile q is computed by a linear transformation of the output ψ(t, τ)
from the decoder:

ŷ(q, t, τ) = Wqψ(t, τ) + bq (16)

where Wq and bq are the learned weights and biases for the q-th quantile. The prediction is computed
for each forecast horizon τ ∈ {1, . . . , τmax}, ensuring that the forecasts are made for future time steps
only.

The steps, detailed in Algorithm 2, leverage a multi-layer framework combining both real-time and
augmented data to improve model training.

The model architecture consists of several key components: a VSN, GRN, multi-head attention
mechanism, LSTM layer, and FFN. The VSN learns feature importance by applying a dense layer
followed by layer normalization, selecting relevant features from the input time series. The GRN,
which follows the VSN, performs additional transformations through dense layers, incorporating
dropout for regularization.

The attention mechanism enables the model to focus on critical temporal dependencies within the
data by computing multi-head attention between the transformed sequences. This is followed by the
LSTM layer, which captures long-term dependencies in the time series, and an FFN that further refines
the output predictions.

By combining real-time time series data with synthetic data generated by the TimeGAN, the model
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Algorithm 2 TimeGAN-Augmented Temporal Fusion Transformer
Input: Xreal,Yreal, Xsynthetic,Ysynthetic

Output: Trained model and predictions on test data
1: Normalize and reshape Xreal, Xsynthetic

2: Xcombined ← concat(Xreal, Xsynthetic)
3: Xinput ← DefineInputLayer((L, F))
4: vsn← LayerNormalization(Dense(activation=’relu’)(Xcombined))
5: grn← LayerNormalization(Dense(activation=’relu’)(vsn))
6: grn← Dropout(0.2)(grn)
7: attn← LayerNormalization(MultiHeadAttention(grn))
8: attn← Dropout(0.1)(attn)
9: lstm← LSTM(attn)

10: lstm← Dropout(0.2)(lstm)
11: f f n← Dense(activation=’relu’)(lstm)
12: f f n← Dropout(0.2)( f f n)
13: output ← Dense(1)( f f n)
14: Loss←MAE, Optimizer← Adam
15: Train for E epochs on (Xtrain,Ytrain), validate on (Xval,Yval)
16: Return: Trained model and predictions Ypred

is able to learn more robust representations, even in the presence of limited or noisy real data. The
synthetic data helps augment the model’s training, improving its ability to generalize and predict
unseen sequences. During training, the model is optimized using the MAE loss function and Adam
optimizer, iterating through multiple epochs to achieve convergence.

Once trained, the TFT model can make accurate predictions on future time series data for calibrating
air pollution sensors in an air pollution monitoring sensor network.

3.3. Deployment of the TimeGAN temporal fusion transformer (TimeGAN TFT) model for air
pollution monitoring in the IIoT

The deployment of the TimeGAN TFT model in the IIoT for air pollution monitoring requires
substantial optimization to ensure its performance on low-power, resource-limited edge devices.
This section describes the process of deploying the TimeGAN TFT model on IIoT edge devices,
emphasizing memory and computational efficiency, which are critical for such environments.

3.3.1. Model conversion and optimization for edge devices

The first step in deploying the TimeGAN TFT model on edge devices is to convert the trained
model into the TFLite format. TFLite is designed specifically for deployment on mobile devices
and embedded systems, making it ideal for edge computing applications such as the IIoT. This
conversion transforms the model into a lightweight, optimized format, suitable for running on devices
with limited resources such as microcontrollers and low-power processors commonly used in IIoT
systems. To achieve this, the trained model is first converted into TFLite format using the function
convert to tflite(). As shown in Algorithm 3 (Step 1), this step ensures that the TimeGAN TFT model
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Figure 3. The figure depicts the deployment of the TimeGAN-augmented Temporal Fusion
Transformer model, utilizing quantization and compression techniques.

Algorithm 3 Deployment of the TFT Model for IIoT Edge Devices
Input: Trained TFT Model, Test Data (Xtest)
Output: Inference from the deployed model

1: model← convert to edge format(T FT model) ▷ Convert model for edge deployment
2: model← optimize for edge(model) ▷ Optimize for resource constraints
3: interpreter ← initialize interpreter(model) ▷ Initialize model interpreter
4: input details, output details← get io details(interpreter) ▷ Get input/output details
5: sample← select sample(Xtest) ▷ Select a sample from test data
6: reshaped data← prepare data(sample) ▷ Reshape and type-cast data for input
7: interpreter ← set input(interpreter, reshaped data) ▷ Feed input to model
8: predictions← run inference(interpreter) ▷ Run inference to get predictions
9: Return: predictions ▷ Return the model’s predictions

is compatible with edge devices. However, the initial TFLite conversion does not address the model’s
memory footprint and inference latency, which may still be considerable on resource-constrained
devices. To tackle these challenges, additional optimizations are applied. Following the conversion,
Algorithm 3 (Step 2) details the additional optimizations performed, including enabling resource
variables, setting supported operations, and disabling tensor list lowering. These optimizations
preserve the integrity of the model and ensure that it runs efficiently on the target hardware, especially
for recurrent operations in the TimeGAN model, which is common in time-series forecasting tasks like
air pollution prediction.

3.3.2. Post-training quantization for model compression

Post-training quantization is an important technique used to make machine learning models smaller
and faster, especially when they need to run on devices with limited memory and processing power,
such as edge devices. This is particularly relevant in applications like air pollution monitoring, where
predictions must be made in real time with limited hardware resources. As described in Algorithm 4,
the quantization process starts by converting the model’s weights from standard 32-bit floating-point
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Algorithm 4 Post-Training Quantization of TimeGAN-Augmented TFT
Input: Trained TimeGAN Model, Test Data (X test)
Output: Quantized model predictions

1: Step 1: Model Conversion and Quantization
2: t f lite f loat model← convert to tflite(timegan model) ▷ Convert model to TFLite.
3: t f lite quantized model← apply quantization(t f lite f loat model) ▷ Post-training quantization
4: save model("timegan quantized.tflite") ▷ Save quantized model.
5: quantized model size← get model size(t f lite quantized model) ▷ Get quantized model.
6: Step 2: Load Model and Allocate Memory
7: interpreter quantized ← load model(”timegan quantized.t f lite”) ▷ Load quantized model.
8: interpreter quantized.allocate tensors() ▷ Allocate model tensors.
9: Step 3: Prepare Input Data

10: reshaped data← reshape data(X test) ▷ Reshape input data.
11: Step 4: Inference on Quantized Model
12: predictions← run inference(interpreter quantized, reshaped data) ▷ Run inference.
13: Step 5: Return Results
14: return predictions ▷ Return model predictions.

numbers to lower-precision 8-bit integers. This step significantly reduces the model’s size and speeds
up how quickly it can make predictions. For example, the model is first converted into a TFLite format
in a floating-point version. Then, a simplified post-training quantization step reduces the file size while
preserving most of the model’s original accuracy. While quantization can slightly reduce prediction
accuracy, the trade-off is carefully managed. We evaluated the model’s performance after quantization
to ensure it still meets the accuracy needs of pollution monitoring applications. Despite the minimal
loss, the model remains effective at capturing important patterns in the sensor data, making it suitable
for real-world deployment.

3.3.3. Inference pipeline on edge devices

Once the model has been converted and quantized, it is ready for deployment on edge devices for
real-time inference. In Algorithm 3 (Step 2), the TFLite model is loaded into the interpreter, which
then assigns tensors for inference. This step ensures that the model is ready to accept input data and
produce predictions. The prepared input data is passed to the model (as shown in Algorithm 4 (Step 3),
where it is reshaped and converted to the required format for inference. In Algorithm 3 (Step 4), the
input data is processed by the interpreter and predictions are generated. These predictions represent
the air pollution levels and can trigger necessary actions, such as activating air filtration systems or
sending alerts to monitoring stations.

The final inference results from the quantized model are returned in Algorithm 4 (Step 4). In
this step, the quantized model performs inference efficiently on the edge device, leveraging hardware
accelerators like tensor processing units. This allows the model to process the data rapidly, making
real-time decisions in IIoT systems that monitor environmental parameters for air quality.
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4. Performance evaluations

This section begins with an overview of the dataset, followed by a detailed analysis of the results
from the TimeGAN-generated data. It also includes an evaluation of downstream regression tasks,
specifically focusing on sensor calibration for air pollution applications.

4.1. Dataset description

The dataset used in this research was collected from the Captor17013 sensor node deployed in
Manlleu, Barcelona, Catalonia, Spain, between June 21, 2017, and August 11, 2017. This data was
part of the European H2020 Captor project, which aimed to enhance the calibration of low-cost air
pollution sensors through a WSN [41]. The Captor sensor nodes, equipped with IoT devices and
processing units, were used to measure various air quality parameters. Specifically, the Captor17013
node features four metal-oxide sensors, including those for ozone (O3), temperature (Temp), and
relative humidity (RelHum). For this study, data from the first O3 sensor, along with the temperature
and relative humidity sensors, were used for training, while O3 pollutant concentration data from a
reference station provided by the Government of Catalonia, Spain, served as the ground truth [42].

Figure 4. KDEs of Sensor O3, temperature, and relative humidity.

Table 1 presents descriptive statistics for the Captor17013 dataset, highlighting the variability
in ozone concentration (Sensor O3) with values ranging from 20.83 to 682.36 and a high standard
deviation, indicating significant fluctuations in air quality. Temperature and relative humidity exhibit
moderate variability, while the reference station ozone values (RefSt) show a lower mean and range,
reflecting the difference in sensor sensitivity and the need for calibration. As shown in Figure 4,

Table 1. Descriptive statistics of the Captor dataset.

Feature Count Mean Std Min 25% 50%
Sensor O3 1241 222.59 158.87 20.83 60.69 209.26
Temp 1241 25.74 6.34 12.33 21.00 24.97
RelHum 1241 40.02 13.78 23.43 29.63 33.20
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the kernel density estimation (KDE) for Sensor O3 reveals a unimodal distribution with a gradual
increase, followed by a slow decline, suggesting a moderately symmetric and broad spread of
ozone concentration values. In contrast, the temperature exhibits a sharper, left-skewed distribution,
indicating a more concentrated temperature range. Meanwhile, relative humidity displays a multimodal
pattern with a primary peak around 30–31% and secondary fluctuations, suggesting more variability
and complexity in humidity levels compared to the other two parameters.

The dataset includes several key features. The date feature represents the timestamp of each data
sample, with samples taken every hour. The Sensor O3 feature provides the measurement of ozone
(O3) concentration recorded by the SGX Sensortech MICS 2614 metal-oxide (O3) sensor, with the
concentration reported in Kelvin (K). The Temp feature captures the temperature value recorded by the
temperature sensor at the time of measurement. The RelHum feature represents the relative humidity
percentage, measured by the humidity sensor during the same period. Finally, the RefSt feature
contains the ground truth O3 pollutant concentration, as provided by government reference stations,
with the concentration measured in micrograms per cubic meter µg/m3 [42].

The model uses an LSTM layer to process sequential data, followed by a feed-forward network
(FFN) for the regression task. Dropout layers (0.2 and 0.1) are applied throughout to prevent
overfitting. Preprocessing involves normalizing input features using Z-scores and standardizing the
training and test sets with Scikit-learn’s StandardScaler. The model is compiled with the Adam
optimizer and trained for 20 epochs with a batch size of 32, using MAE as the loss function.

4.2. Results and analysis

4.2.1. TimeGAN for data synthesis: analysis and evaluation

The training results for the TimeGAN model, shown in Figure 5, demonstrate successful learning
for generating synthetic time series data. At epoch 0, the reconstruction (0.0378), generator (0.0437),
and discriminator (0.1808) losses indicate initial instability. By epoch 50, losses stabilize, with
both discriminator and reconstruction losses nearing zero, indicating effective learning of the sensor
data’s temporal structure. The consistent decrease in reconstruction loss reflects the embedder and
recovery networks’ ability to accurately reconstruct input sequences. The generator’s loss reduction
shows improved synthetic sequence generation, whereas the discriminator’s near-zero loss by epoch 50
(0.0001) confirms its ability to distinguish real from generated data. The similar behavior of generator
and discriminator losses highlights the stable adversarial dynamics throughout training.

The synthetic sensor readings generated by the TimeGAN model, as shown in Figure 6, reveal the
model’s capability to generate realistic and coherent data sequences over time. Figure 6 illustrates the
hourly sensor measurements for multiple parameters, including Sensor O3, temperature, and relative
humidity. Notably, the Sensor O3 values exhibit considerable fluctuations, which is expected given
the dynamic nature of air pollution levels. This behavior closely mirrors real-world sensor data,
where pollutant concentrations often experience sharp spikes and declines, influenced by various
environmental factors.

The synthetic data reflect realistic temperature and relative humidity trends, aligning with typical
patterns seen in uncontrolled environments, such as daily temperature increases and corresponding
humidity fluctuations.The TimeGAN effectively captures these trends, making it a valuable tool for
simulating sensor data for calibration. This is crucial for air pollution monitoring networks, where
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Figure 5. The plot illustrates the progression of reconstruction Loss, generator Loss, and
discriminator Loss during the training of a TimeGAN model.

accurate calibration ensures sensor reliability across diverse real-world conditions. As shown in Figure
6, the generated data preserve key characteristics of the original time series, including peak timing,
general trends, and statistical consistency.

The t-SNE results as given in Figure 7 reveal that the synthetic data generated by the TimeGAN is
more concentrated, with most points clustered in the central region of the 2D space, reflecting a more
uniform distribution. In contrast, the real data display a wider spread, with points extending further
across the space, indicating greater variability and outliers. This suggests that while the synthetic data
capture the general structure of the real sensor data, it underrepresents the broader range of variations
and extreme values seen in the real data.

To quantitatively assess the similarity between real and TimeGAN-generated time series, we
adapted the dynamic time warping (DTW) and a fréchet inception distance (FID)-like score for the
time series data (Table 2) [43]. The DTW distances, ranging from 6.16 to 7.41 across the three features,
suggest a moderate but consistent temporal alignment between synthetic and real sequences. RelHum
showed slightly greater deviation (DTW = 7.4060), reflecting its higher natural variability. The FID-
like score of 0.1941 indicates a high degree of statistical similarity in the underlying distributions.
These results confirm that although the synthetic data is not identical to the real observations, it closely
captures both the temporal structure and statistical properties of the original sensor signals.

4.2.2. TimeGAN-generated data for downstream calibration regression

In this section, we evaluate the effectiveness of synthetic data generated by the TimeGAN in
supporting downstream regression tasks for sensor calibration. Specifically, we employ the TFT model
for the regression task using TimeGAN-generated data and compare its performance with a range
of baseline models, including LSTM-Attention, CNN-Attention, and variational autoencoder (VAE)-
based architectures.

The training loss of the TFT model, shown in Figure 8, illustrates its learning dynamics when trained
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Figure 6. The plot depicts the synthetic sensor readings generated over time using the
TimeGAN model.

Figure 7. t-SNE visualization of the first 1000 samples from synthetic (TimeGAN-
generated) and real sensor data.
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Table 2. Comparison metrics between real and TimeGAN-generated time series data.
DTW distances reflect temporal alignment, while the FID-like score quantifies distributional
similarity.

Feature DTW Distance Interpretation

Sensor O3 7.3850 Moderate temporal deviation
Temp 6.3153 Relatively well-aligned
RelHum 7.4060 Most divergent temporal pattern

Overall FID-like Score 0.1941 High distributional similarity

on TimeGAN-augmented synthetic time-series data. A sharp loss reduction from 55.11 (epoch 1) to
10.93 (epoch 4) indicates rapid initial convergence, suggesting the synthetic data effectively captures
core temporal patterns. After epoch 10, the loss plateaus near 5, reflecting potential limitations in data
complexity or the presence of noise. Between epochs 30 and 70, slight fluctuations (3.6–4.2) may
indicate overfitting or sensitivity to synthetic artifacts. However, the loss resumes a downward trend
post-epoch 70, reaching 3.55 by epoch 100. This steady improvement underscores the model’s capacity
to learn meaningful features from synthetic data and demonstrates the viability of the TimeGAN to
support downstream forecasting tasks.

Figure 8. Training loss (MAE) of the TFT model trained on TimeGAN-augmented data.

The experimental results in Figure 9 demonstrate that the TimeGAN-augmented TFT model
substantially outperforms all other hybrid configurations, achieving the lowest MAE (1.045), MSE
(1.277), and RMSE (1.130). These results indicate superior accuracy, generalization, and robustness
in handling synthetic time-series data. The TFT’s performance advantage stems from its ability
to leverage both temporal attention and gating mechanisms, enabling it to effectively capture long-
term dependencies and contextual dynamics that simpler models might miss. In contrast, the
TimeGAN-augmented LSTMAttention and CNNAttention models exhibit considerably higher error
metrics, indicating that their predictions not only deviate from the ground truth but also fail to
align meaningfully with the underlying data trends. The identical performance of the TimeGAN-
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augmented VAE and CNNAttention models suggests inefficiencies or redundancies in extracting
temporal representations from the generated data. These results highlight that while the TimeGAN
provides high-quality synthetic sequences, the architecture of the downstream model plays a decisive
role in determining predictive performance. The better results achieved by the TFT model underscore
the importance of using interpretable, attention-based frameworks capable of fully exploiting the
richness of the TimeGAN’s outputs—making it the most suitable choice for high-stakes time-series
forecasting applications.

Figure 9. Comparison of predictive performance across TimeGAN-augmented hybrid
models: TimeGAN+TFT, TimeGAN+LSTMAttention, TimeGAN+CNNAttention, and
TimeGAN+VAE.

4.3. TimeGAN-augmented models for IIoT edge deployment

To enable the practical deployment of data-driven models on resource-constrained IIoT edge
devices, it is essential to optimize both model accuracy and computational efficiency. In this section, we
evaluate the downstream regression performance of TimeGAN-augmented architectures—specifically
TFT, Transformer, and GRU-based models—under three optimization strategies: standard (non-
quantized), float-precision, and post-training quantization. By analyzing trade-offs in prediction
accuracy, model size, and inference latency, we demonstrate the deployment potential of these models
for real-time air pollution calibration tasks on low-power edge platforms.

The results depicted in Figure 10 compare the predictive performance of two TFT
variants—TimeGAN+TFT (full-precision) and TimeGAN+Quantized TFT—against reference station
measurements used as the ground truth for calibration. Both models exhibit a high degree of temporal
alignment with the reference data across the evaluation period, capturing dynamic fluctuations and
broader trends with remarkable fidelity. What is particularly noteworthy is that the quantized variant,
optimized for edge deployment, demonstrates predictive accuracy nearly indistinguishable from its
full-sized counterpart. This observation underscores the strength of the quantization strategy: not
merely as a means of reducing the memory footprint and latency, but as a precision-preserving
optimization technique. The ability of the quantized model to maintain performance parity while being
tailored for constrained hardware environments highlights its viability for real-world IIoT applications,
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where responsiveness, efficiency, and reliability are non-negotiable. This balance of compactness and
accuracy makes TimeGAN-augmented, quantized models especially compelling for scalable, real-time
environmental monitoring on the edge devices.

Figure 10. Comparison of the calibration values predicted by the TFT model and the
reference station values, trained on TimeGAN-augmented data: (left) without quantization
and (right) with quantization.

The results presented in Figure 11 present a comparison of the predictive performance
of two variants of the GRU-Attention-based model trained on TimeGAN-augmented
data: the TimeGAN+GRU Attention (non-quantized) model and its quantized counterpart,
TimeGAN+Quantized GRUAttention. The comparison reveals that both models exhibit similar
performance, with the TimeGAN+Quantized GRU Attention model showing only slight deviations
from the TimeGAN+GRU Attention model. The predicted values from both models align closely with
the reference station values across the entire observed period. The minimal difference in performance
between the TimeGAN+GRU Attention and TimeGAN+Quantized GRU Attention models can be
attributed to efficient weight quantization techniques that effectively reduce model size without
significantly compromising predictive power. During quantization, the model’s weights are mapped
to lower precision, ensuring that the most important parameters are preserved. As a result, even
though the quantized model uses fewer bits per weight, it still retains the essential characteristics
of the original model, leading to a similar predictive performance as the floating-point model. This
makes the quantized model well-suited for deployment in resource-constrained environments where
computational resources are limited.

The results presented in Figure 12 demonstrate the performance and efficiency of three
variants of the TimeGAN-augmented TFT: the original TimeGAN+TFT, the intermediate-precision
TimeGAN+Float TFT, and the highly efficient TimeGAN+Quantized Temporal FT. Notably, the
quantized model achieves competitive predictive accuracy, evidenced by the lowest MSE (0.3212),
MAE (0.4375), and RMSE (0.5667), outperforming the original model (MSE: 2.4776, MAE: 1.5049,
RMSE: 1.5740) and the float variant (MSE: 1.7434, MAE: 1.3204, RMSE: 1.3204). This excellent
performance parity, despite significant reductions in model size, underscores the robustness of
quantization techniques in preserving the predictive capabilities of complex transformer architectures
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Figure 11. Comparison of the calibration values predicted by the GRU model and the
reference station values, trained on TimeGAN-augmented data: (left) without quantization
and (right) with quantization.

like TFT. Moreover, the quantized model’s compact size of 97.34 KB—an 88% reduction compared
to the original model (800.04 KB) and 62% smaller than the float model (259.83 KB)—makes it well-
suited for deployment on resource-constrained IIoT edge devices. The float model, while larger than
the quantized version, serves as a valuable intermediate solution by balancing computational efficiency
with predictive accuracy.

Figure 12. Comparison of TimeGAN-augmented TFT models: (left) performance metrics
(MSE, MAE, RMSE) highlighting predictive accuracy, and (right) model size analysis
showcasing the efficiency of float and quantized models for IIoT deployment.

The analysis of the results illustrated in Figure 13 highlights a trade-off between model accuracy
and deployment efficiency, emphasizing the transformative potential of float and quantized models
for IIoT edge deployment. The original TimeGAN+Transformer model achieves robust predictive
accuracy, as evidenced by its MAE (0.3618), MSE (0.2192), and RMSE (0.4682). However, its
larger model size of 56.32 KB poses challenges for deployment in resource-constrained environments
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typical of IIoT devices. To address these limitations, the TimeGAN+Float Transformer and
TimeGAN+Quantized Transformer models offer significantly reduced sizes at 9.80 KB each, which is
an approximately 82.6% reduction in model size. This compression makes these models highly suitable
for edge deployment. Despite this efficiency, the Float Transformer demonstrates superior predictive
performance (MSE: 0.0475, MAE: 0.2089, RMSE: 0.2180), nearly matching the original model in
terms of accuracy. These results indicate that the float model retains much of the representational power
of the original while being optimized for deployment. Conversely, while the QuantizedTransformer
maintains the same compact size as the float model, its performance metrics (MAE: 0.5665, MSE:
0.4537, RMSE: 0.6736) suggest a noticeable decline in predictive accuracy.

Figure 13. Comparison of the Transformer model trained on TimeGAN-augmented data:
(left) performance metrics including MAE, MSE, and RMSE, and (right) model size analysis.
The visualization highlights the trade-off between predictive accuracy and deployment
efficiency, emphasizing the potential of float and quantized models for IIoT edge deployment.

The analysis of results illustrated in Figure 14 shows that the original TimeGAN+GRU model
achieves an MAE of 6.8173 and an MSE of 46.6912. However, with a relatively large model size of
205.33 KB, it poses challenges for deployment in resource-constrained IIoT environments. To address
this, the TimeGAN+Float GRU model reduces the model size to 106.72 KB, a 48% decrease, while
maintaining similar performance (MAE: 6.8173, MSE: 46.6912). This demonstrates that the float
model is highly suitable for edge deployment, offering an efficient balance of performance and model
size. Further compression is achieved with the TimeGAN+Quantized GRU model, which reduces
the model size to 48.21 KB, around 35% of the float model’s size and only 23.5% of the original
model’s size. Despite this reduction in size, the quantized model retains the same MAE (6.8173) and
MSE (46.6912) as the original and float models, confirming that quantization does not lead to a loss
in predictive accuracy. These results suggest that both float and quantized models offer significant
benefits for deployment on IIoT edge devices by reducing model size without sacrificing predictive
accuracy.

The results depicted in Figure 15 reveal the performance of the TimeGAN-augmented GRU
Attention model in its various forms, showcasing its ability to predict time-series data effectively.
In its original form, the model achieves a commendable baseline with an MSE of 0.2952, MAE
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Figure 14. Comparison of the TimeGAN-augmented GRU model with float and quantized
versions: (left) model performance metrics (MAE and MSE) and (right) model size analysis.

of 0.4171, and RMSE of 0.5433, demonstrating its capacity for accurate predictions. However, the
model’s substantial size of 3595.93 KB limits its applicability for edge devices with stringent memory
and computational constraints, making it unsuitable for deployment in resource-constrained IIoT
environments. The TimeGAN-augmented Float GRU Attention model significantly mitigates this issue
by reducing the size to 1210.79 KB—approximately 66.3% smaller than the original model—while
retaining identical performance metrics (MSE: 0.2952, MAE: 0.4171, RMSE: 0.5430). This reduction
in size, without compromising predictive accuracy, positions the float model as a strong candidate for
IIoT deployment, offering an optimal balance between computational efficiency and accuracy. On the
other hand, the TimeGAN-augmented Quantized GRU Attention model further optimizes the model
by reducing its size to just 356.45 KB, approximately 70% smaller than the float model. Despite
the dramatic size reduction, the quantized model’s performance, with an MSE of 0.3212, MAE of
0.4375, and RMSE of 0.5667, demonstrates only a slight trade-off in accuracy. This minor decrease in
performance, however, remains within acceptable limits for many IIoT applications, where minimizing
resource consumption is a priority. The quantized model, with its significantly reduced size, offers an
ideal solution for environments where computational and memory resources are at a premium, without
severely sacrificing predictive reliability.

The inference time comparison, as presented in Table 3, provides a comprehensive analysis of the
suitability of various TimeGAN-augmented temporal models for real-time deployment in IIoT edge
environments. In time-sensitive applications, particularly in the IIoT, low latency is essential to ensure
the timely processing and delivery of predictions. Inference time, measured in milliseconds, is a critical
metric in this context as it directly impacts the model’s efficiency in producing predictions within
the constraints of real-time systems. Among the models evaluated, the TimeGAN-augmented Float
Temporal Fusion Transformer stands out with an impressive inference time of 23.4 ms, making it the
fastest transformer-based model in the comparison. This performance highlights its ability to deliver
nearly instantaneous predictions without sacrificing accuracy, positioning it as an ideal choice for
real-time decision-making in IIoT applications, where both low latency and high predictive accuracy
are paramount. The TimeGAN-augmented Quantized GRUAttention model also demonstrates a
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Figure 15. Comparison of the training loss (MAE) of the TFT model trained on TimeGAN
augmented data: (left) without quantization and (right) with quantization. The graphs depict
the training performance of the model over epochs.

competitive inference time of 29.1 ms, which is the fastest across all models tested. This makes it
particularly well-suited for deployment in environments with limited computational resources, where
speed is the critical factor. However, this comes at the cost of a slight reduction in predictive accuracy,
as discussed earlier. The trade-off between speed and accuracy must be carefully considered depending
on the specific requirements of the IIoT application, whether prioritizing rapid predictions or high
precision. Other models, such as the TimeGAN-augmented Light GRUAttention and TimeGAN-
augmented Quantized Transformer, offer moderate improvements in inference time relative to their
original versions, with times of 647 ms and 125 ms, respectively. These models balance improved
inference times with a reasonable level of accuracy, making them suitable for applications where there
is some tolerance for latency and model complexity but still a need for faster responses than the original
models could provide.

Table 3. Inference time comparison for TimeGAN-augmented temporal models for IIoT
edge deployment.

Temporal Models Inference Time (ms)
TimeGAN+GRUAttention 1340
TimeGAN+Light GRUAttention 647
TimeGAN+Quantized GRUAttention 29.1
TimeGAN+Transformer 235
TimeGAN+Light Transformer 24
TimeGAN+Quantized Transformer 125
TimeGAN+TFT 384
TimeGAN+Float TFT 23.4
TimeGAN+Quantized TFT 178

The analysis of TimeGAN-augmented temporal models reveals their suitability for real-time IIoT
deployment, especially in applications like pollution monitoring. Key deployment factors include
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model accuracy, inference speed, and resource efficiency. The TimeGAN-augmented Quantized TFT
model excels by reducing its size by 88% (from 800.04 KB to 97.34 KB) while maintaining strong
accuracy (MSE: 0.3212, MAE: 0.4375). This makes it ideal for resource-constrained devices in IIoT
environments, offering a compact yet highly efficient solution for real-time pollution monitoring. The
TimeGAN-augmented Float TFT offers an optimal balance of speed and accuracy, with an inference
time of 23.4 ms, the fastest among transformer-based models. Its MSE (1.7434) and MAE (1.3204)
remain strong, ensuring both low latency and high predictive accuracy for real-time decision-making.
The TimeGAN-augmented Quantized GRUAttention, while the fastest (29.1 ms), sacrifices slightly
in accuracy (MSE: 0.3212, MAE: 0.4375). However, its minimal size (48.21 KB) makes it highly
efficient for edge devices where speed is critical, such as rapid anomaly detection in pollution levels.
These findings highlight that TimeGAN-augmented models offer robust performance, with each variant
optimized for specific IIoT deployment needs, balancing accuracy, speed, and resource efficiency for
real-time environmental monitoring.

5. Conclusion

In this work, we introduce a generative temporal approach for calibrating air pollution sensor
networks through the integration of the TimeGAN and TFT models, specifically designed for
deployment on resource-constrained edge devices in IIoT environments. By leveraging the TimeGAN
for synthetic data generation and TFT for accurate predictions, our approach effectively calibrates
sensors, even in settings with limited high-quality data, ensuring reliable real-time operation.
The synthetic data produced by the TimeGAN mirrors the temporal characteristics of real sensor
data, making it a valuable tool for sensor calibration in challenging real-world scenarios. A
detailed evaluation of the TimeGAN-augmented temporal models reveals crucial insights into
their suitability for IIoT applications. The key considerations for effective deployment in these
environments—accuracy, inference time, and resource efficiency—are addressed through our models.
Specifically, the TimeGAN-augmented Quantized TFT model excels in balancing high predictive
accuracy and minimal resource consumption, reducing the model size by 88% (from 800.04 KB to
97.34 KB) without compromising performance (MSE: 0.3212, MAE: 0.4375). This drastic reduction in
size makes it highly suitable for edge devices with limited computational resources, ensuring accurate,
real-time air quality monitoring. Furthermore, the synthetic data generated by the TimeGAN aligns
well with the real sensor data, as evidenced by low DTW distances and high distributional similarity,
confirming the effectiveness of the TimeGAN in generating realistic data for calibration. On the other
hand, the TimeGAN-augmented Float TFT model offers an optimal compromise between speed and
accuracy. With a fast inference time of 23.4 ms, it stands out among transformer-based models,
making it ideal for applications where low-latency, real-time decision-making is paramount. While
slightly less efficient in terms of model size (MSE: 1.7434, MAE: 1.3204), it guarantees timely, precise
predictions—crucial for dynamic pollution monitoring systems. The Float TFT model also benefits
from synthetic data that closely tracks real-world trends, ensuring that its predictions remain robust
despite the potential for data scarcity. These findings underline the potential of TimeGAN-augmented
models to provide both high accuracy and operational efficiency in IIoT-based pollution monitoring,
especially in edge device deployment within real-time, resource-constrained environments.
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Appendix

Table 4. Summary of limitations across different CNN and VAE variants when applied to
time-series data for IIoT applications. The table highlights challenges such as the inability
to model long-term temporal dependencies, overfitting, handling complex non-stationary
patterns, and preserving fine-grained temporal information in sequential data.

Model Limitation
CNN [44] Captures local spatial patterns; lacks temporal

modeling across long horizons; prone to overfitting
on small datasets

Temporal CNN (TCN) [45] Improves temporal range but struggles with complex
long-term dependencies under limited receptive fields

Dilated CNN [46] Expands temporal receptive field but can introduce
gridding artifacts, harming fine-grained temporal
modeling

VAE [47] Global latent focus; loses temporal granularity
in sequential reconstruction; overfits when not
regularized properly

Sequential VAE (SVAE) [48] Introduces time dependencies but still underperforms
on complex non-stationary temporal patterns

Conditional VAE (CVAE)
[49]

Captures conditional structure but struggles with
modeling long-term temporal correlations; may
overfit when conditioned on insufficient data
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