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Abstract: Indoor air quality in school classrooms is a major pediatric health concern because 

children are highly susceptible to adverse effects from xenobiotic exposure. Fine particulate matter 

(PM2.5) emitted from mining waste deposits within and near cities in northern Chile is a serious 

environmental problem. We measured PM2.5 in school microenvironments in urban areas of Chañaral, 

a coastal community whose bay is contaminated with mine tailings. PM2.5 levels were measured in 
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six indoor and outdoor school environments during the summer and winter of 2012 and 2013. 

Measurements were taken during school hours on two consecutive days. Indoor PM2.5 concentrations 

were 12.53–72.38 μg/m3 in the summer and 21.85–100.53 μg/m3 in winter, while outdoor 

concentrations were 11.86–181.73 μg/m3 in the summer and 21.50–93.07 μg/m3 in winter. 

Indoor/outdoor ratios were 0.17–2.76 in the summer and 0.64–4.49 in winter. PM2.5 levels were 

higher in indoor microenvironments during the winter, at times exceeding national and international 

recommendations. Our results demonstrate that indoor air quality Chañaral school microenvironments 

is closely associated with outdoor air pollution attributable to the nearby mine tailings. Policymakers 

should enact environmental management strategies to minimize further environmental damage and 

mitigate the risks that this pollution poses for pediatric health. 

Keywords: particulate matter; schools; mine tailings 

 

1. Introduction 

Air quality in the school environment that has taken on increasing public health importance in 

recent years. Several studies have reported that school indoor microenvironments are among the 

most highly contaminated sites, finding high levels of particles, gases, and microorganisms 

associated with acute and chronic health problems [1-6]. A correlation exists between the 

concentration of pollutants and health problems in school children. These observed health effects 

are predominantly respiratory, including asthma, allergies, respiratory infections, chronic 

obstructive pulmonary disease, and the risk for developing other pulmonary obstructive diseases in 

adulthood [5,7,8]. These findings are concerning, given that children typically spend 6–10 hours 

per day in elementary schools, preschools, or nurseries [5,9]. Children are especially susceptible to 

the adverse effects of air pollution, due to their immature physiological and metabolic systems, 

their immunological defenses are not fully developed [9-11]. Additionally, children's normal 

activity patterns tend to stir up dust, increasing exposure to pollutants [12,13]. On the other hand, 

because of their smaller stature, children are exposed to a higher concentration of inhaled aerosol 

particles. Because their airways are smaller, children inhale a higher level of air per unit body 

weight compared to adults. Smaller air particles, such as PM2.5 and ultrafine particles, are 

considered more harmful than larger particles [14-16]. In addition to size, the chemical composition 

of PM can determine its dangerousness while components such as transition metals (iron, copper, 

nickel, and chromium) are known to produce severe toxicity on exposed tissues [17-19]. Reactive 

oxygen species generated during metabolism of air contaminants are responsible for inflammatory 

processes that occur in response to air pollutant exposure [20].  

Mining has been Chile's main economic activity for decades, operating primarily from central 

and northern regions of the country [21]. Mining provides economic benefits but also creates 

environmental damage, due to residues left after mineral processing. One such environmental 

liability is mine tailings of ore processing, containing high levels of toxic metals [22-24].  

Chañaral is a coastal city in northern Chile whose main commercial activity is mining and 

fishing. During the last century, it had a great mining boom which resulted in large beneficial to the 

country. However, this activity generated a lot of waste that ended up in the Chañaral’s bay, 

embanking and polluting the beach. This massive pollution of the coastline has affected the marine 
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flora and fauna [25-27]. This phenomenon of coastal mining waste pollution has been described in 

different places of the world [28-31].  

In 2011, environmental Chilean authorities identified at least 603 mine tailing deposits, many of 

which are adjacent to highly-populated areas [32]. The bay of Chañaral in northern Chile is one such 

area where strong prevailing winds carry dust from the beach towards urban areas during spring and 

summer [33,34]. The aim of this study is to determine fine particulate matter concentrations in 

school microenvironments settings and to measure the relationship between indoor and outdoor 

levels. 

2. Materials and Methods 

2.1. Study design and schools sampling  

We performed a cross-sectional study of a sampling frame of 10 schools in Chañaral, from 

which we randomly selected six schools distributed throughout the city (Figure 1). Sets of 

measurements were performed during the summer (December 2012) and repeated during the winter 

(July 2013). The microenvironments studied were classrooms, offices, and playgrounds on school 

property. Administrative offices and classrooms were classified as indoor environments and 

playgrounds as outdoor environments. The characteristics of the sampling areas in preschools (PS) 

and elementary schools (ES) are described in Table 1. 

 

Figure 1. Map of Chañaral, Chile and locations of the participating schools. PS, 

preschools; ES, Elementary schools. 
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Table 1. Characteristics of preschool and elementary school sampling areas, 

Atacama Region, Chile. 

ID Room  

ventilation 

Office  

ventilation  

Indoor 

floor 

type 

Outdoor floor 

type 

Location(s) Comments 

ES1 Small iron 

windows to 

outside closed 

throughout the 

process 

One aluminum 

window to 

exterior, closed 

throughout the 

process 

Vinyl Concrete/Ground Hilltop, near 

railway line 

Elementary school located 

near train line, farther from 

beach than most of the other 

schools. Daily cleanup after 

school hours 

ES2 Small aluminum 

windows to 

outside open 

throughout the 

process 

One aluminum 

window to 

exterior, closed 

throughout the 

process 

Vinyl Concrete On main 

two-way street 

School located farther from 

beach than most of the other 

schools. Daily cleanup after 

school hours 

ES3 Aluminum 

windows to 

outside closed 

throughout the 

process 

One aluminum 

window to 

exterior, closed 

throughout the 

process 

Vinyl Concrete/Ground Near Main 

Street 

Playground remodeling 

construction activities 

occurred throughout the 

process. Daily cleanup after 

school hours 

PS1 Wood windows to 

outside closed 

throughout the 

process 

One aluminum 

window to 

exterior, closed 

throughout the 

process 

Vinyl Ground On Main 

Street and 

adjacent to 

beach 

School located near the 

beach, adjacent to the 

municipal greenhouse. Daily 

cleanup after school hours 

PS2 Small aluminum 

windows to 

outside open 

throughout the 

process 

One aluminum 

window to 

exterior, closed 

throughout the 

process 

Vinyl Concrete On Main 

Street and 

adjacent to 

beach 

School located near the 

beach, with playground 

adjacent to a bus station. 

Daily cleanup after school 

hours 

PS3 Small aluminum 

windows to 

outside open 

throughout the 

process 

One aluminum 

window to 

exterior, closed 

throughout the 

process 

Vinyl Concrete/Ground On main 

two-way street 

School located near the 

beach, in an obviously 

impacted area, and adjacent 

to a local mini-zoo. Daily 

cleanup after school hours 

PS: Preschool; ES: Elementary school 

2.2. Study area 

Chañaral is a northern coastal city with a warm desert climate, abundant clouds, and scarce rain. 

Chañaral has a narrow thermal amplitude with low contrast, both across seasons and between night 

and day, and prevailing west-east winds [35]. The ocean currents stir up the tailing mud when the 

coast is soaked by high tides [26,34].  
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2.3. PM2.5 indoor vs outdoor gravimetric sampling and meteorological parameters 

PM2.5 mass concentration was measured by gravimetric analysis in Chester LabNet Laboratory, 

(www.chesterlab.net), a National Environmental Laboratory Accreditation Conference (NELAC) 

accredited laboratory (Tigard, OR, USA). Personal environmental monitoring system (PEMS)® 

equipment model 761-203A, SKC, Eighty Four, PA) containing 37 mm pre-weighed Teflon filters was 

used to collect PM2.5, using a 44XR Universal Sample Pump (SKC Inc, Eight Four, Pennsylvania, USA). 

A flow of 4 L/min was set, and variation was monitored daily by means of a soap bubble electronic SKC 

ULTRAFLO® calibrator. PM2.5 was measured in indoor and outdoor microenvironments simultaneously. 

All measurements were performed during school hours on two consecutive days, for eight hours per day, 

resulting in a total measurement time of 16 hours for each school per season. In indoor environments, 

particle collectors were placed at a height of one meter and a distance of 50 cm from the wall, in a corner 

opposite the main windows. In outdoor areas, collectors were placed on the playground, also at a height 

of one meter. A total of 36 measurements were performed at each site.  

Meteorological station equipment with adequate coverage of the target area was used to record 

wind velocity, temperature, relative humidity, solar radiation, barometric pressure, and precipitation. 

Meteorological parameters were measured according to established guidelines [36].  

2.4. Data analysis 

Descriptive and exploratory analyses were performed on the data collected. To compare PM2.5 

mass concentration between stations and microenvironments two-sample Wilcoxon rank-sum test 

was used. We also analyzed indoor-outdoor ratios (I/O), with the assumption that I/O values higher 

than unity (1) would suggest another source of emissions into the studied areas and/or outside 

infiltration [37,38]. To evaluate indoor and outdoor relationships among offices, classrooms and 

playground during the sampling period Spearman’s correlation coefficient was used, respectively. 

Statistical analysis was performed using STATA 11.1 software. 

2.5. Ethical considerations 

The study was conducted as part of FONIS project SA11|2224 and was approved by the ethical 

committee of the University of Chile School of Medicine [39].  

3. Results 

3.1. PM2.5 levels and indoor-outdoor relationship in schools’ microenvironments 

Figure 2 shows PM2.5 mass concentrations by season and microenvironment. During summer, 

PM2.5 mass concentrations were 12.5372.38 μg/m3 within indoor microenvironments and 

11.86181.73 μg/m3 in outdoor microenvironments. In winter, PM2.5 concentrations were 21.593.1 

and 21.9100.5 μg/m3 in outdoor and indoor settings, respectively. No significant differences for 

indoor and outdoor PM2.5 median concentrations for summer (p = 0.6199) and winter (p = 0.2026) 

were observed, respectively. In summer, the highest indoor value was found in ES2 (office) and the 

highest outdoor values in PS1 and PS2 playgrounds, respectively. The highest values in winter were 
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found in PS1 (all microenvironments), and PS2, ES3 for classroom, respectively (see supplementary 

data).  

 

Figure 2. Summer and winter PM2.5 concentration and indoor/outdoor ratio in school 

microenvironments in Chañaral, Chile. PS, preschools; ES, Elementary schools. 

When comparing the median concentrations of PM2.5 between summer and winter season, not 

statistically significant differences for offices (p = 0.3367) and playgrounds (p = 0.4233) were 

observed, respectively. However, the median concentration of PM2.5 in classrooms in winter period 

was significantly higher compared with summer (p = 0.0104).  

Table 2 shows indoor vs outdoor PM2.5 relationship by season and microenvironment. Summer 

I/O ratios for offices and classrooms versus playgrounds varied from 0.17 to 2.76 and 0.12 to 2.23, 

respectively. The relationship between PM2.5 levels for offices and classrooms for ES1, PS1, PS2 

schools compared with playground was less than unity (1), indicating that during the period sampled, 

the outdoor levels were higher. In some cases that outdoor concentrations were nearly three to eight 

times higher than indoor concentrations. This can be explained by any of the following reasons; in 

ES1 during sampling period, there were works of removal of construction debris outside school, this 

generated locally resuspension of dust that may have affected the measurement. For PS1 and PS2, it 

can be explained by its proximity to the area of the deposit of tailings on the beach. In addition, 

another factor was that the floor of these schools was not completely paved, at least 50% were soil 

and sand. To ES2 and PS3 I/O relationship was greater than unity (1), indicating higher levels of 

PM2.5 in the microenvironments of offices and classrooms compared with playground. In this 

preschool, the playground was paved, but there was unpaved area near to the classrooms gate, where 

it would be entering the dust, which is carried on their clothes and shoes for children and teachers 

during the school day. 

During winter, I/O ratios were 0.172.76 for offices vs. playgrounds and 0.122.23 for 

classrooms vs. playgrounds. To classroom vs playground the I/O was greater than 1.0 except in PS3, 

indicating a higher concentration of PM2.5 in the classroom compared with playground. This 

concentration was up to 4.49 times the outdoor as shown in ES3 (Table 2). This school, the 

classroom and offices are adjacent to an unpaved area, which could explain these high levels of 

PM2.5. On the other hand, the relationship between offices and playgrounds was around unity (1.0).  

Correlation analysis during the sampling period showed no clear relationship between 

outdoor-indoor PM2.5 levels for playground versus classrooms (r = 0.23; p = 0.4705). Instead, the 
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correlation of PM2.5 levels in playground versus offices was moderate, near of statistical significance 

(r = 0.56; p = 0.0548). 

Table 2. Indoor/outdoor ratio to PM2.5 concentration in school microenvironments. 

Chañaral, Chile. 

 Summer Winter 

 Indoor/Outdoor Indoor/Outdoor 

School Office/Play Classroom/Play Office/Play Classroom/Play 

ES1 0.71 0.72 0.82 1.14 

ES2 2.76 1.05 1.44 1.21 

ES3 1.38 1.04 1.69 4.49 

PS1 0.17 0.12 1.00 1.08 

PS2 0.38 0.16 0.86 2.24 

PS3 1.27 2.23 0.64 0.97 

Median 1,04 0.78 0.93 1.67 

ES: Elementary Schools; PS: Preschools; Play: Playground. 

3.2. Meteorological parameters 

Figure 3 demonstrates the direction of the local wind patterns in Chañaral as well as the wind 

velocity. During 4256% of the period studied, the prevailing wind direction was West-Northwest 

(NovemberMarch, which are the spring and summer months in South America). During fall and 

winter (AprilJune), the wind direction was west, northeast, and east 27, 15 and 20% of the time, 

respectively (Figure 3a). Wind velocity was more variable during the spring and summer months 

(DecemberFebruary) as compared to the fall and winter months (Figure 3b). During this period, 75% 

of measurements exceeded 4 m/s, and the strongest winds generally occurred between 10:00 and 

18:00 hours (see supplementary data).  

4. Discussion  

This study aimed to determine the concentrations of fine particulate matter (PM2.5) at school 

microenvironments in two different seasons in the coastal city of Chañaral in northern Chile, which 

bay is heavily polluted with ore waste of copper mines.  

The ratio of indoor versus outdoor concentration levels varied by season and were generally 

high during the winter season. During the summer, there were not significant differences in the 

median concentrations in indoor compared to outdoor microenvironments. However, concentrations 

of the two schools closest to the coastline (both preschool level elementary schools) had high 

concentrations of PM2.5. We also did not observe a clear difference in indoor microenvironments. In 

winter, the median PM2.5 concentrations were similar in offices and patios, however, levels in 

classrooms were higher than in playgrounds. The very high levels seen in outdoor environments 

during the summer may be associated with atmospheric conditions prevalent during the days we 

monitored the schools. This weather phenomenon may have influenced the concentrations of 

particulate matter and dust in suspension in the study area. Some authors have reported that  
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Figure 3. Wind characteristics, November 2013 to May 2013, Chañaral, Chile. 

particulate matter concentration is modulated by wind speed, observing lower concentrations for 

wind speeds under 2 m/s and higher concentrations for stronger winds [40]. Mining waste is amongst 

the largest generators of dust that pollute the atmosphere. Pollution in coastal areas includes a 

complex mixture of tailings containing metal, sand, and the effect of sea water, generating particulate 

matter carried by the wind from surrounding urban areas and communities [24,26,41-44].  

This finding may explain the higher particulate matter levels observed in summer, when the 

wind speed was significantly higher [45,46]. Other authors have reported a similar relationship 

between wind speed and concentration, albeit with slightly different values, finding, for example, 

that PM concentrations were higher when wind speeds were above 4 m/s [46-48]. During this study, 

the 75th percentile of wind velocity measurements was about 4 m/s, with higher speeds in summer vs. 

winter (Figure 3b). During the study period, no rainfall was recorded. The average relative humidity 
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for the period was 70% (range 34.389.9). Barometric pressure and solar radiation were practically 

constant over the period. Neary and Garcia-Chevesich reported that during spring and summer, local 

prevailing winds blow towards the coast in this region (west to east), carrying dust from the bay and 

moving particles towards the urban area of Chañaral [33].  

High indoor particulate matter levels in preschools may be attributable to the schools’ proximity 

to the bay polluted with mine tailing deposits, as well as the activity of children in classrooms, which 

can resuspend particulate matter. During the summer, the preschools closest to the beach kept their 

windows closed during school hours to prevent dust from entering school offices and classes. This 

method was relied upon particularly in schools lacking formal ventilation. In the winter, the windows 

also remained closed most of the time, in this case to keep the classrooms warm, especially in the 

classrooms where the children spent the most time. The high indoor particular matter levels observed 

in our study could be explained by infiltration from the outdoor environment and the movement of 

children during the school day. As it is seen in summer time distribution of PM2.5 concentration levels, 

increase, which would be associated with periods of recess and lunchtime. During these periods of 

time, children are moving, causing particle resuspension. In preschools (PS), a greater variation in 

levels of PM compared to basic schools (winter and summer), which could be related to the 

proximity to the bay were observed. Moreover, the elementary school (ES2) is at higher altitudes and 

farther from the area contaminated beach. 

Seasonal differences were not as apparent in the offices as in the classrooms, suggesting that the 

variations in classroom levels were attributable to children's activity during school hours. The 

administrative offices where PM2.5 samplers were installed, there were no specific sources of 

emission of particles, such as photocopying or other equipment. The offices were occupied by school 

principals and teachers.  

Various authors have noted that indoor particulate matter levels are closely related to the 

presence and activity of students, as well as to levels in outdoor environments [23,49-51]. Several 

international studies have found results similar to those reported here. Studies performed in England 

and the Netherlands reported indoor PM concentrations of 19.030.0 and 7.752.8 μg/m3, 

respectively [52,53]. A study by Diapouli et al., which measured PM2.5 levels during winter in seven 

schools, reported indoor concentrations of 22.1–40.3 μg/m3 and outdoor concentrations of 38.699.0 

μg/m3, similar to the values observed in Chañaral (52.7 and 30.9 μg/m3, respectively) [54]. However, 

another comparable study by Madureira et al., measuring PM2.5 concentration at 11 schools in 

Porto, Portugal, reported concentrations of 95 μg/m3 indoors and 115 μg/m3 outdoors; these values 

were significantly higher than those measured in Chañaral [55]. A study of six elementary schools 

in Iran (2013) reported average indoor levels of 29.169.1 μg/m3 during the school day, similar to 

our results [56]. It is important to note that in the studies described above, the main source of 

particulate matter was vehicular traffic, a factor that is likely marginal in Chañaral.  

Nkosi et al. (2015) conducted a study in 11 South Africa communities, reported an association 

between proximity to deposits of mine waste and effects on the respiratory health of children and 

adolescents in 22 primary and secondary schools. The authors concluded the damaging effect of 

the mine on respiratory health and the proximity of the community to the mine dumps [57]. Studies 

on the composition of particulate matter in industrial areas of the Atacama region have shown to 

have a high content of heavy metals in PM10 and PM2.5 [58-61], which may indicate the potential 

health risks of the exposed population, especially children, the elderly, and those with concurrent 

illness.  
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5. Conclusion 

Our results revealed high levels of fine particulate matter during the summer and winter within 

Chañaral indoor school settings. The highest concentrations were in classrooms, particularly within 

preschools closest to the mining tailings. Indoor fine particulate matter levels exceeded Chilean and 

international recommendations, especially during winter months. Outdoor fine particulate matter 

concentrations also generally exceeded Chilean and international norms during both seasons studied. 

Children at these schools are exposed to poor air quality, whose main source is from particulate 

matter from a reservoir of mine tailings present at the Chañaral bay, putting children and other 

residents at high risk for many health problems. This is the first study of its kind in Chile, whose 

objective was to measure the concentration of particulate matter in school microenvironments in a 

polluted area with mine tailing. The composition of metals in particulate matter is urgently needed to 

clarify the risk of potential adverse effects on the health of the population. 
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