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Abstract: This paper analyzes the effect of meteorological variables such as solar irradiance and 

ambient temperature in addition to cultural factors such as consumer behavior levels on energy 

consumption in buildings. Reducing demand peaks to achieve a stable daily load and hence lowering 

electricity bills is the goal of this work. Renewable generation sources, including wind and 

Photovoltaics systems (PV) as well as battery storage are integrated to supply the managed home load. 

The simulation model was conducted using Matlab R2019b on a personal laptop with an Intel Core i7 

with 16 GB memory. The model considered two seasonal scenarios (summer and winter) to account 

for the variable available energy sources and end-user electric demand which is classified into three 

demand periods, peak-demand, mid-demand, and low-demand, to evaluate the modeled supply-

demand management strategy. The obtained results showed that the surrounding temperature and the 

number of family members significantly impact the rate of electricity consumption. The study was 

designed to optimize and manage electricity consumption in a building fed by a standalone hybrid 

energy system. 
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1. Introduction  

In recent years, energy management in buildings has become crucial to reducing excessive 

consumption and hence the end-user electricity bill. An energy management system can control 

lighting, heating, cooling, and home appliances in an optimal manner. The literature contains numerous 

studies and tools developed to reduce energy consumption and conserve available power. The authors 

in [1] studied the effect of household consumption, mainly the use of water heaters for long periods, 

and demonstrated the ability to employ alternative energy sources to supply these high loads. The study 

showed the importance of integrating renewable energy (RE) sources to supply the electrical loads of 

buildings. The Home Energy Management System (HEMS) is a system that monitors and controls the 

operation of a considerable number of electrical appliances to save energy and reduce costs. The Single 

Knapsack approach was designed to effectively manage renewable energy sources and storage systems. 

Future demand load forecasting was also carried out to determine the needed power generation during 

periods of high demand [2]. 

An intelligence system called Multi-Agent System (MAS), consisting of several collaborative 

environmental agents, was developed to improve building power productivity and optimize energy 

consumption [3]. Moreover, MAS is an effective tool in load control, offering optimal use of home 

appliances. Real-time management of power consumption was developed, taking into account users’ 

desires and the number of electrical home appliances. Through an artificial intelligence algorithm, a 

group of devices was scheduled in response to demand and electricity prices [4]. The authors proposed 

an advanced technique that provides communication and control between the grid and consumers 

because the residential sector is regarded as a high electricity consumer. Thus, consumers will take 

advantage of price variations in electricity to save energy and money [5]. In another development, a 

new energy management algorithm has been proposed for smart homes using energy supplied from 

multiple energy sources. The management strategy was applied on a real home to reduce its electricity 

bill utilizing a multi-price tariff. The obtained results demonstrated the effectiveness of the strategy in 

controlling the amount of power being consumed [6]. 

Demand response programs are used to reduce peak demand by managing large loads on the 

consumer’s side. The authors in [7] presented a new approach for scheduling home loads and 

renewable energy RE units to reduce the use of conventional sources. The algorithm’s reliability was 

verified with a real case study which demonstrated that by using high-efficiency appliances, the 

amount of power consumed by a building can be reduced. Another study investigated various models 

to explain the operation of a refrigerator during the cooling and heating phases. The models were built 

using actual data from a home refrigerator [8]. Data processing, modeling and parameter determination 

were carried out using MATLAB [9]. Additionally, the author reviewed previous research on home 

energy management systems (HEMS), including demand response (DR) programs, smart technologies, 

and load scheduling controllers. The use of artificial intelligence for load scheduling is also reviewed [10]. 

An up-to-date review along with a comparative analysis of recent innovations related to building 

energy management systems is provided in [11]. In [12], an energy distribution system based on UK 

electricity pricing was developed. Based on data from 30 homes in three price ranges, the model was 

tested. The model was able to adapt to the price shift and save money by reducing energy consumption. 

Recently, as the availability of renewable energy has grown and the performance of small-scale 

storage systems has improved greatly, a great amount of research has been conducted to solve the home 

energy scheduling problem while taking into account how well distributed generation and storage can 
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work together. However, the goals of optimizing household energy activities are to use as much locally 

produced renewable energy as possible and to manage storage charging and discharging schemes in 

the most efficient manner. 

In terms of the literature, this work makes two contributions. First, the study suggests the 

intelligent operation of home appliances based on a combination of renewable energy sources, such as 

a rooftop photovoltaic (PV) system, a wind energy system, and batteries based on nonlinear energy 

pricing profiles. Second, the study suggests the development of appliance operation scheduling based 

on available power to reduce electricity consumption while maintaining energy sustainability. As a 

result, unlike previous research, the end-user’s goal is to produce and/or store energy at the appropriate 

times and in the required amounts in order to achieve cost reduction rather than simply relying on 

renewable energy. 

The contribution of this paper is as follows: 

• This work analyzes the effect of temperature change and the number of consumers on daily 

electricity consumption. A renewable energy system consisting of wind, photovoltaic (PV), and 

batteries was included to satisfy the energy demand all day round. 

• The home devices were simulated to analyze the dynamic variation of consumption under the 

influence of weather and consumer activities. 

• Optimal load management was applied to reduce the power consumption considering the 

available amount of RE at a particular hour. 

The remainder of the paper is organized with Section 2 presenting Materials and Methods. The 

modeling of smart home appliances is presented in Section 3. Data and system simulation is explained 

in Section 4. The results and discussion are found in Section 5 and finally the conclusion is presented 

in Section 6. 

1.1. Literature review 

A hybrid optimization method that combines Differential Evolution and Grey Wolf algorithms 

with real-time pricing was proposed in [13]. Based on the collected data from the utility, shifting loads 

to low-price hours was applied. The study presented an operation scheduling for home appliances 

connected via a wireless system. The wireless receiver acquires real-time energy pricing from a smart 

meter and based on the price sends a signal to the controller to switch off or on some appliances. Xiong 

et al. [14] adopted a communication system connected to electrical appliances to allow the end-user to 

manage their power consumption and, hence, keep overall demand below a target level. The authors 

in [15] developed an algorithm that shifts loads to off-peak or low-energy prices hours, with the results 

indicating that the algorithm worked with high reliability and efficiency. In another study, based on user 

comfort, a multi-objective optimization technique for the home energy management system (HEMS) 

was developed to minimize electricity costs while maintaining user satisfaction [16]. In [17], electrical 

appliances were simulated in order to monitor their operating times. Priority was given to wind and 

solar energy in feeding the loads in the building. Each appliance was mathematically modeled in 

MATLAB/Simulink. The authors in [18] use the time-varying queueing method to model end-users 

and their respective electrical devices. Consumer loads generated by the queueing model are then 

summed to build the load curve. The method demonstrated its effectiveness in scheduling electrical 

loads without disturbing customer comfort. An open-source Python script was utilized in [19] to 

generate a home load schedule. The optimization algorithm was proposed as a heuristic technique for 
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energy consumption scheduling. The proposed algorithm schedules the consumption based on two 

power pricings, namely critical-peak-price and real-time-price, both of which are used to determine 

the price of electricity at peak times. In reference [20], the author proposed an effective multi-objective 

solution based on the Mixed Integer Linear Programming formulation. To achieve its outcomes, the 

methodology uses lexicographic optimization and secularizing functions. This feature makes the 

program ideal for Home Energy Management in terms of energy costs. The results demonstrated the 

efficacy and efficiency of the method. Another study investigated the optimal use of electrical 

appliances by using MILP optimization to determine the most appropriate tariff for smart consumers 

and optimal operation hours. In addition, optimum scheduling of a group of devices on different days 

can be obtained from aggregation of historical load data. This process is carried out repeatedly for 

different tariff options, and in the end, the best option is selected [21]. Marcos Tostado developed a 

home energy management model to control thermal appliances. Various results obtained in an isolated 

house were analyzed using a diesel engine as a backup generator. The results indicated that the power 

generated from the standby generator can be reduced by 15% by operating heat-based devices in a flexible 

manner, while the amount of fuel consumed, fuel cost and CO2 emissions are improved by 12% [22]. In 

his study, the author designed an optimum size for a hybrid PV and battery storage system for a home 

power supply by considering reliability against grid interruptions. As a result, a new optimization 

framework was developed that aims to reduce electricity bills with system reliability [23]. The author 

developed an optimization problem based on time-of-use pricing. Using a powerful descriptive 

algorithm called the Gray Wolf Optimizer, which is compared to the Particle Swarm Optimization 

algorithm to show efficiency and reliability. The rooftop photovoltaic system is also integrated with 

the system for lower consumption costs [24]. In another study, a deep hierarchical reinforcement 

learning method was proposed for the scheduling of the energy consumption of smart home appliances 

and renewable energy resources, including the Energy Storage System and electric vehicle. As a result, 

two goals were achieved, the first of which is the scheduling of household appliances and the second 

being charging and discharging scheduling for ESS and EV [25]. Based on the combination of the 

Grey Wolf and Crow Search Optimization algorithms, a new home appliance scheduling system is 

proposed. The suggested technique is used to examine the cost of electricity, and the peak to average 

ratio reduction for household appliances in the presence of real-time electricity prices [26]. In 

reference [27], the authors analyzed the scheduling of home appliances to show the optimal approach 

to power consumption reduction. The scheduling system minimizes energy waste and the operational 

periods of time. The scheduling plan for the appliances was constructed using the C# programming 

language. The simulation findings demonstrate that energy usage in households may be scheduled, 

monitored, and managed in an efficient manner. In another study, the author presented a new model 

for home energy management. The proposed model uses multiple pricing schemes, namely time-to-

use (ToU) and real-time (RTP) next-day pricing. The energy cost reduction problem has been solved 

by multiple optimization techniques, namely Particle Swarming (PSO). The results showed the 

effectiveness of the model [28]. An Energy Management model was created by the author. It balances 

the amount of energy needed and the amount of energy that is available. Utility prices and customer 

satisfaction are taken into account when simulating different types of appliances in the home, such as 

non-shifted, shifted and controlled loads, to observe how they would work. PV energy resources, 

electric cars, and battery energy storage systems can also be used to produce electricity at certain times. 

The model successfully reduced power consumption while still maintaining end-user satisfaction [29]. 

A system for scheduling energy supply and load demand is developed wherein rooftop PV panels, 
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diesel generators, and energy storage devices are combined with grid electricity. To reduce daily energy 

costs and maintain high consumer comfort, the scheduling model utilizes mixed-integer linear 

programming (MILP) and “min-max” optimization methods. As a result, dynamic energy price signals 

were used to make day-ahead optimal scheduling decisions [30]. 

The development of sustainable supply chain models is very active at present, which leads to the 

integration of the concept of energy management with the sustainable development goals and, at the 

same time, consideration of all economic, environmental, and social factors. The author addresses the 

design of a sustainable closed-loop supply chain including suppliers, manufacturers, distribution 

centers, customer areas, and disposal centers with energy consumption in mind. To reach the goal of 

increasing the total profit, reducing energy consumption, and increasing the number of job 

opportunities [31]. The smart city concept proposes a revolutionary strategy for delivering energy in a 

city by the use of Artificial Intelligence (AI), renewable energy such as Photovoltaic (PV) technology, 

and Transformational Participation (TP) based on citizen incentive programs. Based on the experts' 

information, this study seeks to analyze the overall power consumption in Mashhad, Iran, using 

machine learning technologies and to propose dynamic solutions for encouraging residents' desire for 

renewable energy generation [32]. Energy shortages are a serious worry for the future growth of 

modern cities. The rising population increases waste output and energy consumption. This explains 

why both wealthy and developing countries must work for long-term growth. The author proposed an 

intelligent approach to connecting green building waste management and energy supply. Response 

Surface Methodology (RSM) and Artificial Intelligence are combined in the suggested framework [33]. 

In summary, the research gaps discovered by the literature review are as follows: 

1. Although there are several scheduling algorithms, to my knowledge, there is no model that links 

scheduling electrical appliances, temperature change, and consumer behavior. 

2. Although there are many similar uncertain models, this model predicts the energy generated by 

wind and solar systems and accordingly reduces energy consumption while maintaining consumer 

comfort. 

3. The model aims to minimize the daily energy bills considering demand response. 

2. System architecture 

The modeled system consists, firstly, a hybrid off grid system including a solar photovoltaic (PV) 

system, a wind turbine, and energy storage which provide power to the building. Second the most used 

residential appliances such as (air conditioning, water heater, Fridge, washing machine, dryer, Lighting 

and Dishwasher) which are explained in details in the next section. The impact of variables such as 

fluctuating ambient temperature and the number of end-users in a household on power consumption is 

analyzed. In order to reduce power costs, the off-grid supply system and electrical demand are 

controlled. To demonstrate the consumption level tariff, time-of-use electricity tariffs (off-peak, 

average-peak, and peak) were included. The renewable system is required to meet the electrical needs 

of a four-room home with one kitchen and one bathroom. Because renewable energy sources are 

intermittent, loads are supplied with the available energy and excess energy is stored for later use. The 

configuration of the proposed renewable energy-based micro grid is shown in Figure 1. 
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Figure 1. Hybrid micro grid system architecture. 

2.1. Off-grid Hybrid power system 

Stand-alone hybrid system technologies combine some renewable sources such as (photovoltaic (PV), 

wind, diesel, hydrogen, and fuel cell) and storage systems (battery, fuel cell) without connecting to the 

utility grid. These systems are used for rural electrification in places without grid-connected. However, 

these systems involve many generations of units to reduce the operation and maintenance costs, 

transmission lines, losses, and increase the power quality. This study investigated the optimal hybrid 

system design for a rural house. 

2.2. Wind system modeling 

Power generation from the wind resource mainly depends on wind speed, shaft height, and turbine 

characteristics. Wind speed at a particular height can be calculated from the following equation [20]: 

 u(h) = u(hg) (
h

hg
) (1) 

where 𝑢(ℎ) denotes wind speed at hub height h, u(hg) is the wind speed at the anemometer 

height (hg), and 𝜶 is the roughness factor which changes according to location and time. 

According to the turbine characteristics: 

 0 ≤ PW(t) ≤ Pw
max (2) 

 

Pw(t) = 0  if vf < vci  and  vf  > vco

Pw(t) = Prated if vr ≤  vf ≤ vco

Pw(t) = Prated  ×
vf−vci 

vr−vci 
  ifvci ≤ v_f ≤ vr

 (3) 

where is Pw is the output power of the wind turbine. Vci  represents Cut-in wind speed and vco 

represents Cut-off wind speed. Table 1 tabulates the wind turbine specification used in the modeled 

system. 
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Table 1. Wind turbine details. 

Wind power system Value 

Rated power (W) 6000 

Maximum power (W) 6200 

Rated AC voltage (V) 

Cut-in wind speed (m/s) 

Cut-off wind speed (m/s) 

Rated wind speed (m/s) 

Hub height (m) 

Life time (years) 

220/240 

3 

25 

12 

15 

20 

2.3. PV system modeling 

Knowing the solar radiation incident on a tilted panel (𝐻𝑡) and PV panel specifications, the PV 

system output power (𝑃𝑝𝑣) is calculated as follows: 

𝑃𝑝𝑣 = 𝐻𝑡(𝑡) × 𝑃𝑉𝐴 × 𝜇𝑐(𝑡)                         (4) 

here 𝜇𝑐(𝑡)  is the instantaneous PV module efficiency which can be estimated using the cell 

temperature, as stated in (5): 

𝜇𝑐(𝑡) = 𝜇𝑐𝑟⌈1 − 𝛽𝑡 × (𝑇𝑐(𝑡) − 𝑇𝑐𝑟)⌉                    (5) 

The symbols 𝛽𝑡 , Tc, and Tcr represent, respectively, temperature coefficient, actual cell 

temperature, and standard cell temperature (25 ℃). 

PVA in (4) is the total area of the solar PV array necessary to meet the load requirement. The PVA 

can be computed using Eq (6): 

𝑃𝑉𝐴 =
1

8760
∑

𝑃𝐿,𝑎𝑣(𝑡)𝐹𝑠

𝐻𝑡𝜂𝑐(𝑡)𝑉𝐹

8760
𝑡=1             (6) 

where 𝐹𝑠 is the safety factor and 𝑉𝐹 is the variability factor accounting for the influence of radiation 

fluctuations, 𝜂𝑐 represents the efficiency of the system [21]. The main specifications of the employed 

solar PV module are provided in Table 2. 

Table 2. PV module details. 

PV system  specification 

Maximum power at STC 350 W 

Voltage at maximum power 31 V 

Current at maximum power  

No. of cells  

Dimensions  

Lifetime  

Power tolerance  

8.5 A 

60 

1640 × 992 × 35 mm  

25 years 

0 + 5 W  
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2.4. Storage system modeling 

It is more difficult to maintain an energy balance when renewable generation is integrated into 

residential buildings. This might result in high frequency variations. Energy storage systems (ESS) are 

important to sustain the balance between sources and loads, as well as to supply power quality 

modification in the event of unexpected changes in voltage. Battery configuration, backup duration, 

temperature, battery capacity time, depth of discharge, and the required reserve power all impact the 

ESS rating. Eqs (5) and (6) express the battery’s charging and discharging schedule. 

                     𝑃𝐵𝐸𝑆(𝑡) = 𝑃𝑐ℎ(𝑡)  𝑖𝑓𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇(𝑡) ≥ 0                      (7) 

                     𝑃𝐵𝐸𝑆(𝑡) = 𝑃𝑑𝑐ℎ(𝑡)  𝑖𝑓𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇(𝑡) < 0                     (8) 

where 𝑃𝑃𝑉 ,  𝑃𝑊𝑇  represent the output power of photovoltaic and wind systems,  𝑃𝑐ℎ  and 𝑃𝑑𝑐ℎ 

depicts the batteries power in charging and discharging mode respectively. 

BES can only work in one mode at any given time, either charging or discharging. The battery’s 

charging and discharging voltage is determined as follows: 

1- Charging mode: 

                           𝐸𝑐ℎ(𝑡) = (
𝑃𝑊𝑇(𝑡)+𝑃𝑝𝑣(𝑡)

𝜂𝑐𝑜𝑛𝑣
) ∗ ∆𝑡 ∗ 𝜂𝑐ℎ                   (9) 

𝐸𝑐ℎ represents the charged energy for every hour , and 𝜂𝑐𝑜𝑛𝑣 is the efficacy of the charging system  

                           𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1)(1 − 𝜎) + 𝐸𝑐ℎ(𝑡)               (10) 

2- Discharging mode: 

𝐸𝑑𝑐ℎ represents the discharged energy for every hour, and 𝜂𝑐𝑜𝑛𝑣 is the efficacy of the charging system 

                         𝐸𝑑𝑐ℎ(𝑡) = (
−𝑃𝑊𝑇(𝑡)−𝑃𝑝𝑣(𝑡)

𝜂𝑐𝑜𝑛𝑣
) ∗ ∆𝑡 ∗ 𝜂𝑐ℎ                    (11) 

                         𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1)(1 − 𝜎) − 𝐸𝑐ℎ(𝑡)                   (12) 

SOC(t): the state of charge at time t 

SOC (t − 1): the state of charge at time t − 1 

Table 3. Battery system details. 

Battery specification 

Nominal capacity 2 V/1000 Ah 

Maximum depth of discharge 80% 

efficiency 

Usable capacity 

Voltage range 

Nominal charging power 

Lifetime (Years) 

86% 

4.8 kWh 

160–230 V 

3,200 W 

5 
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3. Modeling of smart home appliances 

The control panel shown in Figure 2 is modeled to control the operation of household appliances. 

Firstly, the characteristics of the household appliances, the number of individuals, and weather data 

such as temperature and wind speed are inputted to create a correlation between energy consumption 

and people’s activity. Concurrently, the generated power from the wind and solar systems as well as 

the battery state are determined. The modeling of the system, including home appliances such as lights, 

washing machines, water heaters, air conditioners, thermostats, and refrigerators, was accomplished 

using MATLAB/Simulink. 

 

Figure 2. Control system of home appliances. 

Household appliances modeling is highly dependent on the thermal properties of electrical 

devices, as the thermal response of these appliances impacts their energy consumption (air conditioner, 

water heater, refrigerator). Furthermore, it is generally understood that the quantity of electricity 

consumed varies significantly depending on factors such as the size of the home, the number of family 

members, the ambient temperature, and the energy efficiency of the appliances in use. The domestic 

thermal system is described by Equations from 14 to 18. In Eq (14), heat capacity (C) is the amount of 

energy required to increase the system temperature, Q is the transferred heat to the system, m is the 

mass, and ∆T is the temperature variation during a particular time interval. The heat capacity can be 

calculated using Eq (15) 𝐶𝑃  symbolizes the volumetric heat capacity at specific heat and 𝜌 

represents the density. 𝐶𝑣  in (16) is the heat capacity per unit volume. On the other hand, the 

transferred heat per unit area, in consideration of stationary heat conduction through a large surface 

with a thickness ∆𝑋 = 𝐿, can be calculated using Eqs (17) and (18) [25]. 

                           𝐶 =
𝑄

𝑚Δ𝑇
                                       (13) 

                            𝐶𝑣 =
𝑄

𝑉Δ𝑇
                                       (14) 
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                              𝐶𝑣 = 𝜌 × 𝐶𝑝 (
𝐽

𝑚3𝐾
)                              (15) 

                             
𝑞

𝐴
= −𝑘

𝑑𝑇

𝑑𝑥
                                     (16) 

                              𝑞 = 𝑘𝐴
∆𝑇

𝐿
                                     (17) 

3.1. Modeling of air conditioning and water heating system 

The air conditioner (AC) is programmed to turn on when the temperature is higher than a specified 

set point and turn off when the room reaches the desirable temperature. In contrast, the heating system 

switches on if the indoor temperature (𝜃𝑖𝑛) is lower than the set point and switches off otherwise. 𝜃𝑖𝑛 

strongly affects the power consumed by the AC and heating system. The indoor temperature can be 

determined from the following equations [26]: 

 𝜃𝑖𝑛 = 𝜃𝑖𝑛(𝑡 − 1) + ⌈𝑣𝑎𝑐𝐴(𝑡) − 𝑢𝑎𝑐𝑆𝑎𝑐(𝑡) + 𝐼𝑎𝑐(𝜃𝑜𝑢𝑡(𝑡) − 𝜃𝑖𝑛(𝑡 − 1))⌉, ∀𝑡 ∈ 𝑇 (18) 

 𝜃𝑖𝑛 = 𝜃𝑖𝑛(𝑡 − 1) + ⌈𝑣ℎ𝑡𝐴(𝑡) − 𝑢ℎ𝑡𝑆ℎ𝑡(𝑡) + 𝐼ℎ𝑡(𝜃𝑜𝑢𝑡(𝑡) − 𝜃𝑖𝑛(𝑡 − 1))⌉, ∀𝑡 ∈ 𝑇 (19) 

 𝑆𝑎𝑐(𝑡) + 𝑆ℎ𝑡(𝑡) ≤ 1, ∀𝑡 ∈ 𝑇 (20) 

In practice, 𝜃𝑖𝑛 depends on the ambient temperature effect on the air conditioner v𝑎𝑐 and the heater 

vℎ𝑡 at any instant of time. A(t) is the occupants’ house activity level. u𝑎𝑐 and uℎ𝑡 are the cooling and 

heating effects of on-state, respectively. 𝐼𝑎𝑐 and 𝐼ℎ𝑡 are the impacts of outdoor and indoor temperature 

changes on the AC and heating systems, respectively. The graphical interface of the AC and water 

heater is shown in Figure 3. Figure 4 illustrates the equivalent thermal circuit of the water heater. 

 

Figure 3. AC and water heating systems models. 
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Figure 4. Circuit model of water heater [38]. 

3.2. Fridge operation constraint 

A standard refrigerator has mechanical elements that create a cold environment. The components 

include an evaporator, compressor, expansion valve, throttling device, and condenser, all of which 

manage the refrigeration cycle and maintain the desired level of cooling. The following formula 

represents the mathematical model of the refrigerator: 

          𝜃𝑓𝑟 = 𝜃𝑓𝑟(𝑡 − 1) + ⌈𝑣𝑓𝑟𝐴𝑓𝑟(𝑡) − 𝑢𝑓𝑟𝑆𝑓𝑟(𝑡) + 𝛼𝑓𝑟⌉, ∀𝑡 ∈ 𝑇                  (21) 

where 𝜃𝑓𝑟 stands for the inner temperature of the fridge at a time that is dependent on a previous state 

𝜃𝑓𝑟  (𝑡 − 1). Fridge temperature 𝐴𝑓𝑟(𝑡) is directly related to the house activity level i.e., as the 

consumer activity increases, cooling demand also increases; thus, power consumption is intensified. 

𝑣𝑓𝑟 represents the fridge off-state temperature effect, 𝑢𝑓𝑟 represents the fridge on-state temperature 

effect, and 𝑆𝑓𝑟(𝑡) describes the switching control of the fridge. The symbol 𝛼𝑓𝑟  symbolizes the 

heating impact of the off mode on the refrigerator. It is worth mentioning that the intensive usage of 

the fridge may raise the indoor temperature above the set point, resulting in higher energy consumption 

to cool it down once again. Figure 5 presents the graphical user interface to control the refrigerator. 

 

Figure 5. Graphical user interface of the refrigerator. 
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3.3. Operational constraints of washing machine and dryer  

The washer and dryer are considered to be controllable loads. The formulae below are used to 

constrain the machine’s operation under different conditions: 

 𝑢𝑖(𝑡) − 𝑣𝑖(𝑡) = 𝑆𝑖(𝑡) − 𝑆𝑖(𝑡 − 1), ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼 (23) 

 𝑢𝑖(𝑡) + 𝑣𝑖(𝑡) ≤ 1, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼 (24) 

 ∑ 𝑆𝑖𝑡∈𝑇𝑖
(𝑘) = 𝑂𝑖

𝑟𝑡, ∀𝑡 ∈ 𝑇 (25) 

 ∑ 𝑆𝑖
𝑡+𝑂𝑖

𝑚𝑠𝑡

𝑘=𝑡
(𝑘) ≤ 𝑂𝑖

𝑚𝑠𝑡 + 𝑀(1 − 𝑢𝑖(𝑡)), ∀𝑡 ∈ 𝑇 (26) 

 ∑ 𝑢𝑖
𝑡
𝑘=𝑡−𝑈𝑖+1

(𝑡) ≤ 𝑆𝑖(𝑡), ∀𝑡 ∈ 𝑇 (27) 

 ∑ ui
t
k=t−Di+1

(𝑡) ≤ 1 − 𝑆𝑖(𝑡), ∀𝑡 ∈ 𝑇 (28) 

Regarding the operation constraints stated in Eqs (23) and (24), 𝑆𝑖(𝑡) is the switching mode of 

both machines; it is 1 in the case of the machine being turned on and 0 when turned off. 𝑢𝑖(𝑡) and 𝑣𝑖(𝑡) 

are, respectively, the start and stop of the same machine (i) at a specific time (t). Restraining the 

appliance to function at a specified operation time 𝑂𝑖
𝑟𝑡 is accomplished with Eq (25). Equation (26) 

states the operation constraints at a maximum time 𝑂𝑖
𝑚𝑠𝑡 where m is a positive integer. Limiting the 

device to operate between an upper time 𝑈𝑖 and a lower time D𝑖 is achieved with Eqs (27) and (28). 

The user-defined interface of both machines is shown in Figure 6. 

 

Figure 6. Graphical user-defined interface of the washing machine and dryer. 

3.4. Lighting 

Incandescent lamps, compact fluorescent lights (CFL), and fluorescent tubes are commonly used 

in buildings. In fact, most residential homes use a combination of these types. Although CFLs and 
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fluorescent tubes are initially expensive, they work for longer and with greater efficiency, bringing 

about significant long-run savings. The simulation of the lighting system has also been executed, with 

the graphical user-defined interface being shown in Figure 7. Input data include the number of lights, 

power rating, and operation time 

 

Figure 7. GUI of the lighting system. 

3.5. Dishwasher modeling 

The dishwasher (DW) draws a large amount of power over a short period, so it is important to be 

involved within the demand management program [23]. A typical graphical interface and operation 

process for DW are shown in Figure 8. Firstly, the DW is filled up with water for about 15 minutes, 

during which it consumes a constant power P1. Then, it heats the water, thus consuming a different 

amount of power P2. The duration of P2 varies depending upon the water temperature compared to the 

set point counterpart. Next, the plates are sprayed with hot water and detergent; rinse water and 

draining then take place. This consumes a different amount of power P3. According to [24], 55% of 

the consumed energy by DW is accounted for heating water. The temperature profile of DW is 

exhibited in Figure 9. 
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Figure 8. GUI of dishwasher. 

 

Figure 9. Temperature profile of a dishwasher. 

3.6. Smart thermostat 

The intelligent thermostat accompanies heating and cooling devices. Such a thermostat is a 

regulator programmed to adjust the temperature over the course of the day. They are efficiently used 

to regulate a house’s temperature all year round. A scheme of the programmable thermostat is shown 

in Figure 10. Moreover, the user can specify the operation period of the device. 
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Figure 10. Programmable thermostat. 

4. Data and system simulation 

The goal of this study was to find out how much consumed power in a single household, taking 

into account factors like the temperature inside and outside, the number of family members, the size 

of the house, electrical appliances time of use and residence location. The study was conducted based 

on data for two scenarios, one on a winter day and the other on a summer day. Renewable energy 

generation systems have been simulated, and temperature, solar radiation, and wind speed data are 

entered for each scenario to obtain the maximum power. The following section explains in detail each 

scenario. 

4.1. Scenario I 

In this case, we simulated household energy profiles on a 24-hour horizon in one summer day to 

create home EMSs by modeling optimal on/off decisions of the electrical appliances. The simulation 

takes into account power generation units such as PV and wind generators, as well as battery energy 

storage which will be delivered to the building loads. The output power varies over time because of 

the change of wind speed and solar irradiation. All the appliances and power sources were modeled 

using MATLAB Simulink. The Household has four rooms, one kitchen, a bathroom and a balcony. 

Table 4 below states the contraction of the house with each room having a number of appliances as 

presented in Table 2. Figures 11 to 14 show the power generation data from (the PV, WT, ESS), and 

the weather temperature, respectively. 

Table 4. Rooms dimensions of the house under study. 

Room 1 Room 2 Room3 Room 4 

Length 7 m length 3.5 m Length 4 m Length 3 m 

Width 6 m Width 4 m Width 4 m Width 3 m 

Height 2 m Height 2 m Height 2 m Height 2 m 

Windows: yes Windows: yes Windows: yes Windows: yes 

Length 4 m 

Width 1.5 m 

Length 1 m 

Width 1 m 

Length 1 m 

Width 1 m 

Length 1 m 

Width 1 m 
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Table 5. Electrical appliances specifications and operation time. 

Refrigerator Air conditioner Water heater Washing machine 

Power 350 W 

Compressor Eff = 0.88 

Set point = 5 ℃ 

No door openings 

- Morning: 4 h 

- Afternoon: 4 h 

- Evening: 4 h 

- Heat loss: 9 Wh 

Capacity: 48,000 (BTU) 

Voltage: 230 V 

Current: 15.5 A 

Power: 4,450 W 

- Type: Gas 

- Inlet Water Temp.: 10 ℃ 

- Supply Water Temp.:10 ℃ 

- Rated power: 40,000 BTU 

- Capacity: 184 liters 

- Efficiency = 62% 

 Set point = 55 ℃ 

Operation per day: 3 

Minutes per load: 60 min 

1st operation hour: 10:00 

2nd hour: 15:00 

3rd hour: 20:00 

Annual energy:154 kWh 

Type: Low efficiency 

Dishwasher Dryer CFL lighting Incandescent lighting 

Operation per day: 3 

Minutes per load: 120 

1st operation hour: 10:00 

2nd hour: 15:00 

3rd hour: 21:30 

Type: Low efficiency 

Annual energy: 280 kWh 

Operation per day: 3 

- Minutes per load: 120 

1st operation hour: 10:00 

2nd hour: 15:00 

3rd hour: 21:30 

- Morning turn on hour: 5:30 

- Turn on morning duration: 

2.5 h 

- Night turn on hours: 18:00 

- Turn on night duration: 4 h 

- Bulb rated power: 20 W 

- Number of bulbs = 6 

Morning turns on hour: 6:00 

- Turn on morning duration: 

1.5 h 

- Night turn on hours: 18:00 

- Turn on night duration: 3 h 

- Bulb rated power: 100 W 

- Number of bulbs = 3 

 

Figure 11. PV system output power over a typical summer day. 

 

Figure 12. Wind turbine output power over a typical summer day. 
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Figure 13. Output power of battery system. 

 

Figure 14. Ambient temperatures over the considered summer day. 

4.2. Scenario II 

During a one winter day, the specified household appliances and generating systems described in 

the first scenario are simulated and managed again. The user behavior in terms of power usage changes 

when the weather conditions (ambient temperature and humidity) fluctuate. Similarly, seasonal 

variations in weather conditions impact the production of renewable units, which must be taken into 

account by the management model. Figures 15, 16 and 17 show the ambient temperature, PV output 

power, and wind systems. The scheduling of household appliances is based on user preference. This 

mode of operation involves an hourly computation of consumed and required power. 

 

Figure 15. Ambient temperatures throughout a typical winter day. 
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Figure 16. PV system output power over a typical winter day. 

 

Figure 17. Wind turbine output power over a typical winter day. 

5. Results and discussion 

The tasks performed by household appliances can be programmed and scheduled to start and stop 

at a specific time while considering a typical smart home with a water heater, lights, washing machine, 

dryer and refrigerator. Assuming residents usually arise at 6 am and since solar PV energy is available 

only for a limited number of hours during the day, and that wind energy can be obtained throughout 

the entire day, the operation of some loads has been shifted to the daytime period to ensure that there 

is sufficient power. 

The optimal hybrid system is designed to supply the household with a full load. Due to the fact 

that wind energy is produced for most of the day and PV energy can only be produced during daytime 

hours, batteries are required to provide electricity during the hours when no solar energy is available. 

In this study, the installation costs for solar energy systems are lower than those for wind energy 

systems. Greater fluctuation in wind power generation requires additional storage capacity to deal with 

uncertainty and ensure system reliability. Therefore, the most reliable hybrid power system design 

incorporates both wind, photovoltaic generation and storage systems. 
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5.1. Scenario I 

The suggested scheduling method is applied on a smart home in two distinct scenarios, each of 

which includes the various configurations listed in Table 4. Simulations are run on a one-day 

scheduling horizon with H = 24 one-hour time periods. 

Different temperature values and numbers of consumers were simulated to demonstrate the 

efficacy of the model. The obtained results show that the power consumption rates of electrical 

appliances depends principally on customer behavior and fluctuations of indoor and outdoor ambient 

temperatures. Figure 18 shows the consumed power of the dishwasher over an entire summer day. As 

can be seen, the machine is switched on three times for two complete hours each starting from 10:00 

until 23:30. The three basic operational cycles for the dishwasher are washing, rinsing, and drying. 

The first 30 minutes are subject to the wash cycle; the rinse cycle begins between the 60th and 80th 

minutes. The remaining time is for the drying cycle. The pre-wash phase, which lasts for the first 10 

minutes of the wash cycle, includes the water fill and spray. At a 0.85 power factor, the dishwasher 

consumes 1350 W. 

 

Figure 18. 24-hour power consumption of dishwasher. 

Figure 19 exhibits 24-hour power consumption, water use, and water heater temperature. The 

power consumption amounts maximally to 10 kW. This amount is drawn when the heater heats the 

water to raise its temperature from 50 to 60 ℃. The figure shows that the water heater runs throughout 

the day, reflecting the user activity. The water consumption ranges from 20 to 100 liters a day. 
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Figure 19. Water heater power consumption a period of one day. 

Figure 20 illustrates the consumed power by the air conditioner accompanied by the indoor and 

outdoor temperature over the course of a day. It is clear from the figure that as the ambient temperature 

increases, the operation time of the AC also increases. The AC is activated starting from 5:00. It can 

be observed that the AC consumes as much as 4 kW when the compressor runs. When the sensed room 

temperature is higher than the specified temperature, the compressor operates for almost 15 minutes 

to bring the temperature down to the programmed set point. The compressor’s operation time (Ton) is 

governed by the temperature difference between ambient and indoor set point temperatures. The 

controller shuts down the compressor once the temperature reaches the comfortable specified value. 

 

Figure 20. Performance of an air conditioner over a day. 
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Figure 21 presents the power consumption tendency of the refrigerator for 24 hours. The 

consumed power during its on-state is about approximately 350 W at 0.88 PF. The regular turn-on 

time is 15 minutes, and the off-time is about 45 minutes if the refrigerator door is kept closed. It can 

also be noticed that the indoor temperature ranges from 1.5 ℃ to 7 ℃, subject to the door opening. 

 

Figure 21. Refrigerator performance profile over a summer day. 

The operational characteristics of the washing machine are shown in Figure 22. The machine has 

three operational phases: wash, rinse, and spin. During the first minute of the wash cycle, the washing 

machine is filled with water, drawing 20 to 40 W. Various motor speeds occur during the wash cycle, 

requiring between 120 and 180 W. The rinse stage then follows, where the machine spins at varying 

speeds. The spinning phase is the most power-consuming cycle during which the machine consumes 

exactly 200 W at 0.85 PF. The three processes mentioned above are simulated in one period three 

times a day. 

 

Figure 22. Washing machine power consumption over a day. 

The simulated lighting system uses two types of lamps (incandescent and CFL). As presented in 

Figure 23, during the first 25 minutes, the consumed power amounts to 360 W. Consumption then rises 
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to approximately 480 W, lasting for 1.5 hours. It can clearly be seen that the lighting load is intensified 

in the afternoon starting from 15:00 to reach its greatest value at 18:00 at 480 W. The proposed scenario 

assumes a partial alleviation by the consumer at 21:00 as a result of reducing the consumption to 300 W, 

reaching a total shutdown at 23:00. 

 

Figure 23. Power consumption profile of lighting system over a day. 

5.2. Scenario II 

The meteorological parameters, i.e., temperature, wind speed, and solar irradiation of a winter 

day, were introduced to obtain a realistic output power from the PV and WT systems. A noticeable 

change in energy consumption and consumer behavior was observed. Compared with the first scenario, 

it is found that the consumption has decreased to approximately 35%. The power and water 

consumption of the water heater is shown in Figure 24. It can be observed that the power consumption 

increased as compared to the first case, reaching 10 kW on average. The energy consumption reaches 12 

kW during some operational periods. Figure 25 shows a different consumption pattern for the lighting 

system due to the decrease in ambient temperature. Compared to the first case, a general reduction in 

electricity consumption is experienced. Attributed to the home activity of the consumer, a few lamps 

were used in the evening with a maximum aggregate consumption of 140 W between 15:00 and 

midnight. 

 

Figure 24. Water heater consumption profile, case II. 
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Figure 25. Lighting system usage pattern, case II. 

The air conditioner operational status is illustrated in Figure 26. It can be observed that the room 

temperature is low throughout the day, and there is almost no drawn power by the AC because it is in 

standby mode. Figure 27 shows the operational characteristics of the fridge. The consumed power is 

reported as 350 W for 15 minutes, and the indoor temperature ranges between 2 ℃ and 6.8 ℃. 

 

Figure 26. Air conditioner operational results, case II. 

 

Figure 27. 24-hour operational characteristics of the refrigerator, case II. 
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Figures 28 and 29 present the power consumption pattern for the washing machine and 

dishwasher, respectively. There is a very significant difference between the two appliances in terms of 

power use; the washing machine consumes as little as 200 W, whereas the dishwasher draws 3,200 W. 

The washing machine is used once compared to the three operational periods in the first scenario. This 

leads to a decrease in overall power consumption. Due to the water heating requirement, the consumed 

power by the dishwasher exceeded 3,000 W in comparison to less than 1,400 W in the first scenario.  

 

Figure 28. Washing machine operation throughout a full day, case II. 

 

Figure 29. Power consumption by the dishware machine, case II. 

Total electrical energy consumption in a typical summer day for three demand classes is illustrated 

in Figure 30. Interestingly, the off-peak period saw the highest energy consumption with 30.51 kWh. 

During the mid-peak period, the consumed power reached 13.62 kWh, while during the on-peak 

period, 17.77 kWh was consumed. The figure indicates that consumers apply a demand management 

strategy to lower their electricity bills. This is clear from the shifted electric loads to the off-peak time. 

It can also be observed that the consumed power is affected by the number of family members. 

Influenced by the individuals’ activities, the 2-person family consumes approximately 25.46 kWh 

during the off-peak period instead of more than 30 kWh consumed by a 5-person family 
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Figure 30. Total electricity consumption in a typical summer day. 

On the winter day, as shown from Figure 31, there is a significant increase in power consumption 

by the larger family compared to its consumption in the summer. Contrastingly, a decrease in power 

consumption for the smaller family can be clearly noticed. This is attributed to the reduction in ambient 

temperature in addition to people’s behavior in using electrical appliances. For example, during the 

off-peak period, consumption decreased from 53.69 kWh to only 16.4 kWh. Similarly, consumption 

reduced from 30.34 kWh to 9.2 kWh in the mid-peak period and from 22.84 kWh to 4.63 kWh in the 

on peak-time. Moreover, being an economic practice, this reduction in power consumption also helps 

manage the available energy sources. 

 

Figure 31. Total electricity consumption in a typical winter day. 

The table below shows the cost of energy consumption and average hourly consumption for three 

periods (off peak, mid peak and on peak). Consumption was highest during off peak times (30.51 kWh). 

During mid peak times, the consumed power was 13.62 kWh. The power consumption during peak 

demand times was approximately 17.77 kWh. Because the end user tends to use electrical appliances 

at low electricity price tariffs, it becomes clear from the table that the consumer shifts some electric 

devices to off peak times. Table 5 illustrates the electricity consumption for Case 1. 
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Table 6. Electricity consumption at case (1) with 5 persons. 

Electricity consumption Electricity (kWh) Cost ($) 

Off peak 30.51 1.89 

Mid peak 13.62 1.25 

On peak 17.77 1.92 

Table 7 shows electricity consumption in the first case with the same specifications and factors, 

but with only a change in the number of family members where it was reduced from five persons to 

two persons, which led to a decrease in the rate of consumption in the three periods with 25.46 kWh 

consumed off peak, 13.28 kWh mid peak, and 15.35 kWh being consumed during peak times. 

Table 7. Energy consumption at case (1) with 2 person. 

Energy consumption Energy (kWh) Cost ($) 

Off peak 25.46 1.85 

Mid peak 13.28 1.22 

On peak 15.35 1.66 

In a comparison between the energy consumption in the second cases, we noticed a significant 

decrease in the rate of consumption due to the decrease in weather temperature and the change in the 

behavior of using electrical appliances. For example, off peak the consumption decreased from 25.46 kWh 

to 16.4 kWh. During mid peak times, consumption decreased from 13.28 kWh to 9.2 kWh. During 

peak times, consumed power decreased from 15.35 kWh to 4.63 kWh. This reduction of power 

consumption leads to increases in cost savings, as shown in Table 8. 

Table 8. Energy consumption at case (2) with 2 persons. 

Energy consumption Electricity (kWh) Cost ($) 

Off peak 16.4 1.02 

Mid peak 9.2 0.85 

On peak 4.63 0.5 

Table 9. Energy consumption at case (2) with 5 persons. 

Energy generation Electricity (kWh) Cost ($) 

Off peak 53.69 3.33 

Mid peak 30.34 2.79 

On peak 22.84 2.47 

In summary, solar energy is available only during a limited number of hours during the day, 

whereas wind energy can be obtained throughout the all day. So, the operation of some loads has been 

shifted to the daytime period to ensure that there is sufficient power from renewable energy system. 

Moreover, scheduling devices can contribute to reducing consumption, which in turn contributes to 

conserving energy or increases some necessary loads at other times. This model helps to determine the 

best power system design compared to the number of loads that must be operated per hour. 
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6. Conclusions 

Firstly, scheduling of household loads was carried out in this paper to reduce energy consumption 

and manage available energy sources, especially renewable ones. Household electrical appliances were 

simulated using MATLAB taking into consideration their usage profile in both the summer and winter 

seasons. The impact of indoor and outdoor temperature variations and the number of consumers were 

also examined. It is concluded that both factors, i.e., the temperature and the number of family 

members, have a significant impact on the rate of electricity consumption. Large families and 

increasing surrounding temperatures certainly increase power consumption. However, consumption 

can be significantly reduced by applying an effective management strategy in addition to changing 

consumer behavior. Practical benefit from this work is the consumer can control and manage 

household loads based on the available energy from the wind and solar systems. There is also the 

possibility of scheduling loads at different times to conserve energy and use only what is necessary. 

Secondly, this model has proven effective in simulating and controlling the work of household 

appliances. An energy management algorithm is implemented and evaluated to help the end-user to 

create schedules and to determine any required renewable energy for existing appliances. The 

limitation of this work can be concluded as follows, determinants of renewable energy generation and 

consumption can vary based on weather data and consumer consumption priority, for this reason the 

fast change in input weather and end user behavior make the model work slow. As future work, the 

operation of electrical loads will be scheduled based on the available energy at a particular hour by 

using particle swarm optimization (PSO) and genetic (GA) algorithms and finally comparing with the 

current results. 
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