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Abstract: This paper analyzes the effect of meteorological variables such as solar irradiance and
ambient temperature in addition to cultural factors such as consumer behavior levels on energy
consumption in buildings. Reducing demand peaks to achieve a stable daily load and hence lowering
electricity bills is the goal of this work. Renewable generation sources, including wind and
Photovoltaics systems (PV) as well as battery storage are integrated to supply the managed home load.
The simulation model was conducted using Matlab R2019b on a personal laptop with an Intel Core 17
with 16 GB memory. The model considered two seasonal scenarios (summer and winter) to account
for the variable available energy sources and end-user electric demand which is classified into three
demand periods, peak-demand, mid-demand, and low-demand, to evaluate the modeled supply-
demand management strategy. The obtained results showed that the surrounding temperature and the
number of family members significantly impact the rate of electricity consumption. The study was
designed to optimize and manage electricity consumption in a building fed by a standalone hybrid
energy system.
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1. Introduction

In recent years, energy management in buildings has become crucial to reducing excessive
consumption and hence the end-user electricity bill. An energy management system can control
lighting, heating, cooling, and home appliances in an optimal manner. The literature contains numerous
studies and tools developed to reduce energy consumption and conserve available power. The authors
in [1] studied the effect of household consumption, mainly the use of water heaters for long periods,
and demonstrated the ability to employ alternative energy sources to supply these high loads. The study
showed the importance of integrating renewable energy (RE) sources to supply the electrical loads of
buildings. The Home Energy Management System (HEMS) is a system that monitors and controls the
operation of a considerable number of electrical appliances to save energy and reduce costs. The Single
Knapsack approach was designed to effectively manage renewable energy sources and storage systems.
Future demand load forecasting was also carried out to determine the needed power generation during
periods of high demand [2].

An intelligence system called Multi-Agent System (MAS), consisting of several collaborative
environmental agents, was developed to improve building power productivity and optimize energy
consumption [3]. Moreover, MAS is an effective tool in load control, offering optimal use of home
appliances. Real-time management of power consumption was developed, taking into account users’
desires and the number of electrical home appliances. Through an artificial intelligence algorithm, a
group of devices was scheduled in response to demand and electricity prices [4]. The authors proposed
an advanced technique that provides communication and control between the grid and consumers
because the residential sector is regarded as a high electricity consumer. Thus, consumers will take
advantage of price variations in electricity to save energy and money [5]. In another development, a
new energy management algorithm has been proposed for smart homes using energy supplied from
multiple energy sources. The management strategy was applied on a real home to reduce its electricity
bill utilizing a multi-price tariff. The obtained results demonstrated the effectiveness of the strategy in
controlling the amount of power being consumed [6].

Demand response programs are used to reduce peak demand by managing large loads on the
consumer’s side. The authors in [7] presented a new approach for scheduling home loads and
renewable energy RE units to reduce the use of conventional sources. The algorithm’s reliability was
verified with a real case study which demonstrated that by using high-efficiency appliances, the
amount of power consumed by a building can be reduced. Another study investigated various models
to explain the operation of a refrigerator during the cooling and heating phases. The models were built
using actual data from a home refrigerator [8]. Data processing, modeling and parameter determination
were carried out using MATLAB [9]. Additionally, the author reviewed previous research on home
energy management systems (HEMS), including demand response (DR) programs, smart technologies,
and load scheduling controllers. The use of artificial intelligence for load scheduling is also reviewed [10].
An up-to-date review along with a comparative analysis of recent innovations related to building
energy management systems is provided in [11]. In [12], an energy distribution system based on UK
electricity pricing was developed. Based on data from 30 homes in three price ranges, the model was
tested. The model was able to adapt to the price shift and save money by reducing energy consumption.

Recently, as the availability of renewable energy has grown and the performance of small-scale
storage systems has improved greatly, a great amount of research has been conducted to solve the home
energy scheduling problem while taking into account how well distributed generation and storage can
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work together. However, the goals of optimizing household energy activities are to use as much locally
produced renewable energy as possible and to manage storage charging and discharging schemes in
the most efficient manner.

In terms of the literature, this work makes two contributions. First, the study suggests the
intelligent operation of home appliances based on a combination of renewable energy sources, such as
a rooftop photovoltaic (PV) system, a wind energy system, and batteries based on nonlinear energy
pricing profiles. Second, the study suggests the development of appliance operation scheduling based
on available power to reduce electricity consumption while maintaining energy sustainability. As a
result, unlike previous research, the end-user’s goal is to produce and/or store energy at the appropriate
times and in the required amounts in order to achieve cost reduction rather than simply relying on
renewable energy.

The contribution of this paper is as follows:

» This work analyzes the effect of temperature change and the number of consumers on daily
electricity consumption. A renewable energy system consisting of wind, photovoltaic (PV), and
batteries was included to satisfy the energy demand all day round.

* The home devices were simulated to analyze the dynamic variation of consumption under the
influence of weather and consumer activities.

* Optimal load management was applied to reduce the power consumption considering the
available amount of RE at a particular hour.

The remainder of the paper is organized with Section 2 presenting Materials and Methods. The
modeling of smart home appliances is presented in Section 3. Data and system simulation is explained
in Section 4. The results and discussion are found in Section 5 and finally the conclusion is presented
in Section 6.

1.1. Literature review

A hybrid optimization method that combines Differential Evolution and Grey Wolf algorithms
with real-time pricing was proposed in [13]. Based on the collected data from the utility, shifting loads
to low-price hours was applied. The study presented an operation scheduling for home appliances
connected via a wireless system. The wireless receiver acquires real-time energy pricing from a smart
meter and based on the price sends a signal to the controller to switch off or on some appliances. Xiong
et al. [14] adopted a communication system connected to electrical appliances to allow the end-user to
manage their power consumption and, hence, keep overall demand below a target level. The authors
in [15] developed an algorithm that shifts loads to off-peak or low-energy prices hours, with the results
indicating that the algorithm worked with high reliability and efficiency. In another study, based on user
comfort, a multi-objective optimization technique for the home energy management system (HEMS)
was developed to minimize electricity costs while maintaining user satisfaction [16]. In [17], electrical
appliances were simulated in order to monitor their operating times. Priority was given to wind and
solar energy in feeding the loads in the building. Each appliance was mathematically modeled in
MATLAB/Simulink. The authors in [18] use the time-varying queueing method to model end-users
and their respective electrical devices. Consumer loads generated by the queueing model are then
summed to build the load curve. The method demonstrated its effectiveness in scheduling electrical
loads without disturbing customer comfort. An open-source Python script was utilized in [19] to
generate a home load schedule. The optimization algorithm was proposed as a heuristic technique for
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energy consumption scheduling. The proposed algorithm schedules the consumption based on two
power pricings, namely critical-peak-price and real-time-price, both of which are used to determine
the price of electricity at peak times. In reference [20], the author proposed an effective multi-objective
solution based on the Mixed Integer Linear Programming formulation. To achieve its outcomes, the
methodology uses lexicographic optimization and secularizing functions. This feature makes the
program ideal for Home Energy Management in terms of energy costs. The results demonstrated the
efficacy and efficiency of the method. Another study investigated the optimal use of electrical
appliances by using MILP optimization to determine the most appropriate tariff for smart consumers
and optimal operation hours. In addition, optimum scheduling of a group of devices on different days
can be obtained from aggregation of historical load data. This process is carried out repeatedly for
different tariff options, and in the end, the best option is selected [21]. Marcos Tostado developed a
home energy management model to control thermal appliances. Various results obtained in an isolated
house were analyzed using a diesel engine as a backup generator. The results indicated that the power
generated from the standby generator can be reduced by 15% by operating heat-based devices in a flexible
manner, while the amount of fuel consumed, fuel cost and CO; emissions are improved by 12% [22]. In
his study, the author designed an optimum size for a hybrid PV and battery storage system for a home
power supply by considering reliability against grid interruptions. As a result, a new optimization
framework was developed that aims to reduce electricity bills with system reliability [23]. The author
developed an optimization problem based on time-of-use pricing. Using a powerful descriptive
algorithm called the Gray Wolf Optimizer, which is compared to the Particle Swarm Optimization
algorithm to show efficiency and reliability. The rooftop photovoltaic system is also integrated with
the system for lower consumption costs [24]. In another study, a deep hierarchical reinforcement
learning method was proposed for the scheduling of the energy consumption of smart home appliances
and renewable energy resources, including the Energy Storage System and electric vehicle. As a result,
two goals were achieved, the first of which is the scheduling of household appliances and the second
being charging and discharging scheduling for ESS and EV [25]. Based on the combination of the
Grey Wolf and Crow Search Optimization algorithms, a new home appliance scheduling system is
proposed. The suggested technique is used to examine the cost of electricity, and the peak to average
ratio reduction for household appliances in the presence of real-time electricity prices [26]. In
reference [27], the authors analyzed the scheduling of home appliances to show the optimal approach
to power consumption reduction. The scheduling system minimizes energy waste and the operational
periods of time. The scheduling plan for the appliances was constructed using the C# programming
language. The simulation findings demonstrate that energy usage in households may be scheduled,
monitored, and managed in an efficient manner. In another study, the author presented a new model
for home energy management. The proposed model uses multiple pricing schemes, namely time-to-
use (ToU) and real-time (RTP) next-day pricing. The energy cost reduction problem has been solved
by multiple optimization techniques, namely Particle Swarming (PSO). The results showed the
effectiveness of the model [28]. An Energy Management model was created by the author. It balances
the amount of energy needed and the amount of energy that is available. Utility prices and customer
satisfaction are taken into account when simulating different types of appliances in the home, such as
non-shifted, shifted and controlled loads, to observe how they would work. PV energy resources,
electric cars, and battery energy storage systems can also be used to produce electricity at certain times.
The model successfully reduced power consumption while still maintaining end-user satisfaction [29].
A system for scheduling energy supply and load demand is developed wherein rooftop PV panels,
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diesel generators, and energy storage devices are combined with grid electricity. To reduce daily energy

costs and maintain high consumer comfort, the scheduling model utilizes mixed-integer linear

programming (MILP) and “min-max” optimization methods. As a result, dynamic energy price signals

were used to make day-ahead optimal scheduling decisions [30].

The development of sustainable supply chain models is very active at present, which leads to the
integration of the concept of energy management with the sustainable development goals and, at the
same time, consideration of all economic, environmental, and social factors. The author addresses the
design of a sustainable closed-loop supply chain including suppliers, manufacturers, distribution
centers, customer areas, and disposal centers with energy consumption in mind. To reach the goal of
increasing the total profit, reducing energy consumption, and increasing the number of job
opportunities [31]. The smart city concept proposes a revolutionary strategy for delivering energy in a
city by the use of Artificial Intelligence (Al), renewable energy such as Photovoltaic (PV) technology,
and Transformational Participation (TP) based on citizen incentive programs. Based on the experts'
information, this study seeks to analyze the overall power consumption in Mashhad, Iran, using
machine learning technologies and to propose dynamic solutions for encouraging residents' desire for
renewable energy generation [32]. Energy shortages are a serious worry for the future growth of
modern cities. The rising population increases waste output and energy consumption. This explains
why both wealthy and developing countries must work for long-term growth. The author proposed an
intelligent approach to connecting green building waste management and energy supply. Response
Surface Methodology (RSM) and Artificial Intelligence are combined in the suggested framework [33].

In summary, the research gaps discovered by the literature review are as follows:

1.  Although there are several scheduling algorithms, to my knowledge, there is no model that links
scheduling electrical appliances, temperature change, and consumer behavior.

2. Although there are many similar uncertain models, this model predicts the energy generated by
wind and solar systems and accordingly reduces energy consumption while maintaining consumer
comfort.

3. The model aims to minimize the daily energy bills considering demand response.

no

System architecture

The modeled system consists, firstly, a hybrid off grid system including a solar photovoltaic (PV)
system, a wind turbine, and energy storage which provide power to the building. Second the most used
residential appliances such as (air conditioning, water heater, Fridge, washing machine, dryer, Lighting
and Dishwasher) which are explained in details in the next section. The impact of variables such as
fluctuating ambient temperature and the number of end-users in a household on power consumption is
analyzed. In order to reduce power costs, the off-grid supply system and electrical demand are
controlled. To demonstrate the consumption level tariff, time-of-use electricity tariffs (off-peak,
average-peak, and peak) were included. The renewable system is required to meet the electrical needs
of a four-room home with one kitchen and one bathroom. Because renewable energy sources are
intermittent, loads are supplied with the available energy and excess energy is stored for later use. The
configuration of the proposed renewable energy-based micro grid is shown in Figure 1.
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Figure 1. Hybrid micro grid system architecture.
2.1. Off-grid Hybrid power system

Stand-alone hybrid system technologies combine some renewable sources such as (photovoltaic (PV),
wind, diesel, hydrogen, and fuel cell) and storage systems (battery, fuel cell) without connecting to the
utility grid. These systems are used for rural electrification in places without grid-connected. However,
these systems involve many generations of units to reduce the operation and maintenance costs,
transmission lines, losses, and increase the power quality. This study investigated the optimal hybrid
system design for a rural house.

2.2. Wind system modeling

Power generation from the wind resource mainly depends on wind speed, shaft height, and turbine
characteristics. Wind speed at a particular height can be calculated from the following equation [20]:

u(h) = u(h,) (hl) (1)

where u(h) denotes wind speed at hub height h, u(hg) is the wind speed at the anemometer
height (hg), and a is the roughness factor which changes according to location and time.
According to the turbine characteristics:

0 < Py(t) < Py 2
Pw(t) =0 if vp<vy and vi > v,
Pw(t) = Prateq if vr £ vf < v 3)

ve—vci
Pw(t) = Prated .

ifvci <v_f<vr
VIr—vcl

where is Pw is the output power of the wind turbine. Vci represents Cut-in wind speed and v,
represents Cut-off wind speed. Table 1 tabulates the wind turbine specification used in the modeled
system.
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Table 1. Wind turbine details.

Wind power system Value
Rated power (W) 6000
Maximum power (W) 6200
Rated AC voltage (V) 220/240
Cut-in wind speed (m/s) 3
Cut-off wind speed (m/s) 25
Rated wind speed (m/s) 12

Hub height (m) 15

Life time (years) 20

2.3. PV system modeling

Knowing the solar radiation incident on a tilted panel (H;) and PV panel specifications, the PV
system output power (B,,,) is calculated as follows:

Pyy = H(t) X PVA X phe(6) 4)

here u.(t) is the instantaneous PV module efficiency which can be estimated using the cell
temperature, as stated in (5):

.uc(t) = Uer [1- B X (Tc(t) - Tcr)] (5)

The symbols fS;, T., and T, represent, respectively, temperature coefficient, actual cell
temperature, and standard cell temperature (25 °C).

PVA in (4) is the total area of the solar PV array necessary to meet the load requirement. The PVA
can be computed using Eq (6):

— _1 y8760 PLav(®Fs
Pya = 8760 <=1 Hin (t)Vp ©)

where F; is the safety factor and Vj is the variability factor accounting for the influence of radiation
fluctuations, 7, represents the efficiency of the system [21]. The main specifications of the employed
solar PV module are provided in Table 2.

Table 2. PV module details.

PV system specification
Maximum power at STC 350 W

Voltage at maximum power 31V

Current at maximum power 85A

No. of cells 60

Dimensions 1640 %992 %35 mm
Lifetime 25 years

Power tolerance 0+5W
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2.4. Storage system modeling

It is more difficult to maintain an energy balance when renewable generation is integrated into
residential buildings. This might result in high frequency variations. Energy storage systems (ESS) are
important to sustain the balance between sources and loads, as well as to supply power quality
modification in the event of unexpected changes in voltage. Battery configuration, backup duration,
temperature, battery capacity time, depth of discharge, and the required reserve power all impact the
ESS rating. Egs (5) and (6) express the battery’s charging and discharging schedule.

Pgps(t) = Pep(t)  if Ppy(t) + Pyr(t) =20 (7)
Pgps(t) = Pacn(t)  if Ppy(t) + Pyr(t) <O (8)

where Ppy, Pyr represent the output power of photovoltaic and wind systems, P., and P,
depicts the batteries power in charging and discharging mode respectively.

BES can only work in one mode at any given time, either charging or discharging. The battery’s
charging and discharging voltage is determined as follows:

1- Charging mode:

Py (£)+Ppy(1)
Eon(8) = (P20 s At g1 ©

Nconv
E., represents the charged energy for every hour , and 7., IS the efficacy of the charging system
S0C(t) =S0C(t—1)(1 —o0) + E(b) (10)
2- Discharging mode:

E ., representsthe discharged energy for every hour, and 7., isthe efficacy of the charging system

—Pwr()—Ppy()
Eqen(6) = (L2220 w AL e (12)
SOC(t) = SOC(t —1)(1 — 0) — E4(t) (12)

SOC(t): the state of charge at time ¢
SOC (t — 1): the state of charge at time t — 1

Table 3. Battery system details.

Battery specification
Nominal capacity 2 /1000 Ah
Maximum depth of discharge 80%
efficiency 86%

Usable capacity 4.8 kWh
Voltage range 160-230 V
Nominal charging power 3,200 W
Lifetime (Years) 5

AIMS Energy Volume 10, Issue 4, 801-830.
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3. Modeling of smart home appliances

The control panel shown in Figure 2 is modeled to control the operation of household appliances.
Firstly, the characteristics of the household appliances, the number of individuals, and weather data
such as temperature and wind speed are inputted to create a correlation between energy consumption
and people’s activity. Concurrently, the generated power from the wind and solar systems as well as
the battery state are determined. The modeling of the system, including home appliances such as lights,
washing machines, water heaters, air conditioners, thermostats, and refrigerators, was accomplished

using MATLAB/Simulink.

Lighting Dishwasher Battery

APPLIANCES

Set Point Ref

I

Range Clothwasher PV

Dryer PoclPump Wind

Figure 2. Control system of home appliances.

Household appliances modeling is highly dependent on the thermal properties of electrical
devices, as the thermal response of these appliances impacts their energy consumption (air conditioner,
water heater, refrigerator). Furthermore, it is generally understood that the quantity of electricity
consumed varies significantly depending on factors such as the size of the home, the number of family
members, the ambient temperature, and the energy efficiency of the appliances in use. The domestic
thermal system is described by Equations from 14 to 18. In Eq (14), heat capacity (C) is the amount of
energy required to increase the system temperature, Q is the transferred heat to the system, m is the
mass, and AT is the temperature variation during a particular time interval. The heat capacity can be
calculated using Eq (15) Cp symbolizes the volumetric heat capacity at specific heat and p
represents the density. C, in (16) is the heat capacity per unit volume. On the other hand, the
transferred heat per unit area, in consideration of stationary heat conduction through a large surface
with a thickness AX = L, can be calculated using Eqgs (17) and (18) [25].

-9
c=-% (13)
Co = (14)
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C,=pxCp(2) (15)
a_ _j9r
1=k (16)
q=kAZ (17)

3.1. Modeling of air conditioning and water heating system

The air conditioner (AC) is programmed to turn on when the temperature is higher than a specified
set point and turn off when the room reaches the desirable temperature. In contrast, the heating system
switches on if the indoor temperature (6:x) is lower than the set point and switches off otherwise. 6in
strongly affects the power consumed by the AC and heating system. The indoor temperature can be
determined from the following equations [26]:

Hin = Hin(t 1) + [vacA (t) uac ac(t) + Iac (eout(t) em (t - 1))] VteT (18)
Hin = Hin(t - 1) + [UhtA(t) - uhtSht(t) + Iht(gout(t) - ein(t - 1))]th €T (19)
Sac(®) +Spe(t) <1, VLtET (20)

In practice, 8:» depends on the ambient temperature effect on the air conditioner vz and the heater
Ve at any instant of time. A(t) is the occupants’ house activity level. uac and ux: are the cooling and
heating effects of on-state, respectively. Iac and I are the impacts of outdoor and indoor temperature
changes on the AC and heating systems, respectively. The graphical interface of the AC and water
heater is shown in Figure 3. Figure 4 illustrates the equivalent thermal circuit of the water heater.

I

Electric v Type of water heater

10 Temperature of ilet water (*C) g g Air Conditioner
a : |
20 /

Temperature of ambient (°C)
Rated Power in (W if electric or BTU if gas)

Capacity in liters
0.92 Efficiency (p.u.)
Heat transfer coeficient of the tank (J/m2-h-°C)

9000 v Capacity (BTU)

10 Energy Efficiency Ratio
(EER)

i | 1o |

Set
I pot 99 °C
NI . |

Figure 3. AC and water heating systems models.
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Figure 4. Circuit model of water heater [38].
3.2. Fridge operation constraint

A standard refrigerator has mechanical elements that create a cold environment. The components
include an evaporator, compressor, expansion valve, throttling device, and condenser, all of which
manage the refrigeration cycle and maintain the desired level of cooling. The following formula
represents the mathematical model of the refrigerator:

Hfr = Gfr(t - 1) + [vfrAfr(t) - Uerfr(t) + afr],‘v’t eT (21)

where 8¢, stands for the inner temperature of the fridge at a time that is dependent on a previous state
Of (t — 1). Fridge temperature Af.-(t) is directly related to the house activity level i.e., as the
consumer activity increases, cooling demand also increases; thus, power consumption is intensified.
vg, represents the fridge off-state temperature effect, wg, represents the fridge on-state temperature
effect, and Sy, (t) describes the switching control of the fridge. The symbol af, symbolizes the
heating impact of the off mode on the refrigerator. It is worth mentioning that the intensive usage of
the fridge may raise the indoor temperature above the set point, resulting in higher energy consumption
to cool it down once again. Figure 5 presents the graphical user interface to control the refrigerator.

Refrigerator

“ |+ 15

Figure 5. Graphical user interface of the refrigerator.
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3.3. Operational constraints of washing machine and dryer

The washer and dryer are considered to be controllable loads. The formulae below are used to
constrain the machine’s operation under different conditions:

w;(t) —v;(t) =S5;(t) —S;(t—1),VteT,Vie I (23)
u,(t) +v;(t) <1, VteT,Viel (24)
Yeer,Si (k) =0]",Vt €T (25)

t+omst mst
e Si(k) <0t + M(1—w(t)),vteT (26)
Th=t-vy,, Wi () < Si(t),Vt €T (27)
Yketopy,, Wi (1) < 1—=S;(t),Vt €T (28)

Regarding the operation constraints stated in Egs (23) and (24), S;(t) is the switching mode of
both machines; it is 1 in the case of the machine being turned on and 0 when turned off. wi(t) and vi(t)
are, respectively, the start and stop of the same machine (i) at a specific time (t). Restraining the
appliance to function at a specified operation time 0 is accomplished with Eq (25). Equation (26)
states the operation constraints at a maximum time 0™* where m is a positive integer. Limiting the
device to operate between an upper time U: and a lower time D: is achieved with Egs (27) and (28).
The user-defined interface of both machines is shown in Figure 6.

Washing Machine Electric Dryer

From yellow Energy Guide label

Annual energy consumption (KWh) # Loads per day 1 W

Minutes of the load <0

Number of loads perday 1 v Hour switched on fst
(7] Check if is conected to hot water

Minutes of the load 0N v

Water Temperature? ;4

Continue Continue “

Figure 6. Graphical user-defined interface of the washing machine and dryer.
3.4. Lighting

Incandescent lamps, compact fluorescent lights (CFL), and fluorescent tubes are commonly used
in buildings. In fact, most residential homes use a combination of these types. Although CFLs and

AIMS Energy Volume 10, Issue 4, 801-830.
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fluorescent tubes are initially expensive, they work for longer and with greater efficiency, bringing
about significant long-run savings. The simulation of the lighting system has also been executed, with
the graphical user-defined interface being shown in Figure 7. Input data include the number of lights,
power rating, and operation time

Incandescent Lighting CFL Lighting
Morning hour when turned on 6 Morning hour when turned on
Power-on hours in the morming B Power-on hours in the morning
18 Wight hour when turned on 15 Night hour when turned on
: .I_- Power-on hours at night 3 Power-on hours at night
%_'i_:__ 1 60~  Power (Watts) 20 Power (W)
- o] How many bulbs? - 0 How many CFLs?

Fluorescent Tube Lighting
] Maorning hour when turned on
Power-on hours in the morning
18 Night hour when turned on

4 Power-on hours at night

15 w Power (W)

Continue

\ 0 How many fluorescent tubes?

Figure 7. GUI of the lighting system.
3.5. Dishwasher modeling

The dishwasher (DW) draws a large amount of power over a short period, so it is important to be
involved within the demand management program [23]. A typical graphical interface and operation
process for DW are shown in Figure 8. Firstly, the DW is filled up with water for about 15 minutes,
during which it consumes a constant power P1. Then, it heats the water, thus consuming a different
amount of power P>. The duration of P2 varies depending upon the water temperature compared to the
set point counterpart. Next, the plates are sprayed with hot water and detergent; rinse water and
draining then take place. This consumes a different amount of power P3. According to [24], 55% of
the consumed energy by DW is accounted for heating water. The temperature profile of DW is
exhibited in Figure 9.

AIMS Energy Volume 10, Issue 4, 801-830.
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Dishwasher

From yellow Energy Guide label

Type of dishwasher
() Low efficiency

() Energy star

Annual energy consumption (kWh) 280

Dishwasher use

Number of loads perday 1 v Hour switched on 1st
[T] check if is conected to hot water

Minutes of the load 50 v

Continue

Figure 8. GUI of dishwasher.

60 Temperature profile of dishwashing machine

()
Hot rinse
%J 50 .’-0\ \.\.
g 40 '\. Drying
T 30
ué_ 20 o o cleaning intermediate rinse
Pre-rinse
l“_-‘ 10
0
0 20 40 60 80 100 120 140 160
Time (Min)

Figure 9. Temperature profile of a dishwasher.

3.6. Smart thermostat

The intelligent thermostat accompanies heating and cooling devices. Such a thermostat is a
regulator programmed to adjust the temperature over the course of the day. They are efficiently used

to regulate a house’s temperature all year round. A scheme of the programmable thermostat is shown
in Figure 10. Moreover, the user can specify the operation period of the device.
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ON/OFF Tin
Thermostat | |
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Figure 10. Programmable thermostat.

4. Data and system simulation

The goal of this study was to find out how much consumed power in a single household, taking
into account factors like the temperature inside and outside, the number of family members, the size
of the house, electrical appliances time of use and residence location. The study was conducted based
on data for two scenarios, one on a winter day and the other on a summer day. Renewable energy
generation systems have been simulated, and temperature, solar radiation, and wind speed data are
entered for each scenario to obtain the maximum power. The following section explains in detail each
scenario.

4.1. Scenario |

In this case, we simulated household energy profiles on a 24-hour horizon in one summer day to
create home EMSs by modeling optimal on/off decisions of the electrical appliances. The simulation
takes into account power generation units such as PV and wind generators, as well as battery energy
storage which will be delivered to the building loads. The output power varies over time because of
the change of wind speed and solar irradiation. All the appliances and power sources were modeled
using MATLAB Simulink. The Household has four rooms, one kitchen, a bathroom and a balcony.
Table 4 below states the contraction of the house with each room having a number of appliances as
presented in Table 2. Figures 11 to 14 show the power generation data from (the PV, WT, ESS), and
the weather temperature, respectively.

Table 4. Rooms dimensions of the house under study.

Room 1 Room 2 Room3 Room 4
Length 7 m length 3.5 m Length 4 m Length 3 m
Width 6 m Width 4 m Width 4 m Width 3 m
Height 2 m Height 2 m Height2 m Height 2 m
Windows: yes Windows: yes Windows: yes Windows: yes
Length 4 m Length 1 m Length 1 m Length 1 m
Width 1.5 m Width 1 m Width 1 m Width 1 m

AIMS Energy Volume 10, Issue 4, 801-830.
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Table 5. Electrical appliances specifications and operation time.

Refrigerator

Air conditioner

Water heater

Washing machine

Power 350 W
Compressor Eff = 0.88
Set point =5 °C

No door openings

Capacity: 48,000 (BTU)
Voltage: 230 V
Current: 155 A

Power: 4,450 W

- Type: Gas

- Inlet Water Temp.: 10 °C

- Supply Water Temp.:10 °C
- Rated power: 40,000 BTU

Operation per day: 3
Minutes per load: 60 min
1t operation hour: 10:00
2" hour: 15:00

- Morning: 4 h - Capacity: 184 liters 3hour: 20:00

- Afternoon: 4 h - Efficiency = 62% Annual energy:154 kWh
- Evening: 4 h Set point =55 °C Type: Low efficiency

- Heat loss: 9 Wh

Dishwasher Dryer CFL lighting Incandescent lighting

Operation per day: 3
Minutes per load: 120

1t operation hour: 10:00
2" hour: 15:00

3% hour: 21:30

Type: Low efficiency
Annual energy: 280 kWh

Operation per day: 3

- Minutes per load: 120
1%t operation hour: 10:00
2" hour: 15:00

3 hour: 21:30

- Morning turn on hour: 5:30

- Turn on morning duration;
2.5h

- Night turn on hours: 18:00

- Turn on night duration: 4 h

- Bulb rated power: 20 W

- Number of bulbs = 6

Morning turns on hour: 6:00

- Turn on morning duration:
15h

- Night turn on hours: 18:00

- Turn on night duration: 3 h

- Bulb rated power: 100 W

- Number of bulbs = 3

Figure 12. Wind turbine output power over a typical summer day.
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Figure 14. Ambient temperatures over the considered summer day.

4.2. Scenario 11

During a one winter day, the specified household appliances and generating systems described in
the first scenario are simulated and managed again. The user behavior in terms of power usage changes
when the weather conditions (ambient temperature and humidity) fluctuate. Similarly, seasonal
variations in weather conditions impact the production of renewable units, which must be taken into
account by the management model. Figures 15, 16 and 17 show the ambient temperature, PV output
power, and wind systems. The scheduling of household appliances is based on user preference. This
mode of operation involves an hourly computation of consumed and required power.

Figure 15. Ambient temperatures throughout a typical winter day.
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Figure 17. Wind turbine output power over a typical winter day.
5. Results and discussion

The tasks performed by household appliances can be programmed and scheduled to start and stop
at a specific time while considering a typical smart home with a water heater, lights, washing machine,
dryer and refrigerator. Assuming residents usually arise at 6 am and since solar PV energy is available
only for a limited number of hours during the day, and that wind energy can be obtained throughout
the entire day, the operation of some loads has been shifted to the daytime period to ensure that there
is sufficient power.

The optimal hybrid system is designed to supply the household with a full load. Due to the fact
that wind energy is produced for most of the day and PV energy can only be produced during daytime
hours, batteries are required to provide electricity during the hours when no solar energy is available.
In this study, the installation costs for solar energy systems are lower than those for wind energy
systems. Greater fluctuation in wind power generation requires additional storage capacity to deal with
uncertainty and ensure system reliability. Therefore, the most reliable hybrid power system design
incorporates both wind, photovoltaic generation and storage systems.

AIMS Energy Volume 10, Issue 4, 801-830.
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5.1. Scenario |

The suggested scheduling method is applied on a smart home in two distinct scenarios, each of
which includes the various configurations listed in Table 4. Simulations are run on a one-day
scheduling horizon with H = 24 one-hour time periods.

Different temperature values and numbers of consumers were simulated to demonstrate the
efficacy of the model. The obtained results show that the power consumption rates of electrical
appliances depends principally on customer behavior and fluctuations of indoor and outdoor ambient
temperatures. Figure 18 shows the consumed power of the dishwasher over an entire summer day. As
can be seen, the machine is switched on three times for two complete hours each starting from 10:00
until 23:30. The three basic operational cycles for the dishwasher are washing, rinsing, and drying.
The first 30 minutes are subject to the wash cycle; the rinse cycle begins between the 60th and 80th
minutes. The remaining time is for the drying cycle. The pre-wash phase, which lasts for the first 10
minutes of the wash cycle, includes the water fill and spray. At a 0.85 power factor, the dishwasher
consumes 1350 W.

1 3 5 7 9 11 13 15 17 19 21 23
Time (h)

Figure 18. 24-hour power consumption of dishwasher.

Figure 19 exhibits 24-hour power consumption, water use, and water heater temperature. The
power consumption amounts maximally to 10 kW. This amount is drawn when the heater heats the
water to raise its temperature from 50 to 60 °C. The figure shows that the water heater runs throughout
the day, reflecting the user activity. The water consumption ranges from 20 to 100 liters a day.

AIMS Energy Volume 10, Issue 4, 801-830.
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Temperature of water (°C)
WaterC ption (Ltrs)
Power (kW

Figure 19. Water heater power consumption a period of one day.

Figure 20 illustrates the consumed power by the air conditioner accompanied by the indoor and
outdoor temperature over the course of a day. It is clear from the figure that as the ambient temperature
increases, the operation time of the AC also increases. The AC is activated starting from 5:00. It can
be observed that the AC consumes as much as 4 kW when the compressor runs. When the sensed room
temperature is higher than the specified temperature, the compressor operates for almost 15 minutes
to bring the temperature down to the programmed set point. The compressor’s operation time (Ton) iS
governed by the temperature difference between ambient and indoor set point temperatures. The
controller shuts down the compressor once the temperature reaches the comfortable specified value.

Power (kW)
Outside Temp. (°C)
~— Rooms Temp. (°C)

Figure 20. Performance of an air conditioner over a day.
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Figure 21 presents the power consumption tendency of the refrigerator for 24 hours. The
consumed power during its on-state is about approximately 350 W at 0.88 PF. The regular turn-on
time is 15 minutes, and the off-time is about 45 minutes if the refrigerator door is kept closed. It can
also be noticed that the indoor temperature ranges from 1.5 °C to 7 °C, subject to the door opening.

Power (kW)
Indoor Temp. (°C)

— - L 2 | i L A L0 n L . " !
1 3 5 7 9 1" 13 15 17 19 21 23
Time (h)

Figure 21. Refrigerator performance profile over a summer day.

The operational characteristics of the washing machine are shown in Figure 22. The machine has
three operational phases: wash, rinse, and spin. During the first minute of the wash cycle, the washing
machine is filled with water, drawing 20 to 40 W. Various motor speeds occur during the wash cycle,
requiring between 120 and 180 W. The rinse stage then follows, where the machine spins at varying
speeds. The spinning phase is the most power-consuming cycle during which the machine consumes
exactly 200 W at 0.85 PF. The three processes mentioned above are simulated in one period three
times a day.

1 3 5 7 9 11 13 15 17 19 21 23
Time (h)

Figure 22. Washing machine power consumption over a day.

The simulated lighting system uses two types of lamps (incandescent and CFL). As presented in
Figure 23, during the first 25 minutes, the consumed power amounts to 360 W. Consumption then rises

AIMS Energy Volume 10, Issue 4, 801-830.
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to approximately 480 W, lasting for 1.5 hours. It can clearly be seen that the lighting load is intensified
in the afternoon starting from 15:00 to reach its greatest value at 18:00 at 480 W. The proposed scenario
assumes a partial alleviation by the consumer at 21:00 as a result of reducing the consumption to 300 W,
reaching a total shutdown at 23:00.

1 3 5 7 9 11 13 15 17 19 21 23
Time (h)

Figure 23. Power consumption profile of lighting system over a day.
5.2. Scenario 1l

The meteorological parameters, i.e., temperature, wind speed, and solar irradiation of a winter
day, were introduced to obtain a realistic output power from the PV and WT systems. A noticeable
change in energy consumption and consumer behavior was observed. Compared with the first scenario,
it is found that the consumption has decreased to approximately 35%. The power and water
consumption of the water heater is shown in Figure 24. It can be observed that the power consumption
increased as compared to the first case, reaching 10 kW on average. The energy consumption reaches 12
kW during some operational periods. Figure 25 shows a different consumption pattern for the lighting
system due to the decrease in ambient temperature. Compared to the first case, a general reduction in
electricity consumption is experienced. Attributed to the home activity of the consumer, a few lamps
were used in the evening with a maximum aggregate consumption of 140 W between 15:00 and
midnight.

Temperature of water (°C)
Water Consumption (Ltrs)
Power (kW)

5 8 &8 8 8

Water Heater

-,
=]

=]

1 3 5 v 9 11 13 15 17 19 21 23
Time (h)

Figure 24. Water heater consumption profile, case II.
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Figure 25. Lighting system usage pattern, case I1.

The air conditioner operational status is illustrated in Figure 26. It can be observed that the room
temperature is low throughout the day, and there is almost no drawn power by the AC because it is in
standby mode. Figure 27 shows the operational characteristics of the fridge. The consumed power is
reported as 350 W for 15 minutes, and the indoor temperature ranges between 2 °C and 6.8 °C.

Power (KWW)
Outside Temp. (C)
— Rooms Temp. (°C)

Figure 26. Air conditioner operational results, case II.

———— Poawer (KW}
Indoor Temp. (*C)

Figure 27. 24-hour operational characteristics of the refrigerator, case Il.
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Figures 28 and 29 present the power consumption pattern for the washing machine and
dishwasher, respectively. There is a very significant difference between the two appliances in terms of
power use; the washing machine consumes as little as 200 W, whereas the dishwasher draws 3,200 W.
The washing machine is used once compared to the three operational periods in the first scenario. This
leads to a decrease in overall power consumption. Due to the water heating requirement, the consumed
power by the dishwasher exceeded 3,000 W in comparison to less than 1,400 W in the first scenario.

1 3 5 7 2 11 13 15 17 19 21 23
Time (h)

Figure 28. Washing machine operation throughout a full day, case II.

‘J\ |

1 3 5 7 9 11 13 15 17 19 21 23
Time (h)

Figure 29. Power consumption by the dishware machine, case I1.

Total electrical energy consumption in a typical summer day for three demand classes is illustrated
in Figure 30. Interestingly, the off-peak period saw the highest energy consumption with 30.51 kWh.
During the mid-peak period, the consumed power reached 13.62 kWh, while during the on-peak
period, 17.77 kwh was consumed. The figure indicates that consumers apply a demand management
strategy to lower their electricity bills. This is clear from the shifted electric loads to the off-peak time.
It can also be observed that the consumed power is affected by the number of family members.
Influenced by the individuals’ activities, the 2-person family consumes approximately 25.46 kWh
during the off-peak period instead of more than 30 kWh consumed by a 5-person family

AIMS Energy Volume 10, Issue 4, 801-830.



825

Electricity consumption, case 1
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Figure 30. Total electricity consumption in a typical summer day.

On the winter day, as shown from Figure 31, there is a significant increase in power consumption
by the larger family compared to its consumption in the summer. Contrastingly, a decrease in power
consumption for the smaller family can be clearly noticed. This is attributed to the reduction in ambient
temperature in addition to people’s behavior in using electrical appliances. For example, during the
off-peak period, consumption decreased from 53.69 kWh to only 16.4 kwWh. Similarly, consumption
reduced from 30.34 kWh to 9.2 kWh in the mid-peak period and from 22.84 kWh to 4.63 kWh in the
on peak-time. Moreover, being an economic practice, this reduction in power consumption also helps
manage the available energy sources.

Electricity consumption, case 2

60

50
=
S 4
= id peak
g%
g 20
w

10

0

5 persons 2 persons

Winter Day

Figure 31. Total electricity consumption in a typical winter day.

The table below shows the cost of energy consumption and average hourly consumption for three
periods (off peak, mid peak and on peak). Consumption was highest during off peak times (30.51 kwh).
During mid peak times, the consumed power was 13.62 kWh. The power consumption during peak
demand times was approximately 17.77 kWh. Because the end user tends to use electrical appliances
at low electricity price tariffs, it becomes clear from the table that the consumer shifts some electric
devices to off peak times. Table 5 illustrates the electricity consumption for Case 1.

AIMS Energy Volume 10, Issue 4, 801-830.
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Table 6. Electricity consumption at case (1) with 5 persons.

Electricity consumption Electricity (kwh) Cost ($)
Off peak 30.51 1.89
Mid peak 13.62 1.25
On peak 17.77 1.92

Table 7 shows electricity consumption in the first case with the same specifications and factors,
but with only a change in the number of family members where it was reduced from five persons to
two persons, which led to a decrease in the rate of consumption in the three periods with 25.46 kWh
consumed off peak, 13.28 kWh mid peak, and 15.35 kWh being consumed during peak times.

Table 7. Energy consumption at case (1) with 2 person.

Energy consumption Energy (kWh) Cost ($)
Off peak 25.46 1.85
Mid peak 13.28 1.22
On peak 15.35 1.66

In a comparison between the energy consumption in the second cases, we noticed a significant
decrease in the rate of consumption due to the decrease in weather temperature and the change in the
behavior of using electrical appliances. For example, off peak the consumption decreased from 25.46 kWh
to 16.4 kWh. During mid peak times, consumption decreased from 13.28 kWh to 9.2 kwWh. During
peak times, consumed power decreased from 15.35 kWh to 4.63 kWh. This reduction of power
consumption leads to increases in cost savings, as shown in Table 8.

Table 8. Energy consumption at case (2) with 2 persons.

Energy consumption Electricity (kwh) Cost ($)
Off peak 16.4 1.02
Mid peak 9.2 0.85
On peak 4.63 0.5

Table 9. Energy consumption at case (2) with 5 persons.

Energy generation Electricity (kwh) Cost ($)
Off peak 53.69 3.33
Mid peak 30.34 2.79
On peak 22.84 2.47

In summary, solar energy is available only during a limited number of hours during the day,
whereas wind energy can be obtained throughout the all day. So, the operation of some loads has been
shifted to the daytime period to ensure that there is sufficient power from renewable energy system.
Moreover, scheduling devices can contribute to reducing consumption, which in turn contributes to
conserving energy or increases some necessary loads at other times. This model helps to determine the
best power system design compared to the number of loads that must be operated per hour.
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6. Conclusions

Firstly, scheduling of household loads was carried out in this paper to reduce energy consumption
and manage available energy sources, especially renewable ones. Household electrical appliances were
simulated using MATLAB taking into consideration their usage profile in both the summer and winter
seasons. The impact of indoor and outdoor temperature variations and the number of consumers were
also examined. It is concluded that both factors, i.e., the temperature and the number of family
members, have a significant impact on the rate of electricity consumption. Large families and
increasing surrounding temperatures certainly increase power consumption. However, consumption
can be significantly reduced by applying an effective management strategy in addition to changing
consumer behavior. Practical benefit from this work is the consumer can control and manage
household loads based on the available energy from the wind and solar systems. There is also the
possibility of scheduling loads at different times to conserve energy and use only what is necessary.
Secondly, this model has proven effective in simulating and controlling the work of household
appliances. An energy management algorithm is implemented and evaluated to help the end-user to
create schedules and to determine any required renewable energy for existing appliances. The
limitation of this work can be concluded as follows, determinants of renewable energy generation and
consumption can vary based on weather data and consumer consumption priority, for this reason the
fast change in input weather and end user behavior make the model work slow. As future work, the
operation of electrical loads will be scheduled based on the available energy at a particular hour by
using particle swarm optimization (PSO) and genetic (GA) algorithms and finally comparing with the
current results.
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