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Abstract: The primary purpose of fuel cell hybrid electric vehicles (FCHEVs) is to tackle the 

challenge of environmental pollution associated with road transport. However, to benefit from the 

enormous advantages presented by FCHEVs, an appropriate energy management system (EMS) 

is necessary for effective power distribution between the fuel cell and the energy storage systems (ESSs). 

The past decade has brought a significant increase in the number of FCHEVs, with different EMSs 

having been implemented due to technology advancement and government policies. These methods 

are broadly categorised into rule-based EMS methods, machine learning methods and optimisation-

based control methods. Therefore, this paper presents a systematic literature review on the different 

EMSs and strategies used in FCHEVs, with special focus on fuel cell/lithium-ion battery hybrid 

electric vehicles. The contribution of this study is that it presents a quantitative evaluation of the 

different EMSs selected by comparing and categorising them according to principles, technology 

maturity, advantages and disadvantages. In addition, considering the drawbacks of some EMSs, gaps 

were highlighted for future research to create the pathway for comprehensive emerging solutions. 

Therefore, the results of this paper will be beneficial to researchers and electric vehicle designers 

saddled with the responsibility of implementing an efficient EMS for vehicular applications.  
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1. Introduction  

The prevalent interest in electric vehicles (EVs) and fuel cell hybrid electric vehicles (FCHEVs) 

is largely supported by the decline in fossil fuel production and the quest for an environmentally 

friendly transport system. This interest has equally triggered extensive research on FCHEVs [1,2]. 

Furthermore, environmental pollution associated with internal combustion engine (ICE) vehicles, 

advancement in fuel cell (FC) technology, improvement in power electronics and cutting-edge energy 

management systems (EMSs) are some of the reasons why FCHEVs have received significant attention 

from both the transportation and environment sectors [3,4]. The primary function of an EMS in a 

FCHEV is to control, distribute and ensure effective management of the various energy sources and 

energy storage devices based on the drive cycle information and load demand [5]. However, the 

hybridisation of FC with batteries, ultracapacitors or both in FCHEVs is basically purposed to absorb 

the regenerative braking energy and maintain a balance between the load and fuel cell power [2]. 

Achieving these two conditions will ensure that the vehicle is always operated optimally without 

overloading individual components in the system. According to [6], FCHEVs have not achieved their 

pride of place in the EV sector due to concerns around high cost and FC degradation; however, with 

adequate inclusion of an efficient EMS, this can be solved swiftly. The ESS (lithium ion) can be used 

to provide additional power to the system, thereby ensuring the downsizing of the fuel cell, which will 

lead to reduced cost of materials. Again, the FC degradation problem can be solved by using the battery 

to supplement power during acceleration or transient loading [4]. This will enhance the FC lifespan, 

improve efficiency and optimise operation. Hence, an in-depth understanding of current EMS control 

systems for FCHEVs and relevant literature on EMSs are provided. The remaining part of the paper is 

organised as follows: Section 2 presents the methodology used in the systematic literature review; 

Section 3 presents the results based on the papers reviewed; Section 4 discusses the results by showing 

some advantages and disadvantages, and it unveils future research opportunities. Finally, some concluding 

comments are provided in Section 5.  

2. Methodology 

A systematic literature review (SLR) is mostly done in fields such as social sciences, education, 

global economics, retail business and medicine. However, in [7], the technique was used to provide an 

evidence-based approach in the engineering field because the fundamental philosophies of SLRs are 

restrictive, duplicative, algorithmic and collective. This study was conducted using the specified stages shown 

in Figure 1. In this figure, Stage 1 identifies, defines and delineates the problem, Stage 2 designs and 

develops a strategy on how to solve the identified problem, Stage 3 decides on the method of data 

collection, Stage 4 organises and groups the obtained data into different categories, Stage 5 uses 

specific tools to analyse and discuss the information obtained and Stage 6 compiles the information 

into an understandable report.  
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Figure 1. Stages in systematic literature review. 

Stage 1: The number of FCHEVs has increased in the past decade due to technology 

improvements and government policies [8]. However, the effective energy management of FCHEVs 

has remained one of the major challenges that is confronting researchers. According to available 

literature, most researchers are focused primarily on the different powertrain topologies, power 

electronic configurations and the choice of ESS. However, identifying a suitable EMS for a FCHEV 

is crucial because it ensures component optimisation and increased travel range. Hence, this study 

provides different FCHEV EMSs available to researchers, with focus on well-established methods only.  

Stage 2: The first phase of the literature review was aimed at providing a detailed overview of the 

different EMSs used in FCHEVs. Subsequently, the literature review looks at technology maturity and 

the suitability for different configurations based on available EMS technology, vehicle type, drive 

cycle and technology maturity.  

Stage 3: Keywords are used to search for data/information on databases using search engines such 

as IEEE Xplore, Microsoft Academic, Scopus, Science Direct and Google Books. Google Scholar was 

used primarily to search for specific information on journal papers and theses where the citation was 

done directly from the website using Endnote X7 and the referencing was exported to Mendeley. The 

keywords used to search for information on FCHEV EMSs are shown in Table 1. 

Stage 4: After the search for relevant literature on the topic, a Prisma 2009 flow diagram was used 

to arrange the different EMSs according to the methods, advantages, disadvantages and technology 

maturity in the following sequence [7]:  

a. 240 papers and theses were assembled from different databases using search engines such as 

Science Direct, Google Books, IEEE Xplore, Microsoft Academic and Scopus by using the 

keywords shown in Table 1. The first column shows the different keywords used in the search 

for FCHEV EMSs, and the second column are the different parameters measured.  

b. 80 more papers were added to the database by using the Google Scholar search engine. 

c. Out of the 320 papers assembled, only 220 papers were kept for further screening after a proper 

check on duplicate papers was completed. 

d. 50 papers were further disqualified because the focus was not the core of the study, rather, it 

discussed other topics such as powertrain topologies, EV electrical system configurations and 

EV modelling and analysis. 

e. 170 papers were evaluated based on the set criteria for FCHEV EMS, and 38 papers were 

removed because they did not discuss FCHEV EMS as its core. 

f. In this study, a total of 132 papers were used for qualitative evaluation, and 40 papers were 

used for quantitative evaluation; the selection criteria were set to only include papers from 

1983–2021.  

Stage 5: The study used the inclusion and exclusion criteria to select the research papers that are 

most relevant to the topic. But, the inclusion criteria were achieved based on the date the research was 
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conducted. However, this search excludes the following: (a) unpublished work, (b) webpages and (c) 

papers that discuss EMS techniques that are not applicable to FCHEVs. This study used published 

papers from 1983–2021, while older papers were excluded because they were cited in the newer papers. 

Stage 6: The outcomes are properly documented.  

Table 1. Keywords used to search for relevant data/information. 

FCHEV EMS Measurement 

Fuel cell hybrid electric vehicle, energy management system, EV 

energy storage system, lithium-ion battery, hybrid electric vehicle, 

DC/DC converters, powertrain topologies, fuel cell hybrid electric 

vehicle configuration, EMS requirements, fuel cell degradation, types 

of electric vehicle, electric vehicle travel range, rule-based EMS, 

learning-based EMS, optimisation-based EMS. 

Fuel cell power output, fuel cell voltage, 

power flow from/to the energy storage 

system, torque measurement 

3. Results 

3.1. EMS requirements 

The fundamental objective of FCHEV EMSs is to ensure effective power distribution using 

optimal multi-motive sources to meet the drive cycle condition and load demand. This will provide 

dependable, robust and efficient operation, as well as lower fuel consumption, reduce cost and minimise 

losses. These can be obtained by developing an efficient EMS within established parameters [9]. However, 

for EMS to achieve its fundamental aim of system optimisation, it must consider reliability, battery 

cell degradation, fuel economy and FC degradation. FCHEV EMSs must ensure the availability of power 

during acceleration and transient loading regardless of the battery state of charge (SOC) [10,11]. 

Furthermore, the EMS must ensure that the battery is operated above its minimum voltage to prevent 

deep charging and over cycling of the battery [1,12,13]. The FC voltage starts to drop substantially at 

high loads such that the mass transfer of different chemicals across the fuel cell becomes the restricting 

factor, as shown in Figure 2 [14]. 

In addition to ensuring the optimisation of the fuel cell, the efficiency of other components in a 

FCHEV must be evaluated for overall system efficiency. Some of such components are the DC/DC 

converters, traction motor, ESS, and inverters. However, it is the battery SOC during braking that 

determines the energy efficiency recovery that arises from braking. So, if the power from braking is 

greater than the battery capacity, or if the battery is fully charged, then the energy at that moment will 

be lost. Hence, it is vital to have a battery with enough capacity to absorb the energy during braking 

so that the recovered energy can be maximised [3]. 
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Figure 2. FC efficiency vs ICE efficiency [13]. 

3.2. Overview and taxonomy of FCHEV EMSs 

The primary objective of an EMS is to ensure effective power distribution using the most suitable 

operational conditions [15]. Some of such objectives are to improve the components’ lifespan, 

maximise fuel economy, increase vehicle travel range, reduce tailpipe emissions and reduce the 

electrical stress on both the primary and secondary power sources, as shown in Figure 3. 

There has been a significant amount of research done in the past decade on FCHEV EMSs for 

vehicular applications, with slight difference in the categorisation. However, there is a unanimous 

agreement on the broad categorisation of EMSs to include three major types: optimisation-based (OB), 

rule-based (RB) and learning-based (LB). OB-EMSs are further categorised into online or offline OB-

EMSs according to the drive cycle information used, whereas RB-EMSs are further categorised into 

fuzzy logic (FL) and deterministic EMSs depending on a group of pre-established arbitrary rules that 

ignore the road conditions. According to [16], RB-EMSs are more and better implemented than OB-

EMSs due to technology maturity and available knowledge. Considering the advanced OB-EMSs, 

Pontryagin’s minimisation principle (PMP), dynamic programming (DP) and metaheuristic search 

methods, which include the genetic algorithm (GA), particle swarm optimisation (PSO) and simulated 

annealing (SA), are commonly implemented offline for global optimisation exploration. On the other 

hand, equivalent consumption minimisation strategy (ECMS) and model predictive control (MPC) are 

widely used as online OB-EMSs. Due to the significant advancements made in machine learning and 

artificial intelligence, LB-EMSs have gained more relevance, demonstrating huge potential to compete 

with other EMSs. This is so significant because LB-EMSs have the capacity to self-learn based on 

historical data and implement used drive cycle data for online-based learning. Presently, there are 

EMSs that combine the different techniques, i.e., the LB, RB and OB techniques, to create a complex 

but integrated EMS aimed at increasing the travel range and improving fuel economy [16–18]. 
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Figure 3. Fundamental objectives of an EMS [16].  

Normally, global positioning system (GPS)-based information is used to improve the basic control 

parameters of any EMS known as adaptive EMSs; this type comprises telematics MPC, adaptive FL 

and adaptive ECMS. Statistic and clustering analysis techniques are commonly implemented in drive 

cycle identification within predictive EMSs [19,20]. A set of parameters are gathered in a time window 

ranging between 15 and 200 seconds to evaluate the driving pattern critically and adequately for any 

drive cycle. These sets of accumulated parameters basically include the acceleration/deceleration of 

the vehicle, average velocity, maximum speed, average speed and maximum acceleration based on 

sub-classification to enable the classification model. However, a related sets of rules, as shown in [21], 

consist of a decision tree, fuzzy clustering, a support vector machine [22,23], and a learning vector 

quantisation neural network [24]. When using a stochastic technique, the driver load demand, engine 

torque and vehicle velocity are implemented as a stochastic Markov chain in form of a state vector. 

Again, different studies have shown that, to compensate for faulty drive cycle parameters, stochastic 

DP (SDP) and stochastic MPC techniques can be integrated into an existing EMS. In addition, the 

identification techniques comprise Gaussian mixture models, statistical analysis, fuzzy categorisation 

and jerk evaluation [25].  

3.2.1. Rule-based EMSs  

RB-EMSs operate without pre-established driving cycle parameters, depending on human skills 

or heuristics techniques based on prior knowledge. This makes them simple and easy to implement 

because they use real-time values, especially when using state machine logic or look-up tables for their 

execution. Its main setback is the inability to optimise when it requires information regarding the drive 

cycle parameters before implementation. Again, RB-EMSs require pre-calibration to ensure optimal 

performance within a confined acceptable travel range of any selected drive cycle. It can only be used 
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for a specific powertrain, but the concept and technique can be applied to another powertrain within 

specified operational boundaries. Hence, to improve the performance of an RB-EMS, other recognition 

and optimisation techniques must be incorporated. Such an EMS strategy must have a multi-mode 

technique incorporated into the EMS, a thermostat with driving recognition, state machine control built 

into the ECMS and a multi-mode built into the drive cycle recognition using a neural network. RB-

EMSs may not be the best technique available, but they have gained wide acceptance because of their 

simplicity in real-time applications. They are further categorised as follows [26]: 

3.2.1.1. FL strategy 

An FL strategy translates the human experience and thinking into a set of conditional 

statements [27,28]. The entire process proceeds as follows: parameter inputs, quantisation, fuzziness, 

fuzzy reasoning, inverse fuzziness and output quantisation. Its performance is defined by a 

membership function and fuzzy set of conditions at the fuzzy reasoning level. FLs are robust because 

they do not rely on the mathematical model of the control system, as they guarantee the handling of a 

multi-domain and the nonlinear conditions present in FCHEVs, as demonstrated by [29,30]. The FL 

strategy is sub-classified into adaptive FL control, predictive FL control, and optimal FL control.  

 Adaptive FL control 

Fundamentally, adaptive processes are included in an existing FL rule-based strategy to enhance 

the system’s ability to swiftly adapt to variations. Reference [31] recommended a decentralised 

adaptive control system as a technique that can be used to improve system adaptation to undefined 

parameters such as vehicle loading, the drive cycle and changes in tire parameters. This was meant to 

be implemented in a four-wheel-drive hybrid electric vehicle (HEV) powertrain system. To maximise 

the EV torque and reduce the amount of fuel consumed, Mohebbi M, et al. created an adaptive neural 

fuzzy intervention system [32]. To improve the HEV performance, Dazhi W, et al. implemented a 

double neural network-based adaptive estimator for the torque and velocity of the electric motor (EM) 

and engine [33]. The result obtained indicated an improved acceleration and deceleration of the HEV. 

Again, Chen Z, et al. proposed an intelligent power management strategy for a vehicle powertrain; 

it included multiple power sources and used FL and machine learning (learning optimal power 

sources (LOPPS)) [34]. The LOPPS was modelled to learn from previous data sets based on the SOC 

condition created, and then generate an effective power-sharing strategy amongst the available power 

sources for cloud implementation. 

 Predictive FL control 

Predictive FL control is used for effective energy management based on the predicted future state 

of the vehicle. It is modelled to reduce emission, enhance fuel consumption and improve vehicle 

performance [16]. Reference [35] developed a predictive FL-RB technique to ascertain the response 

of a vehicle to anticipated states of traffic conditions and inclined grade data from a GPS. The result 

showed that the vehicle predicted the road condition with higher accuracy as compared to only RB-

EMS or OB-EMS methods.  

 Optimised fuzzy rules control 

Optimised FL control is utilised to optimise the driving performance of the vehicle via an 

established optimisation process and thus accomplish the set aims, such as reduced fuel consumption, 

a healthy SOC, reduced emissions, increased travel range and improved performance. However, to 

achieve the set objectives, the membership function and set fuzzy rules must be improved by applying 
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transformative optimisation algorithms such as the comparative factor algorithm, direct algorithm, or 

bee algorithm for a FCHEV [28,29,36–38].  

3.2.1.2. Deterministic strategy 

In a deterministic rule-based strategy, a predetermined knowledge of the fuel efficiency, 

behaviour of individual components, power distribution in the drivetrain and other physical 

experiences are used to execute a search table on how available power sources are distributed in the 

system [1,2,39]. However, the modelling and simulation of the primary energy sources were either 

applied to ensure optimal operation or within a high efficiency range that will improve fuel 

consumption and reduce energy losses during transmission. This technique is mostly used in vehicular 

applications because of the ease of implementation and applicability to real-time operations [40]. 

Deterministic strategies are broadly sub-divided into frequency-decoupling strategies and optimal 

working condition-based strategies. In the case of frequency-decoupling control, slow dynamic energy 

sources, such as a FC in an FCHEV, provides the low-frequency power, while fast dynamic energy 

sources, such as the battery, supply the necessary power during the peak time and/or high frequency. 

Optimal working condition-based strategies ensure that the vehicle is operated using the same battery 

size and FC pack while, at the same time, improving their ageing process on the operational line and 

their optimal efficiency range, as proposed in [41,42]. 

3.2.2. Learning-based EMS 

LB-EMSs use a more sophisticated data-retrieving algorithm technique to extract large amounts 

of previously stored and real-time data to establish an improved control rule. One of the major benefits 

of LB-EMSs is their ability to produce an accurate control decision without much emphasis on exact 

model prediction [31,43,44]. However, it takes a lot of time and it is very difficult to create a precise 

database and have an algorithm that can model the correct size with the capacity to directly impact the 

performance of the controller [45]. Techniques that are data-based, including machine learning 

techniques, are flexible and can be used to manage large set of datasets effectively for different drive 

cycles under different conditions [40,46]. LB-EMSs can be used together with model-based 

techniques (e.g., RB-EMSs and OB-EMSs) to control the parameters during different drive cycles, 

such as on street roads or highways, and given good or rough drivers [10,47].  LB-EMSs can be sub-

categorised into supervised learning, unsupervised learning, neural network learning (NNL) and 

reinforcement learning (RL) systems according to the learning mode [48]. 

3.2.2.1. Supervised learning 

When using a supervised LB-EMS, a prototype is subjected to a learning process that will allow 

it to make the required predictions and adjustments according to the prediction errors. This process is 

made to continue until the prototype attains the desired level of accuracy based on the data set. These 

data sets are labelled and categorised to simplify the learning exercise and are considered for 

implementation based on an error-correction learning method [39,49]. The above hypothesis means 

that the learning data sets are labelled and the required outcome of the learning input data set is 

predefined according to the input learning process for the compilation of the parameters and a 

simulation of the anticipated result. Hence, Li Q, et al. used the root mean square error method to 
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evaluate the general performance of the chosen technique, which was predefined for an anticipated 

condition in the central database system that records the sensor data set for the EM and ICE using the 

engine temperature, gasoline level and gear level [50].  

3.2.2.2. Unsupervised learning 

When using an unsupervised LB-EMS, a prototype is developed by decreasing the number of 

parameters entered as input data and ensuring that it can extract the overall set rules, arrange available 

data according to shared features and logically model the mathematical algorithm capable of 

eliminating redundancy. Reference [51] used c-means clustering to categorise the input parameters of 

the database that contain the optimal hybridisation levels across standard driving cycles together with 

the equivalent state vector of the vehicle, which comprises the battery SOC, operational temperature 

and vehicle speed. In this study, a knowledge-based control technique that uses a fuzzy c-means 

clustering set of rules was trained along the entire driving cycle. Reference [52] used a gathering 

technique that was previously implemented to create some set of clusters to extract the RB control 

strategies for a parallel HEV. However, the cost analysis showed that the input data attracted some 

extra operational cost due to the minimisation of components.  

3.2.2.3. NNL 

NNL was developed to mimic the neurons present in the human brain as its basic functionality. 

Just like human neurons, NNL has several connections. These nodes are items in a neural network with 

multiple inputs and outputs. Different behaviours of the vehicle can be modelled by using these 

neurons to form different layers and combining them differently [16,43]. Lin C, et al, Venditti M, and 

Murphey Y, et al. proposed a machine learning technique that incorporates an artificial neural network 

to treat the different types of roads (streets and highways), including the level of traffic jam prediction, 

with a DP algorithm for optimal energy control  [46,53,54]. Again, Martinez C, et al. were able to 

reduce the computational time by 60% by using a real-time optimal control set of rules based on an 

EMS to teach an Elman neural network (ENN), and to keep the value of the battery SOC within a high 

range of efficiency [55]. The ENN is basically trained to mimic the human brain using neural network 

algorithms; hence, it enhances the knowledge acquired and neuron size for optimal functionality. Li 

W, et al. and Hu Y, et al. implemented neural DP and a backpropagation neural network for HEV EMSs, 

respectively [56,57]. Both results showed that the vehicle made decisions independently, including 

obeying traffic signs, allowing other vehicles the opportunity to drive next to it without collision and 

maintaining a normal speed level. 

3.2.2.4. RL 

RL systems are made up of two distinct but connected parts, namely, the learning agent and the 

corresponding environment. The learning agent garners information about the environment regularly. 

Based on the available data of the environment accumulated, the learning agent decides on a 

corresponding action to be implemented. Subsequently, the environment is elevated to the next level 

based on the action and the compensation caused by the movement is evaluated and sent back to the 

learning agent. The agent receives an instant compensation, which forms the basis for the control 
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scheme that creates the present condition according to the most suitable control action. After the 

learning agent has acquired the necessary training for optimal operation, the best policy then instructs 

the learning agent to take the best sets of actions garnered over a specific time to maximise its operation. 

Therefore, the control policy determines the best decision at every cycle [51,57]. Chin H. and Jafari A. 

proposed the use of an RL-EMS for implementation in a series HEV [51]. They proposed the use of a 

repetitive renewing algorithm to represent a real-time demand of power based on previous and 

predictive power demands. It used a measure of the difference between the previous probability 

distribution and future probability distribution to evaluate the power demand transition based on the 

Kullback-Leibler (KL) divergence method, also known as relative entropy. Zhang W, et al. 

implemented a temporal-difference-learning algorithm for effective power distribution in a plug-in 

HEV [58], Qi X, et al. proposed the use of RL with constant state and action spaces to obtain an optimal 

control strategy for a plug-in HEV [59]. Hence, the RL strategy prompted a constant EMS online if 

the power demand transition probability changed from the KL divergence rate. In addition, Li Y, et al. 

proposed a closed-loop RL network for a parallel HEV wherein the internal-loop RL reduces the 

running cost and the external-loop controls the degradation in battery SOC [60]. Zhang Q, and Li G, 

developed a deep RL-based EMS for a plug-in hybrid electric vehicle (PHEV) [19]. The study used a 

constant target Q network with the capacity to satisfy the straight driving condition. The results showed 

that the major problem was related to how to achieve constant output conditions without the torque 

being negatively affected because of the variation caused by the discretised output condition.  

3.2.3. Optimisation-based EMSs 

The OB control strategy is used mathematically to establish the control boundaries and objectives 

in a cost function based on the cost of fuel consumption, losses in the system and overall cost of the 

system. This is achieved by employing fundamental global optimisation values to define the control 

techniques that are informed by predetermined drive cycle data. However, there are some setbacks 

with this method, because utilising global optimisation creates design challenges for real-time 

applications; nevertheless, it is still a useful design strategy for assessing several control strategies. OB 

control is broadly categorised into two types, online and offline strategies, based on their reliance on 

previous information and knowledge of the driving conditions [61].  

3.2.3.1. Online strategy  

An online strategy does not require previous information of the driving condition, nor does it 

guarantee the optimal operation of the system in real-time situations, making it localised and 

fundamental [15,17,56]. In theory, the universal optimisation challenges associated with online 

strategies are created by immediate optimisation difficulties related to execution that have constrained 

the computational time-storage reserves in real time, as shown in Figure 4. ECMS and MPC are the 

most implemented real-time online OB-EMSs used in automotive applications [9,62,63]. 

i. ECMS 

The ECMS controls the ESS SOC when the load is supplied, and it ensures that the fuel 

consumption is operated optimally without overstretching the available energy sources in the system [1]. 

It always ensures localised optimal operation of the individual components by taking into consideration 

the overall energy consumption and monitoring the SOC regularly. This type of strategy also enjoys 

multiple topologies and a flexible configuration, as the energy sources operate at optimal levels [58]. 
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In addition, the equivalent coefficient, which is equal to the power ratio of all available power sources 

in the system, must be stated for effective operation under the ECMS, and the fundamental value of 

the co-state must be established. The equivalent coefficient is a vital parameter when using ECMS; it 

must be defined for enhanced performance alongside the co-state because they are all linked to the 

drive cycle [58]. In addition, the expected drive cycle is normally pre-defined using a combination of 

a various set of rules that will guarantee optimal operation, making it different from the offline strategy. 

The results from [64–66] showed that complete information on the drive cycle is necessary to ensure 

optimal operation and use the equivalence factor, marginal cost technique and shooting method 

effectively. However, when using the equivalence factor method, all the necessary but unstable factors, 

such as the direction of electric current, battery SOC, drive cycle knowledge and charging/discharging 

cycle must be updated accordingly. Fundamentally, ECMSs are used in FCHEVs to reduce the amount 

of hydrogen consumed by transforming the electric energy generated by the ESS into corresponding 

hydrogen consumption. In a previous study conducted on an FCHEV [67], a projected probability was 

introduced to two equivalent factors based on the charging and discharging of the supercapacitor to 

eliminate major changes to the supercapacitor’s SOC; the results showed an increase in the 

supercapacitor’s lifespan. 

ii. MPC  

Based on past and present models of a system, the MPC strategy makes predictions of the future 

and anticipated outcomes within a defined set of tested rules by using a quadratic cost function and 

component classification based on other tested models. The operation of MPC is based on a declining 

horizon control algorithm that has a predictive system implemented by first establishing the optimal 

input parameters across a predictive horizon to reduce the main function of the set boundaries. 

Thereafter, the initial components of the derived optimal parameters are implemented in real time and 

then the entire prediction horizon ahead is set and the entire process is repeated. The optimal control 

glitches present in the finite domain is eliminated at each sampling stage, while the control indicators 

are achieved using online motion optimisation [67]. It improves the existing strategy whilst 

maintaining potential outcomes; hence, it requires future parameters [43]. Generally, MPCs are 

connected to a GPS to offer real-time optimisation by distributing the area of operation of the driving 

force system against a group of linear configurations combined with established parameters. This 

includes providing a solution that can be connected with a DP algorithm. Analysing an MPC strategy 

based on a prediction algorithm, allows it to be sub-categorised into stochastic and deterministic MPCs. 

Banvait H, et al. used different types of deterministic MPCs to ensure optimal operation [68]. Firstly, 

a prescient MPC was used to extract the existing information of a specific power demand for a localised 

but anticipated horizon window; the result showed a 96% improvement in the optimisation of the DP. 

Secondly, a frozen-time MPC presumes that the active power demand is stable over the prediction 

horizon. Thereafter, an exponential varying MPC assumes a rapid decrease in the unspecified driver 

demand torque along the prediction horizon. Hence, the deterministic MPC is considered fundamental 

amongst other MPCs because of the impractical assumptions; it is used to evaluate others in this 

category. SDP-MPC is an OB control strategy that uses time-invariant results based on the vehicle 

characteristics and the possibility of moving to a different operational condition to develop an effective 

EMS [43]. It enjoys a design flexibility that permits the utilisation of several drive cycle data sets for 

effective on-board direct implementation and practical (real-time) assessment using a Markov Chain [69]. 

However, its major drawback is the computational complexity, which affects real-time implementation 

in some instances. This problem can be solved by representing the cost function as a linear quadratic 
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control or a quadratic equation combined with predetermined drive cycle information [70]. 

3.2.3.2. Offline strategies 

The output of offline strategies depends on the future of its input and a predefined knowledge of 

a similar drive cycle to ensure optimal operation. Hence, it is very imperative to establish an optimal 

reference point against which other similar offline strategies can be measured [71,72]. However, the 

type of powertrain topology determines the power flow route in the system and the type of problem 

created. But, boundaries such as the drive cycle, vehicle power demand, travel range and battery SOC 

are usually the same for most configurations. Therefore, a suitable algorithm is decided to ensure 

optimisation after setting the necessary boundaries and identifying the problem. This includes power 

sharing between the fuel cell, ESS and other power sources in the system. Based on the type of problem 

created and the intended solution, offline OB strategies are broadly sub-categorised as game theory (GT), 

derivative-free, gradient, direct and indirect algorithms [43,73].  

i. GT  

GT EMSs offer a unique and encouraging solution for EMSs by introducing an independent 

optimisation operation for individual device control. GT is widely used in different powertrain 

systems because of its high flexibility and suitability to different element models [74]. The control 

system of a GT strategy consists of the major component represented by the primary and secondary 

power sources that supplies the powertrain, as well as the power-consuming components. This 

includes the propulsion elements such as the grade, aerodynamic drag, acceleration and traction, 

including the ESSs. Owing to its distinctive characteristic of handling problems associated with 

interfacing components for multiple powered systems, GT has gained wide acceptance for use in 

smart grid system applications, HEVs and sustainable energy applications. However, to enhance 

system performance, a set of defined rules are mostly optimised by using an offline optimisation 

algorithm for a specific drive cycle [75]. These may include a DP algorithm, PSO, direct global 

optimisation, a GA and SA optimisation. Each of these optimisation algorithms is modelled to handle 

a specific aspect of the optimisation target without affecting other aspects of the system. Furthermore, 

when used for energy management in a HEV or any other hybrid power system, each power source 

is modelled uniquely as a component and decides on a specific amount of power that will ensure its 

optimisation. This, however, depends on the drive cycle information, which can be forecast using 

predictive techniques such as Markov chain models, neural networks, a support vector machine and 

sophisticated sensor tools [19]. Again, Gielniak M. and Shen Z. used GT to optimise powertrain 

efficiency and improve the performance of a FCHEV [76].  

ii. Derivative-free algorithm (DFA)  

These are used in EMSs to solve problems associated with derivative information, such as 

uncertainty, unattainability and impracticability. DFAs also have the capacity to congregate at a 

global solution, unlike gradient algorithms, and they have applications in PSO, GAs, SA, and multi-

objective GAs (MOGAs). PSO was first implemented by Kennedy and Eberhart in [77]. The 

technology was used to mimic the way social organisms behave when in their natural habitat 

operating in groups. It offers a useful platform for members of the group to share valuable information 

that will enhance group and individual optimisation. In 2006, Wang, Z, et al. implemented the 

technology for HEV optimisation of the fuel and reduced CO2 emissions [78]. Lin X, et al. used the 

same strategy to optimise the training of neural networks, regulation and control of the operational 
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parameters in a real-time controller [79]. Again, Hegazy O, et al. and Desai C, et al. used a PSO strategy 

to optimise the design of electrochemical systems such as supercapacitors and fuel cells [80,81].  

The GA method involves the three fundamental stages of reproduction, crossover information 

and modification, and it is also a widely used strategy that originated from organic collection and 

development in 1975. It has the capacity to solve complex intermodal, nonlinear, discontinuous-time 

and concave optimisation problems to achieve global optima by eliminating surrounding optima 

glitches [38]. Piccolo A, et al. implemented this strategy in 2001 to ensure optimisation of the energy 

management of HEV [82]. To establish the optimal engine-on power level in consideration of the 

reactive and active power of a battery, Chen Z, et al. applied a GA strategy to a power-split PHEV [83]. 

The results showed that the fuel consumption was reduced with increased travel range. In addition, 

Desai C and Williamson S used a MOGA strategy to ensure the optimisation of individual 

components of a powertrain, reduce fuel consumption and lower CO2 emissions [84].  

The interest in SA strategies was triggered by the metal annealing process in 1983 [85]. Its 

primary objective and design strategy is to search for the best suitable solution by implementing a 

stochastic method that incorporates the solution candidates; hence, it considers developments based 

on the fundamental objective. SA techniques do not ensure the provision of a global optimal option, 

but it can be used together with corresponding techniques, such as a GA and PSO, to guarantee 

optimisation in a repeated manner [86]. However, Hui S, used the GA technique because of its 

flexibility to implement a reliable global convergence and optimise an HEV [87]. Sharma A, 

implemented a hybridised SA and PSO system to improve the merging abilities of the SA 

algorithm [88]. The results showed enhanced system optimisation and reduced CO2 emission, as 

well as reduced fuel consumption. Again, Chen Z, et al. capitalised on the ability of SA to locate the 

maximum current coefficient using PMP, and thus to locate the battery current stability [89].  

iii. Gradient algorithms  

Several studies have tried to provide a solution that will reduce the calculation time of OB-

EMSs while enhancing their reliability. These solutions are aligned with established objectives and 

have effectively improved the number of applicable equations in gradient algorithm EMSs. This is 

necessary because vehicle powertrains have become more complex and, in most instances, have 

nonlinear limitations. However, these solutions use derivative data within mathematical constraints 

such as variability, continuity or a Lipschitz situation to meet the optimisation solution. Gradient-

based EMSs are broadly categorised into quadratic programming (QP), convex programming (CP), 

linear programming (LP) and sequential QP EMSs. The powertrain in a QP-based EMS is estimated 

to obtain a QP configuration set by a quadratic cost requirement within the established linear 

limitations. Reck R, et al. and Koot M, et al. used predictive information of the drive cycle within a 

regulated anticipated time and a QP-based EMS in an integrated-number within established 

constraints to reduce the calculation time and improve optimisation respectively [90,91]. When using 

the CP method, vehicles are designed simply to meet the convexity constraints by improving the 

constraint conditions, removing the ON/OFF of the ICE engine, replacing the battery SOC with the 

battery energy capacity, etc. In instances in which vehicles are designed and implemented using 

quadratic equations, EM losses and the power level at a particular speed are estimated using second-

order quadratic equations and battery power is represented by using quadratic linear equations [92–94]. 

In addition, the hydrogen utilisation can also be estimated by using quadratic equation for an 

FCHEV [95,96]. The fuel economy utilisation in LP-based EMSs is seen as a convex nonlinear 

optimisation problem that is estimated by using piecewise-linear estimations or achieved by using a 
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set of linear matrix equations [97]. LP techniques surrounds the processes for a specific solution in a 

linear objective style and constraints, QP surrounds the processes for a particular solution of 

optimisation by using quadratic and linear constraints and CP surrounds the processes for a specific 

solution of optimisation by using convex objective and unequal constraints. Nevertheless, stand-

alone gradient algorithms cannot independently provide total optimisation solutions because the 

reliability of the vehicle is reduced due to generalisation. 

iv. Direct algorithms  

DP, also known as deterministic DP (DDP) is the most used optimisation EMS for offline 

applications. It is expressed in the form of quadratic equations and better implemented using 

established drive cycle information. However, the primary purpose of DDP is to express the solution 

in a nonlinear dynamic format that is sub-divided into separate times. DP is an OB control strategy 

that uses time-invariant results based on the vehicle characteristics and the possibility of moving to 

a different operational condition to develop an effective EMS [43]. It enjoys a design flexibility that 

permits the utilisation of several drive cycle data set for effective on-board direct implementation and 

practical (real-time) assessment using a Markov chain [69]. However, its major drawback is the 

computational complexity, which affects real-time implementation in some instances. This problem 

can be solved by representing the cost function as a linear quadratic control or a quadratic equation 

combined with predetermined drive cycle information [70]. Again, the Markov chain function is 

created at every sample time and can be implemented using a reverse repetitive technique.  Lin C, et 

al. and Chen Z, et al.  implemented a DDP in a HEV [72,97] and Gong Q, et al. implemented it in a 

PHEV [98]. Again, Sundström O, and Stefanopoulou A, utilised DP to reduce the cost function 

created using a sequential duplication function for the battery SOC variations of an FCHEV, the 

overflow oxygen ratio and the hydrogen consumption [99]. Again, Santucci A, et al. proposed a DP 

design that has the capacity to approximate the obtainable growth over the lifespan of the battery by 

using a hybrid ESS [100]. As indicated above, DP is operated effectively only with specific drive 

cycle information, and it does not ensure optimisation under different drive cycle conditions. In 

addition, the set rule of extraction is very complex and takes time to implement; also, the feedback 

response cannot be implemented promptly. To address the above problems, Lin,C, et al. developed 

an SDP using a Markov chain with shift possibilities [46]. The EMS was implemented by using 

different drive cycle information indiscriminately. The results showed that the SDP improved the 

battery SOC control with fewer components requiring adjustment because of a reduction in the total 

costs. Hence, the problem created by the SDP was controlled using different control methods such as 

barycentric interpretation, constraint generation and LP.  

v. Indirect algorithms  

PMP is the most widely used indirect algorithm for optimal control problems [101]. The Russian 

mathematician Lev Pontryagin was the first person to develop this technique in 1956 to provide a 

solution to constrained global optimisation problems. The PMP offers specific and required 

conditions, whereas the adequate conditions are met by using the Hamilton-Jacobi-Bellman equation 

with the fundamental purpose of reducing the constrained global optimisation problem to a local 

Hamiltonian minimisation problem. However, the Hamiltonian equation is symbolised by a co-state 

and represented as a premium factor for electrical implementation [102]. When the complete drive 

cycle information is provided, then the ideal value of the first co-state can be established using a 

recursive algorithm; but, with undefined drive cycle information, the first co-state will produce 

different values. Again, the look-up table will increase significantly because of the complex 
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computational process and the increased number of components. This implies that the storage and 

computational capacities of the chosen controllers will require corresponding increases, thereby 

making the PMP unsuitable for direct implementation in real-time applications. In 2001, Sebastien 

D, et al. proposed an application that used the PMP to ensure the optimisation of an EMS in a parallel 

HEV [103]. Serrao L, and Rizzoni G, did a similar study by implementing the same concept to 

determine the optimal power point split method for a hybrid electric truck [104], and Bernard J, et al. 

developed a mechanism that guaranteed effective power sharing between the FC and ESS of an 

FCHEV to reduce the amount of hydrogen consumed for a particular drive cycle [105]. Again, Hemi 

H, et al. implemented a combination of an optimal control solution using PMP and a Markov chain 

for efficient power distribution in an FCHEV [106]. The results showed that the power was controlled 

with an increase in the travel range. The results in [107] indicated that the solution provided by the 

PMP is similar to the DP results, and that the co-state significantly affects the battery SOC variation. 

Again, several studies have proposed solutions to approximate the first co-state and rectify the 

problem associated with it. Pham T, et al. used a proportional feedback controller [108], Kessels J, et 

al. used a proportional integral controller [109] and Yu H, et al. used a proportional-integral-

derivative (PID) control technique [110]. These were used to determine the error signal that exists 

between the actual battery SOC level and the different reference levels that are obtained based on the 

past, present and anticipated information. Hence, Pharm T, et al. utilised the battery energy variations 

and the battery temperature (double proportional feedback controllers) [108]. Researchers have tried 

to improve the constrained optimisation problem by implementing a dampened Newton technique 

to mitigate the computational complexity demand associated with the Hamiltonian optimisation 

method [111]. In addition, Hou C, et al. proposed an approximate PMP (A-PMP) technique to reduce 

the computational time of the PMP by implementing recorded patterns in the numeric PMP [112]. 

The study was conducted by establishing the turning point of the ICE fuel level by using a piecewise 

linear approximation technique. Fundamentally, when using the A-PMP strategy, the system will 

calculate and determine the Hamiltonian candidate, incorporating the optimal point of the PHEV by 

adding a convex estimation to the host Hamiltonian. 

 

Figure 4. Online OB-EMSs conducted from offline OB-EMSs  [17]. 
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4. Discussion and future research work 

There have been a number of studies done in the past decade on various FCHEV EMS 

technologies, with significant results presented in the previous sections of this paper. However, the fast 

growth in electromobility and emerging technologies have presented complex computational tasks and 

introduced huge opportunities to improve the performance of FCHEVs and corresponding EMSs. This 

technological development has presented some advantages and disadvantages, including the need to 

provide improved fuel economy and an increased travel range, even as FCHEVs have become more 

sophisticated, as shown in Table 2. Hence, there is a need to highlight a future research path within 

this area. 

Offline OB-EMSs have shown computational complexities when used online, while RB-EMSs 

demonstrated significant success on its functionalities when used for real-time applications. RB-EMSs 

cannot ensure the best optimisation within the established constraints due to its fundamental 

configuration. This is because a significant amount of time and predefined drive cycle information are 

needed for a specific application to regulate the control components. Nevertheless, DP, GA and PSO 

strategies offer a non-causal output that cannot be implemented in real time.  

Several FCHEV EMSs have been presented according to their performance in fuel economy, 

tailpipe emission and travel range. The results showed that no single EMS has the capacity or 

technological capability to provide solutions to all the problems presented. Hence, several studies 

combined different optimisation strategies that complimented each other to improve the overall 

performance of EMSs. One such study mixed the PMP with CP to enhance optimisation for ICE 

ON/OFF switching and power distribution in a HEV [113,114]. In this study, the PMP systematically 

combined the ICE ON/OFF algorithm and convex optimisation to determine the optimal point. Elbert 

P, et al. combined CP with DP and provided solutions to optimisation problems associated with mixed-

number EMSs, making it possible to combine the ICE ON/OFF method and gearshift to a convex 

optimisation [115]. 

Most of the studies focused on the use of somewhat old algorithms, such as PSO algorithms, SA 

algorithms and GAs, for OB-EMS control to analyse the optimisation level. According to [116], over 30 

different fundamental algorithms have been used in several studies and presented in various papers. 

However, most of these have not been successfully implemented in FCHEV EMS optimisation; hence, 

it would be interesting to investigate their applicability, reliability, suitability and effectiveness for 

online applications. Therefore, carrying out research on some of these emerging algorithms would 

provide the necessary improvement needed for computational time, the ability to compute very 

complex and multidimensional configurations and the integration and combination of different EMS 

control strategies aimed at increasing the overall performance. This can be a random combination of 

any such technologies, such as social-based, bio-inspired, swarm-based and chemistry-based 

techniques. Again, EMSs can be extended to multi-time scales, multi-vehicle interaction and multi-

information levels. There is also huge research potential in combining machine learning with OB 

techniques. In this instance, the EMS will consider more than one vehicle interacting with a smart grid 

network by using a smart charging system to ensure enhanced optimisation. 

In addition, the fast growth and technological advancement in FC technology in the past decade 

and its corresponding applications in emerging technologies, electromobility and computational 

applications have triggered the need to enhance the performance of EMSs. Again, experiencing the 

rapid emergence of concepts such as vehicle-to-vehicle, vehicle-to-grid, vehicle-to-infrastructure, 

vehicle-to-home and vehicle-to-device has provided an opportunity to further enhance the driving 
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performance and fuel economy of FCHEVs. Furthermore, there is the urgent need to investigate the 

possibility of a synergy between hydrogen and electric networks. Reference [113] presented some 

advantages of implementing a vehicle-to-grid system in an FCHEV to improve the reliability of the 

grid network. However, the research field requires further investigation geared towards mitigating the 

known obstacles to the use of hydrogen as the primary source of fuel in a smart grid network, such as 

a slow response time and the non-availability of hydrogen fuel.   

Table 2. Advantages and disadvantages of studied FCHEV EMSs. 

Type of 

algorithm 

References Strategy used Main Advantages Main Disadvantages 

RB [2–4], [5], [10], [16], [21], [27–29], 

[31], [32], [35], [36], [38], [39], 

[40], [42], [44], [47], [50], [52], 

[61], [73], [94], [100], [101], [102], 

[109], [113], [116-118], [126] 

FL  Predictive 

 Flexible 

 Reliable 

 Control parameters 

are calibrated for 

specific drive cycle 

Deterministic   Easy 

implementation 

 Poor fuel economy 

LB [12], [13], [19], [24], [33], [34], 

[45], [46], [49], [51], [53], [54], 

[59], [60], [62], [77], [92], [93], 

[121], [127]  

Neural 

Network 

 Highly flexible 

and trainable 

 Unpredictable 

learning outcome 

 It requires a lot of 

learning data 

RL  Intelligent PID 

 Ability to self-

correct errors 

during learning 

 Not suitable for 

simple applications 

 Requires too much 

data to build the 

database 

Online OB [1], [3], [6], [8], [9], [11], [17], [22], 

[23], [25], [26], [30], [37], [48], [55-

58], [63–67], [71], [72], [88], 

[90],[91], [96], [103],[104], [106-

108], [114], [115-117], [119], [125] 

ECMS  It can be 

implemented 

online 

 Single cost 

function 

interpretation 

 Localised objectives 

 Very sensitive to 

drive cycle 

parameters 

 

MPC 

 Flexible 

 Predictable 

 Offers less 

computational 

solution online 

 Optimal 

performance  

 Highly sensitive to 

prediction possibility 

 Requires pre-defined 

drive cycle 

knowledge 

 Needs road details 

for optimisation 

Continued on next page 
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Type of 

algorithm 

References Strategy used Main Advantages Main Disadvantages 

Offline OB [7], [14], [15], [18], [20], [41], [43], 

[68], [69], [70], [74-76], [78], [79-

87], [89], [95], [97], [98], [99], 

[105], [110-112], [115], [120], [122-

124] 

GT  Adequate 

balance 

between 

opposing 

objectives 

 Driver attitude 

is integrated in 

EMS 

 Some conflicting 

problems are not 

analysed  

 Large computational 

expense 

 

Derivative-

Free 

 Eliminating 

localised targets 

using stochastic 

solution search 

 It requires multiple 

repetitions to 

achieve optimisation 

DP  Global 

optimality 

 Standard for 

other EMSs 

 Dimensionality 

difficulties 

 Requires driving 

cycle information 

ahead of time 

 High computational 

cost 

Gradient  High-speed 

computation 

 Complex to interpret 

model 

 It requires derivative 

knowledge objective 

function 

 Complex 

mathematical 

computation 

Another significant aspect is the development and effective commercialisation of FCHEV 

research aimed at techno-economic analysis. Such research must address the evident challenges 

hindering the mass adoption of environmentally friendly and low-carbon transportation systems by 

providing techno-economic analysis [117,118] Presently, there are very few studies on the techno-

economic analysis of FCHEVs, hence the need for more studies to be conducted in this area [119,120].  

Different integration possibilities can be considered for future research from an integrated EMS 

perspective. Starting with a single powertrain level where the EMS will be integrated into other 

sub-systems such as aftertreatment [121], a waste heat recovery (WHR) system [122] or thermal 

loads [123]. Achieving the above will help improve fuel economy while considering the tailpipe 

emissions of hydrocarbons, nitrogen oxide (NOx) and carbon monoxide. A diesel engine 

aftertreatment-WHR system is a promising energy recovery technology with significant potential in 

heavy-duty vehicle and truck applications [121]. As powertrain topologies become more complex with 

associated computational difficulties, there is an increased need for the development of a complete 

hierarchical EMS system with the ability to efficiently coordinate a multi-scale time horizon that will 

ensure optimal driver safety. Hence, future research should consider combining the different control 
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layers into a single EMS framework, e.g., integrated powertrain control with a sensor-based emission 

evaluation system [121], an integrated optimal EMS framework [18] and a multi-level EMS [124]. 

This will take into account the road conditions such as road grade, speed limits and altitude when 

considering the vehicle’s trajectories. Again, with improvements in cyber-physical systems [125], the 

integration of environmentally friendly driving into an EMS at the double-vehicle level via 

adaptive/predictive control [126], or at the multiple-vehicle level [127], is appealing for research 

consideration.  

5. Conclusions 

This paper has presented a comprehensive literature review on various EMSs used for FCHEV 

applications. Scientific and technical literature on EMSs was adequately presented and categorised 

according to the type of technology. Fundamentally, FCHEV EMSs are proposed to provide basic 

control, such as ESS charge maintenance, optimisation of the vehicle travel range, emissions reduction, 

vehicle performance enhancement and fuel consumption reduction. Hence, the study has provided 

basic EMS requirements and included a comprehensive categorisation of current EMS techniques and 

their unique contributions, operational differences, fundamental principles, advantages and 

disadvantages. Presently, there are several EMS techniques available for effective power distribution 

in FCHEVs. However, they differ by complexity, technology maturity, cost and accuracy. Hence, the 

necessary skills and knowledge are required when choosing an EMS for any application. In addition, 

several strategies, findings and results were investigated, with specific interest in the FC lifespan, 

battery degradation and travel range. Again, because the primary focus was EMS techniques, the paper 

has presented, in detail, types of EMSs and discussed their suitability and technology maturity; 

research gaps were also identified for future research aimed at improving reliability and effectiveness.  
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