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Abstract: Accurate prediction of the angular and spatial distributions of radiative intensity is a very 
important and challenging issue for the coupled radiation and conduction problem with nonlinear 
anisotropic scattering medium. Different with the traditional hybrid spectral methods, spectral 
collocation method associated with discrete ordinate method (SCM-DOM), the spectral collocation 
method is extended to discretized both angular and spatial domains of governing equations in 
concentric cylinders. The angular and spatial derivative terms of governing equations in the 
cylindrical coordinate system are approximated by high order Chebyshev polynomials instead of the 
low order finite difference schemes. The performance of SCM is evaluated by comparing with 
available data in literature. Numerical results show that convergence rates of angular and spatial 
nodes approximately follow the exponential decaying law. In addition, for nonlinear anisotropic 
scattering medium, the SCM provides smoother results and mitigates the ray effect. The SCM is a 
successful and efficient method to deal with coupled radiative and conductive heat transfer in 
concentric cylinders. Furthermore, the effects of various geometric and thermal physical parameters 
on dimensionless temperature and heat flux are comprehensively investigated. 
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high order accuracy 

 

 
Nomenclature: nA : the coefficient of Legendre expansion of order n; B : backward scattering 

phase function; ,i jD
:
 the element of the first order derivative matrix; (2)

,i jD
:
 the element of the 

second order derivative matrix; , ,r ze e e
:
 the spatial vectors; rE : integral averaged relative error; 

F : forward scattering phase function; G : incident radiative energy; h : Lagrange interpolation 

polynomials; I : radiative intensity; k : thermal conductivity; n: unit outward normal vector; crN : 

conduction-radiation parameter; * ,  ,  
r

N N N  : number of collocation points in dimensionless radius, 

azimuthal angle and polar angle, respectively; nP : Legendre polynomials of order n; cq : 

dimensionless conductive heat flux; rq : dimensionless radiative heat flux; tq : dimensionless total 

heat flux; r : radial coordinate of cylindrical coordinate system; *r : dimensionless radius; refR
:
 

available data from references; SCMR : numerical solution by SCM; S : source term; T : 

temperature; ,w w  :
 quadrature weight in polar angle and azimuthal angle; 

Greek Symbols: * ,  ,  
r     : standard computational domain in dimensionless radius, polar angle 

and azimuthal angle, respectively;  : extinction coefficient;  : standard deviation;  : emissivity 

of boundary surface;  : direction cosine in e  direction;  ,  : polar angle;  : dimensionless 

temperature; a : absorption coefficient; s : scattering coefficient; t : transmission coefficient;  : 

direction cosine in re  direction;  : direction cosine in ze  direction;  : Stefan Boltzmann 

constant;  : optical thickness;  , : azimuthal angle; ( , ) Ω Ω : scattering phase function from 

the incident direction Ω  to the scattering direction Ω ;  : dimensionless radiative intensity;  : 

scattering angle;  : scattering albedo; Ω , Ω : the direction of radiative intensity; 

Subscripts: B3: a typical backward scattering; b : black body radiative intensity; F3: a typical 

forward scattering; , , , ,i j k m m : solution node indexes; in : inner wall of concentric cylinders; 

isotropic scattering: isotropic scattering; out : outer wall of concentric cylinders; *
inr : value at inner 

wall; *
outr : value at outer wall; w: value at wall; *r


:
 value in standard radius computational domain;

 :
 value in standard azimuthal angle computational domain; 

Superscripts: CG : Chebyshev-Guass points; CGL : Chebyshev-Guass-Lobatto points; , ; ,m m n n  : 

angular direction of radiation; 

1. Introduction 

The combined radiative-conductive heat transfer in participating medium [1] plays a dominant 
role in high temperature equipment, such as aeroengine combustor, nuclear reactor and industry 
furnaces, etc. Accurate prediction of temperature and heat flux requires solving radiative transfer 
equation (RTE) and energy equation simultaneously [2–6]. Different with RTE in Cartesian 
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coordinate, RTE in cylindrical coordinate exists the angular derivative term which would increase the 
mathematical complexity. 

In recent years, the coupled radiative-conductive heat transfer in participating medium of 
cylindrical geometry has evoked wide interests of many researchers. As early as 1982, Fernandes and 
Francis [7] gave the rigorous formulations of combined conduction and radiation in concentric 
cylinders and numerically solved by Galerkin finite element method. Pandey [8] employed 
undetermined parameters method to solve this coupled problem for gray and nongray gases 
contained between infinitely long concentric cylinders with black surfaces. Krishnaprakas [9] used 
the hybrid strategy to analyze combined conduction and radiation in cylindrical geometries. In this 
paper, energy equation was solved by finite different method, and RTE was solved by discrete 
ordinates method in conjunction with Crank-Nicolson scheme. The effects of thermal-physical 
parameters, namely emittance, scattering albedo, scattering phase function, conduction-radiation 
parameters on heat fluxes were investigated. Dlala et al. [10] investigated coupled 
radiative-conductive heat transfer in gray hollow spheres and cylinders. They used finite Chebyshev 
transform (FCT) to improve the performance of discrete ordinates method, and adopted Chebyshev 
polynomials to approximate the angular derivative term instead of finite difference scheme. The FCT 
was more accurate than traditional discrete ordinate method. Mishra et al. [11,12] developed the 
modified discrete ordinate method and lattice Boltzmann method to analyze coupled 
radiative-conductive heat transfer in infinite and finite concentric cylinders with absorbing, emitting, 
and scattering medium. Authors claimed this modified discrete ordinate method was not require 
complicated and intensive calculation to determine the discrete directions and directional weights, 
allowed freedom of direction selection. Zhou et al. [13] extended the MDOM, which based on 
superposition technique and considering the contributions of the walls and medium, to the cylindrical 
medium. And the results showed that the cost computational time was comparable to DOM and the 
ray effect can be mitigated effectively. 

Different with above numerical algorithms, spectral methods [14–16] are useful tools to solve 
ordinary differential equations or partial differential equations with high order accuracy, and usually 
the best choice for solving problem with smooth solution [17]. Benefiting from high accuracy, simple 
implementation, and exponential convergence characteristic, they have been widely used to solve 
problems in many fields, such as computational fluid dynamics [18,19], magnetohydrodynamics [20], 
and optics [21]. Using spectral methods to solve thermal radiative heat transfer already has a history 
of two decades [22–26]. Among these researches, several hybrid spectral methods such as spectral 
collocation method associated with discrete ordinate method (SCM-DOM) [22–24] and spectral 
element method combined with discrete ordinate method (SEM-DOM) [25] were developed, in 
which the spatial domain was discretized by spectral methods, and the angular domain was 
discretized by DOM. Recently, Wang et al. [26] further extended the SCM-DOM for solving 
polarized radiative transfer problems in multi-layered participating media. 

Different with the above hybrid spectral methods, Zhou et al. [27,28] taken advantage of SCM 
to discretize the entire spatial and angular domain rather than only the spatial domain. Their 
numerical test showed that SCM can achieve the high accuracy both in spatial and angular directions. 
They further developed SCM to solve radiative integro-differential transfer equation [29] in 
one-dimensional medium which only contains unknown radiative flux and eliminate the effect of 
angular derivative term. However, in common situations, radiative heat transfer is coupled to other 
models of heat transfer. To the best of authors’ knowledge, no research to date has aimed to using 
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SCM to solving coupled radiative and conductive heat transfer so far.  
The objective of this work is to extend the SCM to solve coupled radiative and conductive heat 

transfer in concentric cylindrical medium. This paper is organized as follow: In section 2, the 
physical and mathematical models of coupled radiative and conductive heat transfer in concentric 
cylinders are presented. In section 3, the SCM formulations of RTE and energy equation are deduced. 
In section 4, the performance of SCM is verified from the available data in the literature. In section 5, 
the effects of various geometric and thermo-physical parameters are comprehensively investigated. 
Finally, the conclusions are summarized in section 6. 

2. Physical and mathematical models of concentric cylinders 

As shown in Figure 1, the present study considers the coupled radiative and conductive heat 
transfer processing in cylindrical coordinate system. The absorbing, emitting and anisotropic 
scattering medium is filled in concentric cylinders. 
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Figure 1. Physical model of coupled radiative and conductive heat transfer in cylindrical 
coordinate system. 

In concentric infinite cylinders, the non-conservation form of RTE for a gray medium is [30–32] 

 
4

( , ) ( , )
( , ) ( ) ( , ) ( , )

4
s

a s a b

I r I r
I r I r I r d

r r 
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 

         
  

Ω Ω
Ω Ω Ω Ω Ω     (1) 

where ( , )I r Ω  is the radiative intensity at spatial position r  along angular direction Ω ; The 
direction Ω  can be expressed by the direction cosines sin cos   , sin sin    and 

cos  , where   is polar angle and   is azimuthal angle; a  and s  are absorption 

coefficient and scattering coefficient, respectively. The anisotropic scattering phase function 
( , ) Ω Ω  represents the probability that a radiative beam along angular direction Ω  is scattered to 
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angular direction Ω , and is approximated by a finite series of Legendre polynomials as 

1

( , ) 1 (cos )
N

n n
n

A P


   Ω Ω                               (2) 

where nA  is the coefficient of Legendre expansion of order n which are listed in Table 1 [33]; nP  

is the Legendre polynomials;   is the included angle between the incident direction Ω  and the 
scattering direction Ω . 

Table 1. The expansion coefficients for scattering phase functions expanded by Legendre 
polynomials [33]. 

coefficients 
scattering phase functions 

F1 F2 F3 B1 B2 B3 

0A  
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

1A  
2.53602 2.00917 1.00000 −0.56524 −1.20000 −1.00000 

2A  
3.56549 1.56339  0.29783 0.50000  

3A  
3.97976 0.67407  0.08571   

4A  
4.00292 0.22215  0.01003   

5A  
3.66401 0.04725  0.00063   

6A  
3.01601 0.00671     

7A  
2.23304 0.00068     

8A  
1.30251 0.00005     

9A  
0.53463      

10A  
0.20136      

11A  
0.05480      

12A  
0.01099      

For the gray, opaque and diffuse boundary, the boundary conditions of RTE can be expressed as 

  , 0

1
, ( , ) ,   0

w

w
w w b w w w wI I I d


  

        n Ω
r Ω r Ω n Ω Ω n Ω             (3) 
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where w  is the wall emissivity, ,b wI  is the blackbody radiative intensity at the wall, wn  is unit 

wall normal. 
As shown in Figure 2, the following symmetric condition is satisfied 

       , , , , , , 2 , , 2I r I r I r I r                               (4) 



( , )I r 

( , )I r  

inr outr

 

(a)                             (b) 

Figure 2. Illustration of the symmetry. 

Thus, Eq (4) is solved on the three-dimensional domain        , , , 0, 2 0,in outr r r      .  

For the infinite concentric cylinders, the steady-state energy equation can be written as 

 41 1
( ) ( )

4
ar

r b

dq
q I T r G r

dr r k




    
 

                     (5) 

with the boundary conditions 

( )

( )
in in

out out

T r T

T r T


 

              (6) 

where G  is the incident radiative energy, 

2

0 0
( ) 4 sinG r I d d


                          (7) 

For convenience of analysis, the following dimensionless parameters [10] are introduced 
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Then, RTE, energy equation and the corresponding boundary conditions can be transformed into 
the dimensionless forms as 

 
4 * *

* * 4
(1 ) ( ) ( , ) ( , )

4out out

r r d
r r 
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3. Spectral collocation discretization 

As shown in Figure 3, the spatial-angular domain      , 0, 2 0,in outr r     is discretized into 

 *

* * *
1 2, , ,

r
Nr r r ,  1 2, , , N

   , and  1 2, , , N
    along *r ,   and   directions, 

respectively. According the theory of SCM, the discretized spatial-angular domain should be 
transferred to the standard Chebyshev domain by the following relationship 
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where i  is the Gauss-Lobatto points. 
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Figure 3. The illustration of spatial and angular domains. 

Then, dimensionless radiative intensity and dimensionless temperature can be approximated by 
Lagrange interpolation polynomials and collocation points [16] 
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N

i i
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s h s
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where ih  are Lagrange interpolation polynomials. 

Substituting Eq (14) into Eq (9), weighting by weight function and integrating over the 
computational domain, Eq (9) can be discretized as  
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The corresponding boundary conditions are discretized as 
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Similarly, the energy equation is discretized as 
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where ,i jD  and  2
,i jD  [14] are the first and second order derivative matrix, respectively. 

Figure 4 shows the flow chart of the SCM for the coupled radiation-conduction problem in 
concentric cylinders. 

 

Figure 4. The flow chart of SCM for radiative and conductive heat transfer in cylindrical system. 

4. The accuracy and efficiency of SCM 

Based on the above described SCM model for coupled radiative and conductive heat transfer in 
concentric cylinders with participating medium. In the following, several test cases are adopted to 
verify the performance of SCM model. Compared with available data in references, the accuracy and 
efficiency of SCM for coupled radiative-conductive heat transfer in concentric cylinders are 
validated. 
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In order to quantitatively evaluate the accuracy of SCM, the integral averaged relative error is 
defined as 

 

* * *

* *

( ) ( )
100%

( )

SCM ref

r

ref

R r R r dr
E

R r dr


 


 (19) 

where refR  is available data from references. 

A piratical case of coupled radiative-conductive heat transfer in concentric cylinders is 
considered with the conduction-radiation parameter 0.01crN  , the ratio of inner and outer 

cylinders * */  0.5in outr r   and dimensionless temperature at outer surface  0.1out  . There are 

blackbody surfaces and non-scattering medium. The extinction coefficient is   1  . This case has 

also been adopted by Mishra et al. [34] for lattice Boltzmann method associated with finite volume 
method (LBM-FVM).  

The distribution of dimensionless temperature within concentric cylinders by SCM is plotted in 
Figure 5, and compared to LBM-FVM results. The SCM results is very close to those of the 
LBM-FVM results, and the integral average relative error is 0.875%. 

 

Figure 5. Comparisons of the dimensionless temperature distributions between SCM and 
LBM-FVM. 

Furthermore, Table 2 lists the dimensionless total heat fluxes at inner and outer surfaces for 

different conduction-radiation parameters crN  and scattering albedo  . In this table, the results in 

first and second column are copied from Ref. [10], and obtained by DOM and FCT, respectively. 

Different with the first case, dimensionless temperature at outer surface is  0.5out  . It can be seen 

that for both conduction dominated ( = 1.00crN ) and radiation dominated ( = 0.01crN ) situations, the 
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results of SCM and FCT are in good agreement with each other. The maximum relative error 
between SCM and FCT is 1.023%. 

Table 2. Values of the dimensionless total heat flux at the boundaries obtained by DOM, 
FCT and SCM. 

crN    
*( )t inq r  

*( )t outq r  

DOM [10] FCT [10] SCM DOM [10] FCT [10] SCM 

1 

0.9 1.6460 1.6436 1.6421 0.8230 0.8218 0.8210 

0.5 1.6502 1.6488 1.6468 0.8251 0.8244 0.8234 

0.1 1.6542 1.6537 1.6512 0.8271 0.8268 0.8256 

0.1 

0.9 3.4764 3.4523 3.4363 1.7382 1.7261 1.7183 

0.5 3.5181 3.5045 3.4840 1.7592 1.7522 1.7422 

0.1 3.5578 3.5529 3.5271 1.7789 1.7763 1.7638 

0.01 

0.9 21.7839 21.5403 21.3807 10.8919 10.7700 10.6921 

0.5 22.1593 21.9907 21.7937 11.0796 10.9953 10.8988 

0.1 22.4352 22.3172 22.0889 11.2176 11.1586 11.0465 

Table 3. Influence of the number of collocation points in r ,   and  . 

rN  N  N  * *
tr q   

12 

28 28 

7.342084 േ  7.99 ൈ 10ିସ 

20 7.341663 േ  8.49 ൈ 10ିହ 

28 7.341663 േ  8.53 ൈ 10ିହ 

36 7.341664 േ  8.56 ൈ  10ିହ 

44 7.341664 േ  8.57 ൈ  10ିହ 

28 

12 

28 

7.382330 േ  1.71 ൈ 10ିଷ 

20 7.351596 േ  2.74 ൈ 10ିସ 

28 7.341663 േ  8.53 ൈ  10ିହ 

36 7.336948 േ  3.89 ൈ  10ିହ 

44 7.334239 േ  2.21 ൈ 10ିହ 

28 28 

12 7.341663 േ  8.53 ൈ 10ିହ 

20 7.341663 േ  8.53 ൈ 10ିହ 

28 7.341663 േ  8.53 ൈ 10ିହ 

36 7.341663 േ  8.53 ൈ  10ିହ 

44 7.341663 േ 8.53  ൈ 10ିହ  

 
Then, we would verify the accuracy in the whole domains by testing whether the condition 

𝑟∗𝑞௧
∗ ൌ constant is satisfied. This is because as long as the equilibrium is satisfied, the energy 

equation always writes div ሾ𝑞௧
∗ሺ𝐫ሻሿ ൌ 0 where 𝑞௧

∗ is the dimensionless total heat flux and 𝐫 is 
spatial position. For a one-dimensional system, spatial position 𝐫 is simplified as radial distance 𝑟 

and the divergence equation in cylindrical coordinates simply writes 
ௗ

ௗ௥
ሺ𝑟∗𝑞௧

∗ሻ ൌ 0 which means 

𝑟∗𝑞௧
∗ ൌ constant. In Table 3, the results obtained with different collocation point numbers 𝑟∗𝑞௥

∗തതതതതത േ 𝛿 
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are given, where the standard deviation 𝛿 ൌ ටଵ

ே
∑ ൫𝑟∗𝑞௧

∗തതതതതത െ 𝑟∗𝑞௧
∗൯

ଶே
௜ୀଵ , the 𝑟∗𝑞௧

∗തതതതതത is the mean value of 

the 𝑟∗𝑞௧
∗, i.e, 𝑟∗𝑞௧

∗തതതതതത ൌ ଵ

ே
∑ 𝑟∗𝑞௧

∗ே
௜ୀଵ . 

It can be seen that in all case of different number of collocation points, 𝑟∗𝑞௧
∗ remains almost 

constant everywhere in the medium, with a very small deviation insuring four or five correct digits. 
Therefore, the accuracy of SCM is verified everywhere in the domain. 

In order to the efficiency of this SCM model, Figure 6 depicts the effect of collocation point 
numbers on the integral averaged relative error. As shown in Figure 6, the horizontal axes are the 
number of radial points, azimuthal angle points and polar angle points, respectively. The vertical axis 
is the integral averaged relative error for the case of 0.03crN  , * */  0.5in outr r  ,  1in out   , 

 0.1out  , 2   and 0.5  . When the number of radial points is near to 30, the integral 

averaged relative error is less than 1e-6 ( 610rE  ). For * 30rN  , the integral averaged relative 

error decreases very fast and approximately follows the exponential law with the increasing of the 
number of radial points. The similar trends are also found for the numbers of azimuthal angle points 
and polar angle points. 

 

Figure 6. Effects of the number of collocation nodes on integral averaged relative error. 

5. Results and discussions 

In order to comprehensively analyze this coupled heat transfer, the effects of geometric and 
thermo-physical parameters on dimensionless temperature and heat flux are investigated. In the 
subsection, the effects of different kinds of scattering phase functions are firstly studied, and then 
investigate the effect of various geometric and thermal physical parameters based on nonlinear 
anisotropic F1 scattering phase function. 
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5.1. The effect of scattering phase function 

Figure 7 presents the effect of scattering phase function on dimensionless temperature 
distribution. In these scattering phase functions, F3 scattering phase function 

3
( , )  1  cosF    Ω Ω  is a typical forward scattering phase function, B3 scattering phase 

function 
3
( , )  1 cosB    Ω Ω  is a typical backward scattering phase function. Figure 8 shows 

the dimensionless temperature distribution for three kinds of typical cases, F3 phase function, B3 
phase function and isotropic scattering phase function ( , )  1 Ω Ω . Other parameters are fixed as 

0.01crN  , * */  0.5in outr r  , 1in out   , 0.1out  , 2   and  0.5  . When *r  is small, 

namely the region near the inner wall with high temperature. The dimensionless temperature 

3 3 B isotropic scattering F    . While in the region near the outer wall with low temperature, the 

dimensionless temperature of the three kinds of scattering phase function is almost the same. 

 

Figure 7. The effect of scattering phase function on dimensionless temperature. 

 

Figure 8. Dimensionless temperature distribution for F3, B3 and isotropic scattering in 
coupled conduction-radiation problem. 
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As shown in Figures 9 and 10, these phenomena can be explained by studying the 

dimensionless temperature for pure radiation problem ( 0crN  ) and the ratio of radiative heat flux 

to total heat flux  r r cq q q  for this coupled radiation-conduction problem. 

 

Figure 9. Dimensionless temperature distribution for F3, B3 and isotropic scattering in 
pure radiation problem. 

 

Figure 10. The ratio of radiative heat flux to total heat flux in coupled conduction-radiation problem. 

Firstly, the region near the high temperature inner wall is investigated. As shown in Figure 9, 
the dimensionless temperature distribution 

3 3 B isotropic scattering F    . The reason is that the forward 

scattering phase function means more forward transmit power while the backward scattering phase 
function means more backward scattering energy. At the same time, Figure 10 shows that the ratio of 
radiative heat flux to total heat flux in the region near the inner wall is more than 0.9. Therefore, for 
the case of forward scattering phase function F3, the temperature near the inner wall is higher than 
that of the case of isotropic scattering. Meanwhile, compared with the case of isotropic scattering, the 
case of backward scattering phase function B3 leads to a lower temperature. 
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Secondly, the region near the outer wall with the low temperature is analyzed. As shown in 
Figure 9, the higher temperature distribution near the inner wall leads to the lower temperature 
distribution near the outer wall, namely 

3 3 F isotropic scattering B   . However, as shown in Figure 10, 

the ratio of radiative heat flux to total heat flux near the outer wall is smaller than that of other 
regions. This means the influence of radiation is reduced near the outer wall. Consequently, the 
increase in temperature caused by the forward scattering phase function and the decrease in 
temperature caused by the backward scattering phase function are both weakened. Therefore, the 
dimensionless temperature distributions of the three kinds of scattering phase functions are almost 
the same in the regions near the outer wall. 

5.2. The effect of conduction-radiation parameter 

As shown in Figure 11, the dimensionless temperature distribution tends to be linear with the 
increasing of conduction-radiation parameter crN  from 0.01 to 10. The conduction-radiation 

parameter is defined as the ratio of conductive heat transfer and radiation heat transfer. It is obvious 
that, for the large value of crN , conduction plays a dominant role in this coupled heat transfer 

problem. On the contrary, the small value of crN  means radiation becomes much more pronounced. 

For the conduction-dominated problem, the variation of dimensionless temperature tends to linear. 
Meanwhile, the variation of dimensionless temperature tends to nonlinear for the 
radiation-dominated problem. Thus, with the increasing of conduction-radiation parameter, the 
distribution of dimensionless temperature tends to linear. 

 

Figure 11. Effects of conduction-radiation parameter crN  on dimensionless temperature 

distribution. 
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5.3. The effect of radius ratio 

For the cases of  1crN   (Figure 12a) and 0.1crN   (Figure 12b), the dimensionless 

temperature distributions are rising all the time with the increasing of radius ratio * */in outr r . However, 

for the case of  0.01crN  , there are two different trends of dimensionless temperature distributions 

in Figure 12c and d. In Figure 12c, the dimensionless temperature increases as the radius ratio 
changes from 0.1 to 0.5. But, in Figure 12d, the dimensionless temperature shows a downward trend 
instead of continuing to rise, and the dimensionless temperature profiles tends to be linear. 

 

(a) * *1.0, 0.1 0.9cr in outN r r     (b) * *0.1, 0.1 0.9cr in outN r r    

 

(c) * *0.01, 0.1 0.5cr in outN r r     (d) * *0.01, 0.5 0.9cr in outN r r    

Figure 12. Effects of radius ratio * *
in outr r  on dimensionless temperature distribution for 

three different conduction-radiation parameters. 

These phenomena can be explained by studying the radiative heat flux and the ratio of radiative 
heat flux to total heat flux, which are depicted in Figures 13 and 14, respectively. 
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In the three cases of  1,  0.1,  0.01crN  , the radiative heat flux would augment steady with the 

increasing of the radius ratio. But the ratio of radiative heat flux to total heat flux firstly increases with 
radius ratio changing from 0.1 to 0.5, and then decreases with radius ratio increasing from 0.5 to 0.9.  

It's worth to note that, for the case of 1crN   and 0.1crN  , the change trend of 

dimensionless temperature is similar with that of radiative heat flux, namely, rise steady with the 
increasing of the radius ratio. However, for the case of 0.01crN  , the change trend of 

dimensionless temperature is more like that of the ratio of radiative heat flux to total heat flux 
(increase first and then decrease). 

 

  (a) 1.0crN 
                           

(b) 0.1crN   

 

(c) 0.01crN 
 

Figure 13. The radiative heat flux for three different conduction-radiation parameters. 
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(a)  1.0crN 
                       

(b) 0.1crN   

 

(c) 0.01crN 
 

Figure 14. The ratio of radiative heat flux to total heat flux for three different 
conduction-radiation parameters. 

In the cases of  1crN   and 0.1crN  , conductive heat transfer plays a dominant role 

compared with radiative heat transfer. Therefore, the profile of the dimensionless temperature 
distribution tends to be linear. And the increase of radiative heat flux would raise the dimensionless 
temperature. However, the lower conduction-radiation parameter ( 0.01crN  ) means the radiative 

heat transfer plays a dominant part. When the radius ratio changes from 0.1 to 0.5, the radiative heat 
flux is increasing. Consequently, the dimensionless temperature would rise and the profile presents 
the nonlinear characteristics. When the radius ratio keeps increasing from 0.5 to 0.9, the radiative 
heat flux continues to increase, but the ratio of radiative heat flux to total heat flux decrease. 
Considering the dominant role of radiative heat transfer, the decrease of ratio would definitely 
change the profile of temperature distribution, namely the profile tends to be linear which shows the 
increasing influence of conductive heat transfer. These are reasons why the dimensionless 
temperature rises firstly, then decrease and tends to be linear in the case of  0.01crN  . 



599 

AIMS Energy  Volume 9, Issue 3, 581–602. 

5.4. The effect of scattering albedo 

As shown in Figure 15, the dimensionless temperature decreases with the increasing of 
scattering albedo, and the distribution of dimensionless temperature also tends to be linear. The 
scattering albedo means the relative magnitude of absorption coefficient and scattering coefficient. 

  =  0  means the no-scattering medium, and  =  1  indicates the pure scattering medium. When 
scattering albedo approaches to 1, the scattering becomes stronger. This means the less radiant 
energy is absorbed. Consequently, the distribution of dimensionless temperature shows a downward 
trend. Meanwhile, for the case of a larger scattering albedo, the less radiant energy is absorbed means 
that conduction dominates a larger part in this coupled problem. Therefore, the distribution of 
dimensionless temperature tends to be linear. 

 

Figure 15. Effects of scattering albedo   on dimensionless temperature distribution. 

6. Conclusions 

SCM is developed to solve the coupled radiation-conduction problem in concentric cylinders 
with absorbing, emitting and nonlinear anisotropic scattering medium. Both the two involved RTE 
and steady-state energy equation are solved by SCM. In the solving process, the spatial and angular 
domains of RTE, and the spatial domain of energy equation are discretized by high order Chebyshev 
polynomials and Chebyshev collocation points. Compared with available data in references, 
accuracy and efficiency of the SCM for the coupled radiative-conductive heat transfer are validated. 
The high order accuracy can be obtained in a few nodes, and the exponential convergence 
characteristic of SCM exists in both spatial and angular domains. Considering that the SCM can 
obtain the high order accuracy and exponential convergence rate, the SCM model is an efficient 
model to solve the coupled radiative-conductive heat transfer in concentric cylinders with nonlinear 
anisotropic scattering medium. Besides, the effects of scattering phase function, conduction-radiation 
parameter, radius ratio and scattering albedo on dimensionless temperature and heat flux are 
comprehensively investigated. 
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