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Abstract: Integrated gas lift system optimization plays an indispensable role in production and
economics by maximizing the revenue from a gas lift field. This requires: optimization of gas lift
parameters, finding the best tuning of the completion and surface production systems to keep pace
with the dynamic reservoir changes along with saving gas quantities and compression costs.
Accordingly, a comprehensive study is being carried out to measure the capability of the Artificial
Neural Network (ANN) and Machine Learning (ML) in the optimization of gas lift parameters. The
results of this study show the power of two different mechanisms of neural network (NN) which are
Radial Base Function (RBF) and Back Propagation Function (BPF) to predict the most three
important factors of the process: optimal gas injection rate, bottom hole pressure and flow rate and
compare the findings with conventional methods. In addition, this work provides 3 functional
equations that can be utilized by applying the field data with no artificial intelligence (Al) expertise
or software knowledge. This effort provides forth an industrial insight into the role of data-driven
computational models for the production recognition scheme, not only to validate the well tests, but
also to reduce the uncertainties in production optimization. The work was completed by generating
an economic analysis to illustrate the understanding of potential benefits of implementing irregular
gas lift mechanisms in the field to stand on both technical and economic aspects of the study.

Keywords: neural networks; radial base function; back propagation; gas lift optimization; injection
depth; water cut; injection pressure; machine learning; normalization; empirical correlation;
MATLAB and economic analysis

Abbreviations: AAPRE: Average Absolute Percent Relative Error; FLP: Flowline pressure; APRE:
Average Percent Relative Error; (Xp): Importance of input variable (X,); Max. PRE: Maximum
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Percent Relative Error; Min. PRE: Minimum Percent Relative Error; MSE: Mean Squared Error; ny:
Number of neurons in the hidden layer; np: Number of input variables; O;: Output layer weight for jth
hidden layer; WHP, T: Wellhead pressure, temperature; Pnoge: Node Pressure (Psi); Pouger: Outlet
Pressure (Psi); Pwn: Wellhead Pressure (Psi); q: Gas Lift Injection Rate (MMSCFD); R: Correlation
Coefficient; R*: Correlation Coefficient Squared; RMSE: Root Mean Squared Error; Rp: Average
Reservoir Pressure (Psi); SD: Standard Deviation

1. Literature review

ANN’s inception started by Warren McCulloch and Walter Pitts in 1943 [1] constructed the first
computational model for Neural Network (NN) based on mathematical algorithms called threshold
logic which was used for binary cases. This model paved the way for research to be divided into two
systems. First system relied on biological processes meanwhile the other relied on the application of
NN to Al Several technical researches have discussed the applications of ANN at oil and gas industry,
Elgibaly et al. (1998) [2—-3] employed ANN in calculating the Optimal Hydrate Inhibition Policies
Ghahfarokhi et al. (2018) used ANN to predict gas production, Khan et al. (2018) [4] utilized the ANN
to predict the optimum production rate, luo et al. (2018) utilized the ANN to optimize the production
in several fields, Nande (2018) utilized the ANNs to reach lowest error in predicting closure pressure
for hydraulic fracturing analysis, Tariq (2018) [5] used ANNs to predict flowing bottom hole
pressure. Bahaa (2018) [6] Utilized ANN to forecast the Fluid Rate and Bottom Hole Flowing
Pressure for Gas-lifted Oil Wells. Radhi (2020) [7] assigned the Numerical Simulation to optimize
gas lift quantity using Genetic Algorithm for a Middle East Oil Field.

In the field of mathematical models there are several functions for neural networks and this
paper is focused on only two types which are backpropagation function network and radial basis
function network. Continuous and timely lift optimization on a well is dependent on knowledge of the
operational conditions of the well and its associated reservoir parameters. As the target is to maximize
the economic production values from a well at a given point in time, the operational expenditure can be
inversely associated with production maximization. generating set-point recommendations to optimize
lift performance at timely intervals considering the above-mentioned setup can be a significant
challenge. Popularly, the gas lift injection rate set-point is decided by operators based on historical
experience estimates. The main target of gas lift optimization is expanding the current production from
the well by allocating the relation between the rates of gas injection and oil production. The main
factor to describe this relationship is the marginal increment in oil production rate per unit change in
the gas lift injection rate. With a low quantity of injected G/L can result in production rate loss due to
insufficient reduction in production fluids gravitational head. On the contrary, overvalues of injected
gas rate led to high frictional head and wellhead pressure resulting in additional backpressure on the
downhole formation, this results in a significant loss in production. (Radhi 2020) [8-9]. The major
parameters controlling the previously mentioned balance includes but are not limited to: reservoir
formation pressure or SBHP, Pi or inflow performance, WHP, depth of injection point, produced gas
oil ratio (GOR), Water Cut %, API gravity, tubing size, and tubing roughness (such as friction factor).
Some of these factors are not continuously measurable, and in many situations, estimation is provided
based on old measurements or proximal well properties. The variation in the well behavior further
complicates the equation. As well, the variation in production values, GOR, and WC % in a short span
of evaluation may be due to the individual well’s daily production rates not being physically measured
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but mathematically allocated. The bearing in production values and associated factors might be
generated from the well natural decline or other interventions such as a frac hit, workover or
re-stimulation. With respect to all of this, an injection rate which is optimum at a given point in time
may not be so at a later stage. This challenge leads to attempt to understand the underlying state and
represent the well using physics-based models (Khan, 2020) [10]. In the present study, the data of
total 205 wells from more than 5 different fields that are artificially subjected to gas lift were selected
for training and testing for the proposed model, wells are located in the Western, Eastern Desert and
offshore field in Egypt. For each of these wells, the set of data were gathered for subsequent use in the
study to predict three important variables output by using conventional commercial software then they
were compared with two different neural network models “Radial Base and Back Propagation” built
by MATLAB 2018A to predict the optimal values of gas injection quantities, bottom hole flowing
pressure and well productivity. The ultimate target of this approach is to:

e Provide a new way to speed up the calculations;

e Dispense the use of tedious and time-consuming software training;

e Show an attempt to cut the cost values of the engineering software supply.

2. Neural network architecture with comparison

Table 1. Comparison between the proposed different neural network (NN) techniques.

Description Step 1: Feedforward and Backpropagation  Step 2: Radial Basis Function Network (RBFN)
Signal transmission Feedforward Feedforward

Process of building the The lag is only visible in RBF in the output Two different, independent stages at the first
model layer. stage by means of radial basis functions the

probability distribution is established; the
network learns the relations between input x and
output y at the second stage.

Threshold Yes No

Type of parameters Weights and thresholds Location and width of basis function and
weights binding basis functions with output.

Functioning time Faster Slower (bigger memory required)

Learning Time Slower Faster

Continued on next page
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Description

Step 1: Feedforward and Backpropagation

Step 2: Radial Basis Function Network (RBFN)

Description in Details

Neural network is an algorithm coming
from the neurons of the brain. It is
important to recognize the patterns from
complex data. This network consists of
layers that contain neurons which are
connected together

In the hidden layer, each neuron is
connected to all neurons of the previous
layer by the weights and has an activations
number according to this equation:

wlal +w2a2 + ... + wnan = new neuron
This layer has an activation function as
sigmoid function that is used. This function

RBFN is a type of an ANN that is commonly
used with function approximation challenges due
to its universal approximation and faster learning
& processing rate. Radial basis function
networks have many uses including but not
limited to system control, classification, time
series prediction and function approximation.
They were first formulated by Broomhead and
Lowe (1988).

For the purpose of the paper, RBFN can be
trained for every well based on the well test data.
Later it can be used on a daily basis or in real
time for well rate prediction based on other

tries to scale the number of each neuron
between 0 and 1 according to its relation:
Sigmoid=c =11 +e—x.

until getting the output.

In proposed network, it utilizes two hidden
layers, each has 50 neurons and two
different activation functions which are
sigmoid and linear functions. The weights
are initially set randomly and the input data
are normalized to be between 0 and 1.

measurements such as WHP, FLP, WC%, .... etc.
(1) = exp (-1%/26?%) where o > 0.

3. Data gathering, input variable quality selection and data used

Adopted ANN in this work depends primarily on wells’ actual test data obtained from test
separator and measuring devices installed on both mobile test package, flow lines and gas lift lines. In
addition, as ANN can deal with limited or faulty data while acting with data with uncertainty which is
considered a proven advantage of ANN over any analytical conventional methods, downhole data
obtained from static and flowing surveys using downhole memory gauges, production logging
tools (PLT) using electrical line, reservoir rock and fluid properties obtained from PVT lab analysis
and core lab analysis were used in this work to run different models to reach the optimum results with
satisfactory accuracy. The input data set was randomly divided into 70% for training, 15% for
validation, and 15% for the primary test. Training data are used to improve the network according to
their error. Validation data are used to evaluate network generalization, and to stop training when
generalization stops improving. Test data do not affect training, so they provide an independent
measure of network performance during and after training. To effectively model the unique behavior in
gas-lift wells, data such as the gas injection rate and depth of gas injection would have been required.
None of the records of the gas-lift wells, in the compilation of more than 180 wells, provided these data.
Owing to the insufficiency of comprehensive gas-lift well records for training and testing, a neural
network that would predict the temperature profile in gas-lift wells was not developed. All data for gas
and gas-lift wells were discarded. Furthermore, because of the presence of outliers and anomalies the
database was reduced to 50 wells from different fields. The data ranges including minimum and
maximum values of the input elements parameters assigned in different generated ANN models are
listed in Table 1. Based on the oil API gravity. Twenty-two wells were removed because of extremely
low oil gravities ranging from 10 to 19°API. In addition, to make the oil viscosities reported for the
databases compatible, the viscosities in Database were neglected. because most of wells have very
close API values except 3 or 4 wells, in addition, after testing the importance of each inputs, it is
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noticed that API is of less importance in the contribution.

Table 2. The data range for the parameters used in the ANN model.

Parameter Min. Max. Avg.
Gas Upstream Pressure (Psia) 800 1150 975
Gas downstream Pressure/injection (Psia) 40 1000 520
Well Head Pressure (Psia) 40 550 295
Flow Line Pressure (Psia) 40 220 130
Flow line Temperature © 15 65 40
Separator Pressure (Psia) 40 90 65
WC (%) 1 99.9 50.45
Bubble point pressure (Psia) 900 1200 1050
Downhole Temp © 35 80 57.5
Well Depth (ft) 3000 9500 6250
Depth of Injection (ft) 1500 7800 4650
Current Reservoir Pressure (Psia) 500 1800 1150
Initial Reservoir Pressure (Psia) 1500 1999 1749.5
Productivity Index J 0.052 20 10.026
Average Permeability (MD) 30 1200 615
Average Porosity (0) 18 30 24

4. The following criteria were used in selection of variables

A spread of values for that parameter in the databases must exist, this permits the NN to more
easily approximate the function. The parameter must not be dependent on other input variables only. A
parameter may be dependent on other input variables but must also be dependent on some parameter
that is not an input variable. In this method, the variable will supply more data about the well that is not
already provided and known by the other variables. All the variables met these criteria except for water
specific gravity, water flow rate, and dead oil viscosity. The water specific gravity was removed
because the values reported for most of the wells were the same. Although for many of the wells the
water flow rate was varying, the water flow rate was retained because it is an important parameter in
describing the hydrodynamics of the system. Dead oil viscosity was dependent on oil °API gravity and
temperature. However, since the dead oil viscosity for each well was determined at 100 °F, then the
dead oil viscosity was dependent on a single variable, the oil >API gravity. To observe the effect of
each parameter on the predictive power of the network, two networks were developed: one is forward
and backward propagation and one radial base function network.

5. Selection of training samples and normalization of data

In this paper, more than 2900 production real test data of 16 elements were gathered &
investigated for inconvenience and processed, 16 valuable elements were chosen as inputs and 3
elements were selected as outputs representing Well flow rate (BPD), Gas lift rate (MMSCFD) and
bottom hole flowing pressure (PSIA). Before the data sets were fed to the networks, the values of the
input variables were normalized by dividing each value of the data by the maximum absolute value of
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data. Using below equation, every field in the data sets was normalized, reducing the range of the
values from 0 to —13,000 to between 0 and +1. Note that the limits are the same as those of the output
x—min (x)

of the hidden layer tan-sigmoid transfer function: x = ———.
max(x)—min (x)

6. Network training and validation

In this study, the selected 2 different algorithms were conducted to compare the performance, the
first one is backpropagation learning algorithm and the reason behind choosing it for this training is
because it was desirable to adjust the weights and biases based on the error signal arising from the
output layer. The goal of this algorithm was to reduce the mean-squared error of the network outputs
for all the input sets to a global minimum value. At the end of every epoch, the mean-squared error was
calculated. Momentum was also added to the backpropagation algorithm to reduce the possibility of
the learning process getting stuck in a local minimum. To further increase the speed of convergence of
the mean-squared error to a global minimum, the Levenberg-Marquardt method was used to update the
weights and biases for forward and backward propagation and Radbas function for radial base function
NN. Traditionally training is halted when the network error reaches the performance goal of the
mean-squared error-specified or when the network has converged. To mitigate network over-training,
the early stopping method was applied. This required monitoring the mean-squared error of both the
training data set and validation data set.

7. Testing of models

The accuracy of the proposed neural network models (Backward propagation and Radbas) was
tested by different data from other fields by comparing the predicted following three parameters (fluid
rate, gas injection and bottom hole flowing pressure profile) to actual tested data from mobile test
package and generated from the commercial software.

8. ANN proposed architecture design and training

For finding the optimum network design, trial-and-error attempts were undertaken, starting with
one hidden layer and going to two hidden layers with trials many numbers of hidden units was set
almost equal to the number of inputs multiplied by two. Hidden units were then gradually added. The
maximum number of hidden units is rarely requiring to exceed more than 4 times the number of inputs.
The architecture was retrained at least 3 times (up to 10 times is recommended) with different initial
weight randomizations and only the best one was saved for comparison with other architecture.
Nodes optimum number needed in the hidden layer is a contingent issue, depending on the intricacy of
the input and output mapping, the amount of noise in the data and the amount of training data available.
If nodes number in hidden layer is less than the optimum, the back-propagation algorithm will fail to
reach to a minimum during training. Conversely, too many nodes will result in the network over fitting
the training data, resulting in poor generalization performance. The developed neural network
contained 16 input variables, one hidden layer with 50 neurons and 3 output variables. Log-Sigmoid
function (logsig) was used as a transfer function in the hidden layer.
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9. Applied workflow to obtain the optimum gas-lift rates

1- In the applied field, each well has its own data represented in WHP, FLP, FLT, Pr, WC%, GOR,
injected volume, and injected rate...etc. and by using a total of 16 inputs to build a model using
commercial software “PIPESIM” to predict the target data (bottom hole flowing pressure and flow rate
with optimum gas injection) which is essential in reallocation and optimization of the limited gas
among the 52 wells in the field for testing then to be applied on different fields for accuracy testing.

2- Building two different ANN models “REDBAS and Feed-forward, back propagation” and
compared with actual data and commercial software output data to show the power of computational
program over the conventional software in solving problems that are hard to be modeled analytically.

3- Development of usable empirical equations for calculating the three desired outputs, can be
applied without the necessity of Al software or expertise.

4- The economic analysis model was generated to calculate the commercial benefits of
implementing gas lift optimization technique in the field and to be applied in several fields.

10. First approach: - (FB propagation with 1 hidden layers)

Using normalized data, one hidden layer with 50 neurons and Log-Sigmoid activation function
and the results as shown below in Figures 1 and 2.
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Figure 1. MSE and error histogram for 1 hidden layer.
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Figure 2. Regression results for one hidden layer.
11. Second approach: - (FB propagation with 2 hidden layers)

Using normalized data, two hidden layers with 50 neurons and Log-Sigmoid activation function
and the results as shown below in Figures 4 and 5.

Hidden 1 Hidden 2 Output

Input

16

Figure 3. Network architecture (2 hidden layers).
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Best Validation Performance is 0.0011763 at epoch 24
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Training: R=0.99607

- 1

(=)

o

<= 0.8

-

@ 086

=)

=

= 04

-*

(=2

& oo

(=)

1]

t o]

o

=

8200

=

a . , )
0 0.5 1

Target

Test: R=0.99552

o~ 1 - -

(=]

= O Data

_c: 0.8 Fit

= Y=T o

o 0.8

=2

o

= 04

&

o 0.2

Ill

= 6]

2

5 -0.2

o
0 0.5 1

Target

s Validation: R=0.99399
8T
g o Data
=, 0.8 — Fit
52 Y=T
@ 06 O
=
=2
e 0.4
Ly
o
(o
a
(1]
i 0 ;
- .
= 7~
S
= rd
a3 o . )
0 0.5 1
Target
— All: R=0.99566
) 1 . .
= O Data
= 0.8 Fit
+ Y=T fa)
@ 06 <
=
S 04 @9
S
2 02
n
1] [¢]
‘..
=
& 0.2
=
o
0 0.5 1
Target

Figure 5. Regression results for 2 hidden layers network.

12. Third approach: - (Radial basis neural network)

Using normalized data with spread parameters equal one to reach zero error, one hidden layer
with 50 neurons and Radbas activation function, and the results are as shown below in Figures 7 and 8.
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Figure 9. Error histogram for 3 outputs (Radbas NN model).

Three Approaches’ error histogram for the three targets: well fluid rate, bottom hole flowing
pressure and optimum gas injection rate respectively, shows error histogram almost close to actual data
as shown in Figures 1,4 and 9 which resulted in a very good estimation in the running data. Moreover,
the regression values appear very close to one in training, validation and testing with values up to 0.995
which have an impact on efficient trained neural network.

Table 3. Comparison summary of performance parameters for different neural network models.

Forward and backward propagation. Forward and backward propagation.
One Hidden Layer * 50 Neurons Two Hidden Layer * 50 Neurons
16 inputs to predict 3 outputs 16 inputs to predict 3 outputs
Description g . © g A o
X o > § m X &n 2 E m
s 2 f £ %5 ¢ 8 2 fE & ¢
p= 5 =8 2 0z 5 = 5= x 8% Z 5
With .0012 23 9937 49 287 0.034 .0011 219 0995 46 29.1 .033
Normalization
Radial Basis function, One Hidden Layer * 50 Neurons, 16 inputs to predict 3 outputs
Description MSE RAE % Regression APRE % AAPRE % RMSE
testing
With 0.003 67.6 0.979 8.2 43.12 0.054
Normalization
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13. Testing model performance with different artificial neural network models

Based on the trials carried out to reach the optimum developed ANN model, 60 points were
assigned from different fields as a validation and approbation of the model efficiency in predicting
optimum Well rate (BFPD), optimum gas injection rate (MMSCF) and bottom hole flowing pressure (Psia),
Tables 3 and 4. Figures 14 and 15 proved a significant matching between the predicted results and
actual results for the three targets.

14. Results and discussion

The extensive study carried out between the commercial software “Pipesim” and different ANN
models as shown on below Figures 10,11 and 12 illustrates the results which showed a clear result that
ANN models are matched properly with actual data, on the contrary, Pipesim results showed miss
alignment with the best fit curve “actual data curve” while applying Pipesim software, a different
correlations has been applied ended by applying Duns and Ros (modified) due to It has a flow regime
map extended by the work of Gould et al. [11]. This includes a new transition region between bubble
and slug flow, and an additional froth flow region at high flow rates. The holdup is considered as
no-slip for froth flow, and is interpolated over the bubble-slug transition, the other holdup relationships
are as for the standard Duns and Ros [12]. Friction is calculated by the method proposed by Kleyweg.
This uses a monophasic friction factor rather than two-phase, but involves use of an average fluid
velocity. This is claimed by Kleyweg to be a better method. Duns and Ros Modified gives the highest
pressure drops in the slug flow regime for oil wells.

Table 4. “Input” sample points used to validate the model.

Inputs

8
& =
=t 5 o
= 2 = & K ~
< & e £ s @ _ B
53 £ P S g 5z £ z
2 ~ o 2 <) T:/ =¥ L - =
3 o 5 4 o S = e < g 2
o 2 @ = = = o = 5} =
] 83 = g [ 15) z 5 = 2
g 0] —_ g b= ﬁ ~ Q 5] > > é 8
5 g g = - BS) [ = g 3 o) £ o S}
=} 7 .S = — aQ, G = 17 > A~ A~
% g o @ — i) = ‘-“* S o 5 = o g o )
o = ~ A~ 3 < = L —g A o = = 131 g0 =y
S 5 - 2 5 % o E = = £ 8 S 5 5
O s B T = «» 2 @ A =B A O E g < <
1000 480 157 150 58 147 979 1035 157 3717 1059 1700 1800 10 700 22
1000 460 140 140 60 130 979 1035 157 3717 1059 1700 1800 12 700 22
980 815 155 160 60 150 94.6 1035 152 3776 1082 1700 1800 3 700 25
980 810 175 180 59 170 94.6 1035 152 3776 1082 1700 1800 3 700 25
950 800 260 350 46 255 91.1 1035 155 3878 1069 1700 1800 1 800 23
930 620 215 220 40 210 799 1035 154 3705 1086 400 1800 6 80 22
950 520 205 210 43 200 722 1035 154 3705 1086 400 1800 6 80 22

Applying a statistical analysis for the three targets; Well rate, bottom hole flowing pressure and
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gas lift rate results respectively based on Average Percent Relative Error (APRE), Average Absolute
Percent Relative Error (AAPRE), Minimum Percent Relative Error (Min PRE), Maximum Percent
Relative Error (Max PRE), Root Mean Squared Error (RMSE), Mean Squared Error (MSE),
Correlation Coefficient Squared (R?), Correlation Coefficient (R) and Error Standard Deviation (SD).

As mentioned in Table 2, ANN Output Forward and Backward Propagation Results with two
hidden layer models produce the most accurate results, as they depict the lowest APRE, AAPRE, MSE,
RMSE and SD, and Highest R? and R, which means the error of this method is the closest to zero error,
on contrary Pipesim models produce the least accurate results as they depict the highest APRE,
AAPRE, MSE, RMSE and SD, and lowest R* and R, which means the error of this method is the
furthest to zero error.

Table 5. Actual vs predicted sample results from ANN models.

Actual Output ANN Output ANN Output ANN Output Commercial Software
Test Package Results Forward and Backward Forward and Backward Radial Base Results Pipesim Results
propagation Results propagation Results One Hidden Layer
One Hidden Layer Two Hidden Layer

Optimum Gas injection (MMSCF)
Bottom hole flowing pressure (Psia)
Optimum Gas injection (MMSCF)
Bottom hole flowing pressure (Psia)
Optimum Gas injection (MMSCF)
Bottom hole flowing pressure (Psia)
Optimum Gas injection (MMSCF)
Bottom hole flowing pressure (Psia)
Optimum Gas injection (MMSCF)
Bottom hole flowing pressure (Psia)

Well Rate (BFPD)
% Well Rate (BFPD)
Well Rate (BFPD)
% Well Rate (BFPD)
§ Well Rate (BFPD)

1625  0.424 1524 0421 1512 1605 0.419 1505 0416 1494 0377 1356
1076 ~ 0.329 1515 1068 0326 1503 1063  0.325 1496 1055 0.323 1485 958 0.293 1348
2847  0.563 700 2825 0.559 695 2812 0.556 691 2791  0.552 686 2534 0501 623
2480 0.487 700 2461 0483 695 2449 0481 691 2431 0477 686 2207 0.433 623
1783  0.464 1050 1769 0.460 1042 1761 0.458 1037 1748 0455 1029 1587 0.413 935
1674 0515 1050 1661 0511 1042 1653 0.509 1037 1641 0.505 1029 1741 0.536 1092
734 1.138 1050 728 1.129 1042 725 1.124 1037 720 1.116 1029 763 1.184 1092
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Figure 11. Well fluid rate comparison with different models.
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Optimum Gas Injection Comparison with different models
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Figure 12. Optimum gas injection comparison with different models.
15. Relative importance of input variables in the developed ANN models

The proposed study provides the contribution of all inputs by using input and output weights of
the hidden layers which was presented previously by Garson (1991) and repeated by Goh (1995) [13—14]
in different aspects. This process essentially requires extracting input and output weights of hidden
layers. And the reason behind using Garson is based on applying 7 different methods to assess the
variable relative importance and Garson law showed much accurate and better results than the other
methods and matches with the results of MLR in terms of the partial regression, In this paper, to
calculate the relative importance of the sixteen inputs on the three target outputs, assessment process
based on the weight matrix of the proposed optimized network and Garson’s modified equation have
been used. The equation below as follows:

k=1

S == (A VS =R N 72

mffﬂ-( il )x|w?§§?l
'\ v

(1

where, I; represents the relative importance of the i™ input on the output, N; refers to the number of
input neurons similarly, Nh refers to the number of hidden neurons in hidden layers, and the terms W™
and W™ are connection weights between the input and the first hidden layers and W™ is the connection
weights between the second hidden layer and the output layer, subscripts k, n and m refer to input,
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hidden and output neurons, respectively. Table below demonstrates the weights produced between
artificial neurons of the neural network model used in this study.

Analysis based on error

rAnalysis based on function
the weights Numeric method]
determining the magnitude Analysis based on network
influence of input > £ output Al HeTion
parameters
Sensitivity analysis (Jacobian matrix)
| J

Figure 13. Workflow for weights produced between artificial neurons of the NN model [15].
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Figure 14. Input data importance to the target.

Table 6 lists the relative importance of various input parameters on both oil rate output and gas lift
rate output respectively. As can be generally seen, water cut has the greatest impact on oil rate and gas
lift rate prediction followed by net pay thickness (or producing interval), most of the parameters have
almost equal importance in the average range of (4%—8%), separator pressure and flow line pressure
have the least impact on the output parameters in the developed ANN model.

The results of Garson calculation demonstrate the following points:

e Water cut has the greatest proven impact on the targets: well rate and optimum gas injection
rate and bottom hole flowing pressure. Results in water cut increases in a well, the total pressure
gradient in the well will increase due to the increase in liquid density as water is heavier than oil, thus
causes a decrease in well rate and necessitates increasing gas lift rate to bring oil production rate to
surface with previous value of gas injection.
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e Well depth and downhole temperature along with well permeability come in second place in
relative importance. As the well depth increases, the required gas injection values increase, to lift the
liquid upward in parallel with downhole temperature which has a shown impact on the well fluid
mobility, furthermore, the effect of permeability appears with same importance values of well depth
and downhole temperature around 7% indeed that when permeability values are ranged between 200
up to 800 (md) has a great impact on well fluid rate (9% relative importance).

e The rest of the parameters related to wellbore and reservoir fluid properties has almost same
impact on the desired target; well rate, optimum gas injection and bottom hole flowing pressure values.

The least impact resulted from separator pressure and flow line pressure which have minor
influence on the targets, so it could be neglected in ANN models.

Table 6. Models relative importance of input parameters on gas lift injection, well fluid
rate and bottom hole flowing pressure outputs.

Parameters GL injection Gross Well Fluid Rate Pwf Average
Relative Relative Importance % Relative Relative
Importance % Importance % Importance %
WC % 15% 6% 8% 9%
Gas Upstream pressure 8% 7% 6% 7%
DH Temp. 7% 7% 8% 8%
Depth of injection 7% 7% 7% 7%
Bubble Point press. 6% 6% 6% 6%
Well Depth. 6% 9% 9% 8%
Sep. Press. 6% 4% 5% 5%
Current Reser. Press. 6% 6% 7% 6%
Injection Pressure 6% 5% 4% 5%
WHP 6% 4% 4% 4%
Permeability 5% 9% 7% 7%
FLP 5% 4% 4% 4%
Initial Reser. Press. 5% 5% 5% 5%
Porosity 4% 7% 6% 6%
PI 4% 9% 8% 7%
FLT 4% 7% 6% 5%

16. Development of simplified formula for calculating well flow rate using ANN

In addition to the previous work achieved for prediction of the well flow rate through ANN along
with MATLAB, an actual and usable empirical model could be applied with the elimination of Al
programs and technical expertise. The generation of this equation is based on utilizing a group of
biases and weights which relates the layers from the output to the input. The weights and biases
contributing to their neurons; those linked with input-hidden layer is characterized by w1, whereas,
those linked with the hidden-output layer is called w2, moreover, the hidden and output layer biases are
bl and b2 respectively. The novel empirical correlation developed by this Al technique to estimate any
of three outputs rates in gas lift oil wells is given by the equation below:
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W3
03 = wz + b3 )
~C——wipspnyP?
1te 14e—(WiP+b1)

where 0? refers to the output from the second layer which is a vector containing three main outputs
(gross fluid, Produced Gas and PWF). The term W? represents weights of second layer as matrix has 3
rows corresponding to the number of outputs and 50 columns corresponding to the number of neurons.
Similarly, W1 is a matrix with 50 rows and 16 columns corresponding to number of neurons and
inputs respectively, this term refers to the weights of the first layer. The term P is the input vector, b!
and b? are the biases of first and second layer.

First, the dataset is organized in a column vector that has 16 values which is denoted in the
equation by term “P”. Since there are two hidden layers, there are subscripts 1 and 2 corresponding to
them. In the first hidden layer, the number of neurons is 50 and each neuron is connected to all input
data by the weights. So, the weights were organized in a matrix with 50 rows corresponding to number
of neurons and 16 columns corresponding to number of data set. And the bias is organized in a column
vector that has 50 values corresponding to number of neurons which is an integer number used to
optimize the output value. The value of each neuron in this layer is the summation of the product
weights with the dataset then the bias is added. The output from this calculation is a vector that has 50
values for 50 neurons. These values are scaled by sigmoid activation function according to this

equation (x) = Similarly, the second hidden layer has also 50 neurons connected to the neurons

1+e=%
of the first hidden layer by weights. The weights of this layer are organized in matrix with 50 rows
and 50 columns. The values of these neurons are calculated with the same manner and using the same
activation function. Finally, the last or third layer has 3 neurons and its weights are organized by a
matrix that has 3 rows and 50 columns. The values of these neurons also are calculated as before but it
is used purelin activation function according to this equation o(x) = x.

The new neuron in the L layer comes from the summation the outputs of multiplying the weights
connect this neuron with previous layer neurons by the activations of the previous layer, as shown in

the following relation:

1

L L-1 L L-1 L L- .
wia jtwya t+..tw,a ,=new neuron in L layer 3)

The accuracy of well flow rate formula is within range of variables data which are used to derive
it. For this reason, many researchers tried to derive a unique production estimation formula for a
special reservoir or a layer. In this paper, a global well rate formula is generated and validated by a set
of unfiltered measured data points. Besides of inherent errors in measurement devices (gauge
pressures, flow rate meters) and calculation procedures for liquid calculations, human error is one of
the important errors in field operation. By examining the above-mentioned formula, it is revealed
that —20% error in reported input data would cause an amount of +/—14% error in estimated flow rate.
Also, just 9% error in choke size diameter would result more than 7% error in rate.

17. Economic analysis

An economical study was carried out to evaluate the commercial results of implementing gas lift
optimization technique in the field. This analysis is performed by the equation adopted from Huh et
al. (2010), Nakashima and Camponogara (2006) [16] as shown below. There are some assumptions
that this analysis is based on, whereas oil and gas price are $55/STB, and $5,500/mmscf respectively.
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The water disposal cost, gas lift operational cost, other operation cost is assumed to be respectively
$1/bbl of water, $3,500/mmscf and $8/STB produced well (Huh et al. (2010) [17].

Net PT’Ofit = Z?[qoi(po - Cop) + (ngIg) - (qwicw) - ( Qgi,injcginj)] 4)

N Wells Number; qoi Well Oil production, STB/day; qg Gas production quantity, MMscf/day;
Qgi,inj Gas lift injection quantity, MMscf/day; qwi Water production quantity, STB/day; po Oil price,
$/STB; po Gas price, $/MMscf; cop Operational cost per each STB of oil, $/STB.

The calculated daily production of oil, water, gas, gas injection rate, and net profit for each well
are presented in Figures 15 and 16 for natural flowing wells and gas lift wells respectively. The daily
net profit with and without gas lift and overall gain in daily oil production rate for 60 wells are
compared in Figure 17. As can be seen in the Figures, the gas lift technique can substantially increase
the daily oil production rate of every well in the field; and thus, the net profit as compared to naturally

producing wells.
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Figure 15. Optimum production and without gas lift (natural flowing well) from each of

the 60 wells.
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Figure 16. Daily production and net profit with gas lift from each of the 60 wells.
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Net Profit while using gas lift = 164,639 $/day & Net Profit without using gas
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Figure 17. Comparison of daily net profit with and without gas lift and oil production

gain for 60 wells.

18. Comparison summary with previous work

Several works were carried out and discussed to compare the power of artificial neural network
along with empirical correlations on gas lift parameters, below table illustrates the results reach

throughout the studies.

Table 7. Comparison of the developed ANN model with other published work.

Author, (date) No. of input No. of output AAPE MSE Regression
Gilbert, (1954) 7 1 18.55 385 0.904
Baxendell, (1958) 8 1 31.05 1554 0.911
Ros, (1960) 8 1 26.27 15564 0.899
Achong I, (1961) 7 1 37.08 1588 0.858
Osman and Dokla, (1990) 6 1 85.38 645222 0.889
Alrumah and Bizanti, (2007) 10 1 114.08 358865 0.895
E.Khamehchil, (2009) 9 2 1.3 0.005 0.9192
Ranjan et al (2015) 10 2 5.5 44764650.82 0.89523
Mazn, (2018) 7 2 9.6 1210 0.89
Khan, (2019) 14 1 2.56 330 0.96
The paper results 16 3 0.18 .0012 0.995
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Figure 18. Comparison of the developed ANN model with other published work regarding (AAPE).

The paper results showed great results compared to the other papers observed in AAPE, MSE
and regression as well due to enormous actual dataset used, different normalization technique applied
to reach the optimum input data range and different model for neural functional networks.

19. Conclusions and recommendations

This study primarily focuses on exploring the feasibility of the implementation of ANN-based
optimization technique in numerical modeling for optimizing the gas lift wells on daily basis in a large
field with complex network system. Accordingly, ANN technique is utilized to optimize the allocation
of the continuous gas lift injection rate for 60 wells. The principles of ANN, and mathematical model
including the workflow for performing the simulation studies are comprehensively discussed in this
paper. Sensitivity studies and sample economic analysis were also performed to get an insight into the
benefit of implementing gas lift techniques for depletion drive reservoir, especially in the event of
increasing the water cut and very low reservoir pressure.

ANN technique appears to be an efficient technique with an ability to model a large number of
wells produced concurrently in a network system for the prediction of optimally allocating the gas
injection rate towards maximization of oil production rate while maintaining the optimum bottom hole
flowing pressure.

Gas lift technique is found to be more beneficial for wells with relatively higher water cut.

In the event of reservoir pressure depletion, gas lift appears to be not only beneficial for
improving the well production performance but also for increasing the field life cycle by allowing the
well to continue production even at a very low flowing wellbore pressure (Pyys) at its given minimum
well head pressure.
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In this work, various training algorithms for BP and FP networks and RBF networks were
nominated to test the prediction of three important parameters in well life cycle. Based on the study
carried out, the following conclusions were achieved:

1- First approach performed was a feed forward and backward propagation network, that was
tested by using different numbers of neurons, one or two hidden layers and different training process
which are steepest descent, Levenberg—Marquardt and Bayesian to get the best results. The second
approach was a radial basis network. Both systems can exhibit advantages and disadvantages when
compared to one another and in both cases the results were quite satisfying.

2- RBFs can be trained much faster than perceptron’s and achieved less mean square error with
high number of neurons.

3- After applying test data from the different fields found the fastest training and testing error
were achieved with BP and FP neural network which showed in statistical analysis compared with
Pipesim models with accuracy up to 91%.

4- Stability is achieved by the RBFs network and the network trained by Levenberg—Marquardt
algorithm contrary to the networks trained with the Bayesian and steepest descent algorithms.

5- The experimental results indicate that a strong matching between model predictions and
observed values, since MSE is 0.0012. When performance results are compared, it was concluded that
RBFNN-based model is a more reliable predictor, with MSE value of 0.003 and ARPE of 8.2.
Therefore, the smallest MSE value indicates a creditable method for accuracy, while RBF finding
illustrates best proposed model to analyze the output.

6- It has been shown that there is a minimum number of inputs required to achieve an accurate
model and any further decrease in input number would result in increasing MSE and reducing
regression value which affects the whole model performance.

7- Using Garson algorithm, sensitivity analysis processed, the rate and the way of input data
distribution with the highest impact on the model output is determined. With this process, the
trial-and-error steps in the design process can be reduced and the most important effective parameters
can be identified.

8- A comprehensive comparison with antecedent studies showed that this work presents more
reliable results due to using large actual data with respect to pre-processing for the data resulted in
normalization with different methods, then applying two different function neural networks along with
generating of a new empirical equation.

9- A new empirical model is proposed for estimating the three outputs, it can be applied to any
dataset given the input parameters are within the model's range. This would not require the expertise of
coding or using convoluted software.

10- Sample economic analysis demonstrates that the gas lift technique can substantially increase
the daily oil production rate of every well in the field; and thus, the net profit as compared to naturally
producing wells.
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