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Abstract: In Smart Grid environments, homes equipped with windmills are encouraged to generate 
energy and sell it back to utilities. Time of Use pricing and the introduction of storage devices would 
greatly influence a user in deciding when to sell back energy and how much to sell. Therefore, a 
study of sequential decision making algorithms that can optimize the total pay off for the user is 
necessary. In this paper, reinforcement learning is used to tackle this optimization problem. The 
problem of determining when to sell back energy is formulated as a Markov decision process and the 
model is learned adaptively using Q-learning. Experiments are done with varying sizes of storage 
capacities and under periodic energy generation rates of different levels of fluctuations. The results 
show a notable increase in discounted total rewards from selling back energy with the proposed 
approach. 
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1. Introduction  

The Smart Grid is an attempt at modernizing the current existing electric grid by incorporating 
modern technologies such as two way digital communications and other methodologies widely 
adopted by the modern day Internet. It interconnects various operational components such as bulk 
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generation, transmission, and distribution across multiple parties including service provider, end 
users, and markets. It aims to increase reliability, efficiency and security of the grid [1,2,3]. 

The Smart Grid uses concepts such as Time of Use (TOU) pricing techniques to address the 
issue of running peak power plants by reducing the frequency and lengths of the peak demand 
periods thus decreasing the need of these peak plants. TOU pricing is simply defined as different 
prices for different periods of the day and would incentivize users shift their device usage periods to 
off peak hours [4]. Such techniques have shown to reduce peak power consumptions in residential 
household markets by approximately and as statistics show from Connecticut light and Power and 
Pacific Gas and Electric respectively [5]. 

Distributed Generation (aka on-site power generation or Dispersed Generation) is also viewed 
as a solution to the utility company issues with peak demand periods in the Smart Grid. This refers to 
decentralized in house generation of power by the use of windmills or solar panels to take advantage 
of renewable energy sources to generate energy and sell back to the grid. Incentives are provided to 
consumers willing to install the needed equipment and to sell energy back to the grid [6,7]. The size 
of an incentive would not only be determined by the amount of energy sold back but also by the 
precise instant of transactions in a TOU pricing based market [8,9]. 

The complexity of decision making of when to sell back energy by the user would increase with 
the dynamics of changing prices in a TOU market. In typical distributed generation environments, 
producers would try to maximize rewards by storing generated energy through storage devices and 
sell them when the incentive rate is high. Actions such as when and how much energy to sell could 
be determined by observing the trend of the varying prices. The producer invariably prefers selling 
off energy during peak price periods before the price drops. She needs to decide how much to sell 
based on predictions of future price variation and the capacity of the storage device. In cases where 
the storage device becomes full, she has to sell energy irrespective of the price given during that 
period. The other factors that influence the decision making are the cost of storing energy and the 
efficiency of the device at storing energy in terms of minimizing inherent energy losses over time. 
This decision making process to determine when and how much energy to sell back could be time 
consuming if the computation was to be done manually. Thus exploring algorithms that would 
compute the optimal policy is necessary. 

In this paper, we report an empirical analysis of applying reinforcement learning (RL) to the 
problem of maximizing the reward of selling back energy. We first identify a set of variables that can 
effectively represent current state of the market as well as the storage characteristics of the power 
generation unit. Then we apply Q-learning to adaptively estimate the best decision. To demonstrate 
the effectiveness of the RL approach, we compare its performance to a naive greedy approach. 

The remainder of the paper is organized as follows. In the next section, we will review related 
work and point out our main contribution. The tariff market model introduced in [10] will be briefly 
reviewed in Section 3. The proposed producer strategy optimization algorithm based on Q-learning 
will be introduced in Section 4. For completeness, a brief review of Q-learning will be given. Results 
analysis are provided in Section 5 followed by a succinct conclusion. 
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2. Materials and Methods 

2.1. Previous Work 

Reinforcement Learning (RL) has been widely used in the area of power markets particularly on 
the wholesale markets side aiding in the auction based pricing mechanism used for the bidding of 
electricity. In [11], the market power of the participating parties in Day Ahead markets were studied 
modeling such markets as competitive Markov decision processes and using RL based approaches a 
a tool to solve such games. In [12], a comparison of a game theoretical Nash Equilibrium based 
approach and RL based behavior using the Q-learning algorithm is used to study the interactions 
between the various bulk generators. A model to study the tacit collusive behavior of the wholesale 
market participants was proposed in [13] where the power market scenario was modeled as a 
repeated interaction game with imperfect information. In [14] the multi bulk generators in the 
auction market are modeled as multiple agents with the objective of profit and utilization rate 
maximization and the interaction is studied in a market scenario with network constraints using a Q 
Learning based RL approach. [15] looks at a multi agent RL approach taking into account congestion 
management in the network simulated by capacity constraints on the transmission lines. 

There has also been some recent work on the retail side of the electricity market. The interaction 
between the energy retailers and the consumers strategies were studied in [16]. The system was 
modeled as a multi agent RL scenario using Q-learning and game theory equilibrium concepts was 
used to analyze the results. The management of storage devices in homes was studied using agent 
based modeling techniques and game theory in [17]. The prediction of the user comfort level with 
different patterns of device usage was studied using supervised machine learning algorithms namely 
Support Vector Machines, Multilayer Perceptron and Naive Bayes in [18]. In [10], the concept of a 
tariff market had been introduced for the Smart Grid. The tariff market would consist several “self 
interested” broker agents to represent energy retailers with a unique portfolio of customers. The 
customer population would include the producers and consumers of electricity. Broker Agent 
strategy for profit maximization was studied using Q-learning in [19]. The learning strategy was 
shown to be much superior to other non learning strategies such as a Random strategy, a Balanced 
strategy and a Greedy Strategy. The work was extended in [20] to include multiple autonomous 
agents for the various brokers deriving their respective optimal policies independently. 

Much of the literature on the retailer side of the electricity market have either talked about the 
interaction between the consumer and the retailer or the action of the broker using learning strategies. 
While they do address the action of the utility company, to the best of our knowledge, no prior work 
have taken into account the complex decision making process of the distributed producers in a RTP 
based pricing environment. The main contribution of this work is that we fill this gap by providing 
an empirical analysis of applying RL to the problem of maximizing user discounted total rewards of 
selling back energy for a RTP based pricing environment. 

2.2. Tariff Market Model 

We utilize the tariff market introduced in [10] as the basic environment for our model. The tariff 
market concerns the retail side of the electricity market and consists of 3 different entities namely the 
broker agents, producers and consumers. The broker agents are in reality commercial utilities or 
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cooperatives trying to broker deals with the customer population. The customer population is made 
up of consumers and producers of electricity. Consumers make up the demand side of the market and 
include homes, small businesses, and commercial enterprises. The producers, on the other hand, 
make up the supply part of the tariff market. 

2.2.1. Producer Role 

Producers include nano grids, micro grids and homes generating power locally using windmill. 
The producer invariably makes use of a storage device in order to save the generated electricity and 
sell at a later period when the price of electricity is high. The amount of energy that a producer can 
store is subject to its maximum storage which in turn is determined by the storage cost. Typically, 
producer would like to sell energy and earn capital early as the capital can be used elsewhere. This 
can be modeled with a discount factor which widely used in finance and was first introduced by Paul 
Samuelson in 1938 [21]. Alternative, a producer may also like to reserve some energy for industrial 
use that may lead to a positive cash flow. In this paper, we will model it as an inelastic load with 
small perturbation. Moreover, energy stored in the storage is subject to energy loss. Since the voltage 
of battery is relatively stable, it is reasonable to assume that the energy loss, which is a function of 
voltage alone, is constant. The reward of the producer can be modeled as the adjusted monetary gain 
of selling energy after taking discount factor into account. 

2.2.2. Consumer Role 

The consumer population of the tariff market include households, small enterprises and large 
industries. They make up the demand profile for the tariff market. The consumers have the freedom 
to switch to any broker according to their preferences. To illustrate the switching behavior of the 
consumer, we follow the action model enforced by [19]. The consumers rank the various brokers at 
every time slot. However, a consumer may not always make contract with the broker agent of the 
lowest offered tariff price as factors such as green energy and tariff contract clauses should be taken 
into consideration for decision making. As in [19], we model this by ranking the broker agents with 
price and then consumer will select a broker with a probability based on its price ranking. 

2.2.1 Broker Agent Role 

The broker agent tries to balance supply and demand between its customer portfolio of 
consumers and producers. This is achieved by adjusting the producer and consumer tariffs. We 
assume the broker agent to adopt a balanced strategy for the price variation. When there is a shortage 
of supply, the broker would increase both the consumer and producer prices and if there is an 
abundance of supply, the broker agent would then reduce both prices. Although this is an adaptive 
strategy, it does not learn from the past. 

2.2.3. Player Interaction 

There is a constant interaction that takes place between the broker agents, consumers and 
producers. The producers publishes consumer and producer prices for the given time slot. According 
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to the consumer prices, the consumers would choose a particular broker thus contributing to the 
demand portfolio of the chosen broker. According to the producer tariffs published, the producers 
would choose when, how much and which broker to sell energy. This would sum up the supply 
portfolio for the broker. The broker would then decide how to vary his prices for the next time slot 
according to the balanced strategy. Thus there is repeated interaction and a dynamic portfolio 
construction for every time slot. 

We make a few assumptions for our model. Time is discretized into multiple fixed length time 
slots. The energy unit traded among the players and broker prices are also discretized. The 
transaction of selling or buying energy is also assumed to last no more than one time slot. The 
producer and consumer tariffs are assumed to be constant for any given time slot. 

2.3. Producer Strategy Optimization 

In this section we describe the proposed solution for determining optimal selling strategy for 
maximizing rewards for the producer using Q-learning [22,23]. Being a type of RL, Q-learning can 
be best described using the Markov decision process (MDP) [24]. Q-learning computes the optimal 
policy by learning an action-value function that gives the expected payoff for taking an action in a 
given state and following a fixed policy thereafter. One strength of Q-learning is that it is a 
model-free method, meaning it does not require a model of the environment such as the transition 
probabilities from one state to another state given a particular action is taken. For the ease of 
exposition, we really briefly review Q-learning before describing how it is used for strategy 
optimization. 

2.3.1. Q-learning 

The key of Q-learning is to estimate the reward function ),( asQ  for taking an action a  

when the current state of the system is s . If we assume that ),( asQ  is known, apparently the 

appropriate action at state s  is simply  

 .axmarg )aQ(s,
A

=a '

'a
 (1) 

However, since a)Q(s,  is not known initially, (1) generally will not result in an optimal action. 

Instead, a “Q-learner” sometimes simply selects an action randomly. The literatures typically the 
former choice (using (1)) as exploitation and the latter (with randomly selected action) as exploration. 

As the learned ),( asQ  becomes more accurate as iterations go, the frequency of using 

exploitation to exploration increases. 
Regardless of whether exploitation or exploration is used, the estimated reward function can be 

refined by  
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where 's  is the observed next state after action a  is performed, )( sR  is the reward obtained by 

getting to state s , and [0,1]  and (0,1]  are the discount factor and the learning rate, 

respectively, which will be explained more detail in the following. 
(2) can be interpreted rather intuitively. When the learning rate 1= , we simply have 

),( asQ  updated by ),(max)( asQsR a   , which corresponds to reward attain by reaching the 

next state s   and the weighted expected future reward taking an optimal action a . The latter term 

is weighted by a discount factor which models the impatience of the user (for getting the reward one 
time slot latter) and was commonly used in economics and finance [21]. When the user is perfectly 
patient, 1= . And if the user is completely impatience, 0= . 

The general update rule in (2) for 1<  initiates an ``inertia'' to the change of ),( asQ  by 

retaining potion of previously estimated Q value. This increases the stability of the algorithm (as   
decreases) but reduces the learning rate. 

2.3.2. Strategy Optimization using Q-learning 

To utilize Q-learning, we need to determine the available actions and states of the producer. We 

assume that there are brokerN  broker agents to which the producer can sell her energy. To simplify 

the problem, we discretize the available energy for trading as mentioned earlier. At time slot t , we 

denote such available energy as ti . We assume that a producer can sell energy only to one of the 

brokers. Therefore, the producer needs to decide who to sell and how much to sell. More precisely, 

the set of available actions will then be },,,01|),{(  iniiNnin tbroker . 

As for the state of the MDP, the producer only uses the current price of each broker and the 
amount of energy stored to determine his current state. Therefore, the state variable s  will be a 

vector variable with 1brokerN  tuples. 

3. Results and Discussion 

The simulation model described in Section 3 is configured as follows. The environment is 
initialized with 250 consumers, 3 brokers and 30 producers. The per consumer load per time slot 
(hour) is configured to 1 kWh. A fixed uniform distribution is used to model customer preferences 
for choosing brokers with the least expensive broker getting 50% of the customers and the other two 
getting 30% and 20%, respectively. The initial prices of the three brokers are $0.01, $0.03, and $0.05 



168 

AIMS Energy  Volume 3, Issue 1, 162-172. 

per kWh, respectively. And the energy generation rate of each producer is approximately periodic 
over a 24-hour period except subject to a Poisson noise with parameter  . While the choice is 
rather arbitrary, they imitate a realistic energy market scenario. As the supply and demand changes, 
the brokers update their prices as described in Section 3.3. An example of varying prices of the three 
brokers is illustrated in Figure 1. 

 

Figure 1. The prices offered by brokers for buying energy vary over time. The 
prices vary according to the demand and supply. 

At the beginning, we assume all producers sell energy based on the similar rule of thumb as the 
consumers. Namely, they will sell energy to the broker offered highest price with 50% chance, and 
the second highest price with 30% chance, and lowest price with 20% chance. Moreover, they will 
sell all of their energy in each time slot (hour) and storing no energy. Then, we assume that one of the 
producers change his strategy with the proposed Q-learning method. We then investigate the 
effectiveness of our approach by comparing it to the greedy strategy [19]. That is, selling all energy 
in each time slot (hour) to the broker with the highest offering price. The greedy strategy is adaptive 
since it reacts the current condition of the market but does not learn from the past experience. 

In each simulation, we fix the number of episodes1 to 2000 and time slots (hours) per episode 
to 5000. Figure 2 shows the increase in the total discounted reward comparing to the greedy agents. 
The result clearly shows proposed RL approach learns from the past experience and improves over 
time. At the initial learning stage, the learning agent explores the environment to gain experience 
thus it performs worse than greedy agents but over time the learning agent learns a better strategy 
and outperforms the greedy agent. 

3.1. Experiment 1: Randomness of the Power Generation 

The intermittency of energy generation through windmills is a key concern for the smart-grid 

                                                             
1 A producer resets his state at the end of each episode and the exploration to exploitation ratio decrease by 1% per 

episode. 
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integration of distributed generators. Here we consider how the learned strategy performs when 
compared with the adaptive greedy approach. For this evaluation, we apply Poisson noise to the 
energy generation rate and vary the variance   of the noise to study the effect of the noise to the 
proposed method. We simulate three scenarios where the power sources are highly stable, relative 
stable and unreliable. These scenarios can be mapped to a windy day where wind is steady, a breezy 
day where wind is intermittent and a calm day with very little wind. 

 

Figure 2. The increase in the discounted total reward of proposed algorithm 
comparing to the greedy approach. 

Figure 3 shows the increase in per-episode discounted total reward comparing to the greedy 
approach. With 1=  where the energy sources are high reliable, the learning agent is able to 
develop a strategy that performs 2% percent better on average than the adaptive greedy strategy after 
the initial learning stage. When   is set to 5 to model the unstable power generation scenario, the 
learning agent performs even better than in the previous case. After the primary learning state, the 
learning agent outperforms the greedy agents by 5%. This demonstrate the ability of the learning 
agent dealing with highly unpredictable scenarios. 

3.2. Experiment 2: Energy Storage 

The storage device allows the energy generated to be stored for future selling when the price is 
high. The energy storage gives producers more flexibility. To study the factor the storage size plays 
in maximizing total reward, in this experiment we consider how the learning agent performs given 
different storage sizes. 

The result in Figure 4 shows that with a small storage size of 25, the learning is less effective 
comparing to that in the rest cases. After 2000 episodes of learning, the learning agent still perform 
inferior to the greedy agent. Though the performance increases steadily, the progress is low and the 
training takes a measurable longer time. On the other hand, with a larger storage size, the learning 
agent reaches comparable level of performance in 600 episodes and finally develops a learned policy 
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that outperforms the greedy policy by 2%. This experiment shows that the storage size has a 
remarkable impact on both effectiveness of training and the performance of the learned strategies. 

 

Figure 3. The increase in per-episode discounted total reward comparing to the 
greedy approach with different  . 

 

Figure 4. The increases in discounted total rewards of RL with different storage size. 
Besides that the rise of increases in discounted total rewards, the learning is more 
effective given larger storage size. 
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4. Conclusion 

In this paper, we propose to use Q-learning to optimize the timing and the quantity of energy a 
distributed producer should sell to a broker. We compare our result with greedy approach under a 
realistic tarrif market model introduced in [19]. Our simulation results show a notable gain over the 
greedy approach. Moreover, we study the effects of increase variation of energy generation rate and 
change of storage to the proposed algorithm. 
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