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Abstract: The fractional-order differential equations is studied to describe the dynamic behaviour of a
chemostat system. The integer-order chemostat model in the form of the ordinary differential equation
is extended to the fractional-order differential equations. The stability and bifurcation analyses of the
fractional-order chemostat model are investigated using the Adams-type predictor-corrector method.
The result shows that increasing or decreasing the value of the fractional order, α, may stabilise
the unstable state of a chemostat system and also may destabilised the stable state of the chemostat
system depend on the predefined parameter values. The increasing the value of the initial substrate
concentration, S 0 may destabilise the stable state of a chemostat system and stabilise the unstable state
of the system. Therefore, the running state of a fractional-order chemostat system is affected by the
value of α and the value of the initial substrate concentration, S 0. In actual application, the value of the
initial substrate should remain at S 0 ≥ 2.54 to ensure that the chemostat system is unstable state. There
will be some change in the amount of the cell mass concentration whether increase or decrease when
the system is unstable. Therefore, the chemostat system can be well-controlled for the production of
cell mass.

Keywords: fractional-order differential equation; chemostat model; Adams-type predictor corrector
method; Hopf bifurcation; Monod expression

1. Introduction

Numerous mathematical models have been established to predict and study the biological system.
In the past four decades, there have been far-reaching research on improving cell mass production in
chemical reactors [1]. The chemostat model is used to understand the mechanism of cell mass growth
in a chemostat. A chemostat is an apparatus for continuous culture that contains bacterial populations.
It can be used to investigate the cell mass production under controlled conditions. This reactor
provides a dynamic system for population studies and is suitable to be used in a laboratory. A
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substrate is continuously added into the reactor containing the cell mass, which grows by consuming
the substrate that enters through the inflow chamber. Meanwhile, the mixture of cell mass and
substrate is continuously harvested from the reactor through the outflow chamber. The dynamics in
the chemostat can be investigated by using the chemostat model [2].

Ordinary differential equations (ODEs) are commonly used for modelling biological systems.
However, most biological systems behaviour has memory effects, and ODEs usually neglect such
effects. The fractional-order differential equations (FDEs) are taken into account when describing the
behaviour of the systems’ equations. A FDEs is a generalisation of the ODEs to random nonlinear
order [3]. This equation is more effective because of its good memory, among other advantages [4–8].
The errors occuring from the disregarded parameters when modelling of phenomena in real-life also
can be reduced. FDEs are also used to efficiently replicate the real nature of various systems in the
field of engineering and sciences [9]. In the past few decades, FDEs have been used in biological
systems for various studies [5, 6, 10–17].

Since great strides in the study of FDEs have been developed, the dynamics in the chemostat can
be investigated using the mathematical model of the chemostat in the form of FDEs. Moreover, there
have been few studies on the expansion of the chemostat model with fractional-order theory. Thus, we
deepen and complete the analysis on the integer-order chemostat model with fractional-order theory
and discuss the stability of the equilibrium points of the fractional-order chemostat model. Next, the
bifurcation analysis for the fractional-order chemostat model is conducted to identify the bifurcation
point that can change the stability of the system. The analysis identifies the values of the fractional-
order and the system parameters to ensure the operation of the chemostat is well-controlled.

2. Materials and methods

2.1. Definition of Caputo derivative

Recently, there are many approaches to define fractional operators such as by Caputo,
Riemann-Liouville, Hadamard, and Grunwald-Letnikov [3]. However, Caputo is often used due to its
convenience in various applications [18]. Caputo is also useful to encounter an obstacle where the
initial condition is done in the differential of integer-order [19]. In this paper, we applied Caputo
derivative to define the system of fractional-order. The Caputo derivative for the left-hand side is
defined as

Dα
t f (t) =

1
Γ (n − α)

∫ t

0

f (n)τ

(t − τ)α−n+1 dτ, (2.1)

where Γ denotes the function of gamma, n is an integer, where n − 1 < α < n [18].

2.2. Adams-type predictor corrector method

The Adams-type predictor-corrector method is one of the technique that have been proposed for
fractional-order differential equations [19–21]. The Adams-type predictor-corrector method is a
analysis of numerical algorithm that involves two basics steps: predictor and corrector. The predictor
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formula can be described as

yP
h (tn+1) =

dαe−1∑
k=0

tk
n+1

k!
y(k)

0 +
1

Γ (α)

n∑
j=0

b j,n+1 f
(
t j, yh

(
t j

))
, (2.2)

meanwhile the corrector formula can be determined by

yh (tn+1) =

dαe−1∑
k=0

tk
n+1

k!
+

hα

Γ (α + 2)
f
(
tn+1, yP

h (tn+1)
)

+
hα

Γ (α + 2)

n∑
j=0

f
(
t j, yh

(
t j

))
. (2.3)

The predictor-corrector method is also called as the PECE (Predict, Evaluate, Correct, Evaluate)
method [22]. The procedure of the predictor-corrector method can be explained as follows

(i) Calculate the predictor step, yP
h (tn+1) in Eq. (2.2).

(ii) Evaluate f
(
tn+1, yP

h (tn+1)
)
.

(iii) Calculate the corrector step, yh (tn+1) in Eq. (2.3).

(iv) Evaluate f (tn+1, yh (tn+1)).

The procedure repeatedly predicts and corrects the value until the corrected value becomes a
converged number [21]. This method is able to maintain the stability of the properties and has good
accuracy. Moreover, this method also has lower computational cost than other methods [23]. The
algorithm of the Adams-type predictor-corrector method proposed by [22] is shown in Appendix.

2.3. Stability analysis of fractional-order system

The conditions of stability for integer-order differential equations and fractional-order differential
equations are different. Both systems could have the same steady-state points but different stability
conditions [24, 25]. The stability condition for fractional-order differential equations can be stated by
Theorem 1 and the Routh-Hurwitz stability condition as described by Proposition 1.

Theorem 1 [5, 6, 26]. The commensurate system of fractional-order where x ∈ R and 0 < α < 1
is locally asymptotically stable if the eigenvalues of the Jacobian matrix evaluated at the steady-state
point is satisfied by

|arg (λ) | >
απ

2
. (2.4)

Proposition 1 [5, 6, 26]. Suppose the characteristic polynomial is P (λ) = λ2 + bλ + c of the Jacobian
matrix which evaluated at the steady-state. The eigenvalues of the Jacobian matrix will satisfy Eq.
(2.4) in Theorem 1 if

b > 0, c > 0, (2.5)

or

b < 0, 4c > b2,

∣∣∣∣∣∣∣tan−1

 √4c − b2

b


∣∣∣∣∣∣∣ > απ

2
. (2.6)
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The stability theorem on the fractional-order systems and fractional Routh-Hurwitz stability
conditions are introduced to analyze the stability of the model. The fractional Routh-Hurwitz stability
conditions is specifically introduced for the eigenvalues of the Jacobian matrix that obtained in
quadratic form. The proof of this proposition is shown in Appendix.

2.4. Hopf bifurcation analysis of fractional-order system

Bifurcation can be defined as any sudden change that occurs while a parameter value is varied in the
differential equation system and it has a significant influence on the solution [27]. An unstable steady-
state may becomes stable and vice versa. A slight changes in the parameter value may change the
system’s stability. Despite the steady-state point and the eigenvalues of the system of fractional-order
are similar as the system of integer-order, the discriminant method used for the stability of the steady-
state point is different. Accordingly, the Hopf bifurcation condition in the fractional-order system is
slightly different as compared with the integer-order system.

2.4.1. Hopf bifurcation analysis of fractional order α

Fractional order α can be selected as the bifurcation parameter in a fractional-order system, but
this is not allowed in an integer-order system. The existence of Hopf bifurcation can be stated as in
Theorem 2.
Theorem 2 [28]. Assume α∗ as the critical value of the fractional-order. When bifurcation parameter
α passes over critical value α∗, which is α∗ ∈ (0, 1), Hopf bifurcation occurs at the steady-state point if
the following conditions are satisfied

(i) The characteristic equation of chemostat system has a pair of complex conjugate roots, λ1,2 =

p ± iq, while the other eigenvalues are negative real roots.

(ii) Critical value m (α∗) = α∗π
2 − min|arg (λ) | = 0.

(iii) dm(α)
dα |α=α∗ , 0 (condition of transversality).

Proof. Condition (i) is not easy to obtain due to the selected parameter’s value. However, this condition
can be managed under some confined conditions. In fact, the washout steady-state solution of the
chemostat model has two negative real roots. The remaining two roots depend on the characteristic of
the polynomial from the no-washout steady-state solution.

Condition (ii) can be satisfied with the existence of critical value α∗ and when arg (λ) is equivalent
to arctan

(
q
p

)
. Thus, the solution of critical value m (α∗) can be written as

α∗ =
α∗π

2
− arctan

(
q
p

)
= 0, α∗ ∈ (0, 1) . (2.7)

The integer system required p = 0 for the bifurcation’s operating condition. For the fractional-order
system, the operating condition of the system will change into m (α∗) = α∗π

2 − min|arg (x) | = 0. For
condition (iii), the condition of m (α) changes when bifurcation parameter α passes over critical value
α∗. For example, the steady-state point is asymptotically stable for 0 < α < α∗ and unstable when
α < α∗ < 1. Thus, Hopf bifurcation exists at α = α∗.
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2.4.2. Hopf bifurcation analysis of parameters value

In studying the dynamic process of chemostat, the parameters such as Q, S 0, µ, k, γ and β are usually
used as the bifurcation parameter since these parameters have significant effects on the dynamic process
of the system of fractional-order and integer-order. Fractional-order α is considered fixed and the initial
substrate concentration S 0 is studied as the control parameter. The existence of the Hopf bifurcation
can be stated as in Theorem 3.

Theorem 3 [28]. Assume S ∗0 as the critical value of the fractional-order. When bifurcation parameter
S 0 passes over critical value S ∗0 , Hopf bifurcation occurs at the steady-state point if the following
conditions are satisfied

(i) The characteristic equation of chemostat system has a pair of complex conjugate roots, λ1,2 =

p (S 0) ± iq (S 0), while the other eigenvalues are negative real roots.

(ii) Critical value m
(
S ∗0

)
= απ

2 − min|arg
(
λ
(
S ∗0

))
| = 0.

(iii) dm(S ∗0)
d(S ∗0)

|S 0=S ∗0
, 0 (condition of transversality).

Proof. This theorem can be proved in the same way as Theorem 2. Therefore, condition (i) can be
guaranteed. Condition (ii) can be satisfied with the existence of critical value S ∗0 and when arg

[
λ
(
S ∗0

)]
is equivalent to arctan

[
q(S ∗0)
p(S ∗0)

]
. Thus, the solution of critical value m

(
S ∗0

)
can be written as

S ∗0 =
απ

2
− arctan

q
(
S ∗0

)
p
(
S ∗0

) = 0. (2.8)

For condition (iii), the condition of m
(
S ∗0

)
changes when bifurcation parameter S 0 passes over

critical value S ∗0. For example, the steady-state point is asymptotically stable when 0 < S 0 < S ∗0 and
unstable when S 0 < S ∗0 < 1. Thus, Hopf bifurcation exists at S 0 = S ∗0 [28].

Firstly, determine the steady-states, Jacobian matrix and eigenvalues of the fractional-order
chemostat model. The stability properties of the fractional-order chemostat model were estimated by
using the stability and bifurcation analyses with FDEs by referring to Theorem 1 and Proposition 1.
Then, determine the bifurcation point of fractional-order by referring to Theorem 2 and determine the
bifurcation point of parameter values by referring to Theorem 3. Next, plot the phase portrait of
fractional-order chemostat model by using Adam-types predictor-corrector method to study the
dynamic behaviour of the system. Figure 1 depicts the flowchart of this research. This flowchart can
be applied to all problems with suitable parameter values.
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Figure 1. Mathematical analysis of fractional-order chemostat model.

3. Results and Discussion

3.1. Fractional-order chemostat model

An integer-order chemostat model that considered a variable yield coefficient and the Monod growth
model from [1] is studied in this section. The chemostat system can be written as

dS
dt

= Q (S 0 − S ) −
µS X

(k + S ) (γ + βS )
,

dX
dt

= Q (−X) +
µS X
k + S

,

(3.1)

with the initial value of X0 = 0, where the sterile feed case was assumed. The integer-order chemostat
system of Eq. (3.1) is extended to the fractional-order differential equation

dαS
dtα

= Q (S 0 − S ) −
µS X

(k + S ) (γ + βS )
,

dαX
dtα

= Q (−X) +
µS X
k + S

.

(3.2)

Let Eq. (3.2) equal to zero in order to find the steady-state solutions

Q (S 0 − S ) −
µS X

(k + S ) (γ + βS )
= 0, (3.3)

Q (−X) +
µS X
k + S

= 0. (3.4)

By solving Eq. (3.4), the following solutions are obtained

S ∗ =
kQ
µ − Q

, (3.5)

X∗ = 0. (3.6)
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From Eq. (3.3), if X∗ = 0, then S ∗ = S 0. If S ∗ =
kQ
µ−Q , then

X∗ =
(kQ + QS 0 − S 0µ) (−Qγ + kQβ + γµ)

(µ − Q)2 . (3.7)

Hence, the solutions of steady-state for the chemostat model are

(i) Washout: (
S ∗0, X

∗
0
)

= (S 0, 0) . (3.8)

(ii) No Washout: (
S ∗1, X

∗
1
)

= (ρ, (S 0 − ρ) (γ + βρ)) , (3.9)

where
ρ =

kQ
µ − Q

.

The steady-state solutions are physically meaningful if their components are positive. Therefore, S 0 >

0 for the washout steady-state solution exists by biological meaning. The no-washout steady-state
solution will only exist when 0 < ρ < S 0. The Jacobian matrix of no washout steady-state as in Eq.
(3.10) can be used to investigate the stability properties of the fractional-order chemostat model.

J =

−Q +
X(−kγ+S 2β)µ
(k+S )2(γ+S β)2

Sµ
(k+S )(γ+S β)

kXµ
(k+S )2 −Q +

Sµ
k+S

 . (3.10)

3.2. Stability of washout and no-washout steady-state solution

The solution of steady-state in Equation (3.8) represents the washout situation, where the cell mass
is wholly removed from the reactor and where the substrate concentration is at the same stock as in
the beginning. This state must always be unstable in order to ensure that the cell mass is able to grow
in the chemostat. This is because the cell mass will be continuously removed from the chemostat if
the washout steady-state is stable. The Jacobian matrix for the washout steady-state solution can be
written as

J =

−Q −
S 0µ

(k+S 0)(γ+S 0β)

0 −Q +
S 0µ

k+S 0

 . (3.11)

The eigenvalues of this matrix are
λ1 = −Q, (3.12)

λ2 =
−kQ − QS 0 + S 0µ

k + S 0
. (3.13)

The eigenvalues in Eq. (3.12) and Eq. (3.13) are real. The washout steady-state solution is stable
if Q > 0 and ρ > S 0 where ρ =

kQ
µ−Q . The steady-state solution in Eq. (3.9) represents the no-

washout situation. No-washout situation is where the cell mass is not removed and stay growth in the
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chemostat.This state is important. The steady-state solution is substituted into the Jacobian matrix in
Eq. (3.10) and can be written as

J =

−Q +
µ(S 0−ρ)(βρ2−kγ)

(k+ρ)2(βρ−γ)
−

µρ

(k+ρ)(βρ+γ)
kµ(S 0−ρ)(βρ−γ)

(k+ρ)2 −Q +
µρ

k+ρ

 . (3.14)

The eigenvalues of the Jacobian matrix in terms of the characteristic polynomial are

P (λ) = λ2 + bλ + c, (3.15)

where

b = 2Q +
µ (S 0 − 2ρ)

(k + ρ)
+
µρ (ρ − S 0)

(k + ρ)2 +
βµρ (ρ − S 0)

(k + ρ) (γ + βρ)
, (3.16)

and

c =Q2 +
Qµ (S 0 − 2ρ)

(k + ρ)
+

(µρ − S 0µ) (µρ − Qρ)
(k + ρ)2 +

µ2ρ2 (S 0 − ρ)
(k + ρ)3

−
Qβµρ (S 0 − ρ)
(k + ρ) (γ + βρ)

+
(S 0µ − µρ)

(
µργ + 2µβρ2

)
(k + ρ)2 (γ + βρ)

+
(µρ − S 0µ)

(
µρ2γ + µβρ3

)
(k + ρ)3 (γ + βρ)

.

(3.17)

The eigenvalues of the no-washout steady-state solution were evaluated with Routh-Hurwitz condition
in Proposition 1. Based on the eigenvalues in Eq. (3.15) and by referring to the study by [5], the
eigenvalues’ condition can be simplified as the following two cases

(i) If b > 0 or equivalent to γ

β
> P1, the no-washout steady-state solution of the system in Eq. (3.2)

is asymptotically stable. P1 can be written as

P1 = −
µρ (ρ − S 0)
2Q (k + ρ)

−
ρ (ρ − S 0)
(S 0 − ρ)

−
(k + ρ)

µρ (ρ − S 0)
− ρ, (3.18)

(ii) If b < 0 or equivalent to γ

β
< P1 and tan−1

( √
4c−b2

b

)
> απ

2 , the no-washout steady-state solution

of the system in Eq. (3.2) is asymptotically stable. The condition of tan−1
( √

4c−b2

b

)
> απ

2 is also

equivalent to 4cos2
(
απ
2

)
c > b2, which can be simplified as γ

β
> P2. Then, this case can be

concluded and written as P2 <
γ

β
< P1 where

P2 =
µρ (ρ − S 0)

2cos
(
απ
2

) √
c (k + ρ)

−
µρ (ρ − S 0)
2Q (k + ρ)

−
ρ (ρ − S 0)
(S 0 − ρ)

− k − 2ρ. (3.19)

Then, if P2 < γ

β
< P1, the no-washout steady-state solution of the system in Eq. (3.2) is

asymptotically stable.
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The parameter values of the fractional-order chemostat model are provided in Table 1. The initial
substrate concentration, S 0 and ρ were assumed as non-negative values to ensure that the steady-state
solutions were physically meaningful. The stability diagram of the steady-state solutions is plotted in
Figure 2.

Table 1. Parameter values.

Parameters Description Values Units
k Saturation constant 1.75 gl−1

Q Dilution rate 0.02 l2gr−1

µ Maximum growth rate 0.3 h−1

γ Constant in yield coefficient 0.01 −

β Constant in yield coefficient 5.25 lg−1

S 0 Input concentration of substrate 1 gl−1

0.5 1.0 1.5 2.0
S

0.5

1.0

1.5

2.0

2.5

3.0

X

Figure 2. Stability diagram of the steady-state solutions when α = 1.

The washout steady-state solution is stable if Q > 0 and ρ > S 0. From Figure 2, it shows that the
unstable solution of washout steady-state, as the eigenvalues did not fulfil the condition of ρ > S 0.
By choosing the appropriate parameter values, the unstable washout steady-state solution could ensure
that the washout condition does not occur in the chemostat. Meanwhile, the solution of no-washout
steady-state is stable.

3.3. Hopf bifurcation analysis of the order of fractional-order system

The steady-state solutions of the fractional-order chemostat model for the parameter values given
in Table 1 are

(i) Washout: (
S ∗0, X

∗
0
)

= (1, 0) , (3.20)

AIMS Biophysics Volume 8, Issue 2, 182–197.
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(ii) No Washout:

(
S ∗1, X

∗
1
)

=

(
1
8
,

3731
6400

)
. (3.21)

The eigenvalues obtained from the washout steady-state solution are

λ1 = −
1

50
, (3.22)

λ2 = −
49

550
, (3.23)

and the eigenvalues from the no-washout steady-state solution are

λ1 =
−2552 +

√
411098126i

399750
, (3.24)

λ2 =
−2552 −

√
411098126i

399750
, (3.25)

Based on Eq. (3.22) to Eq. (3.25), these satisfied the first condition of Hopf bifurcation in Theorem
2. There exists a pair of complex conjugate roots and the other eigenvalues are negative real roots.
The transversality condition as the third condition is also satisfied. The eigenvalues of the washout
steady-state solution based on the chemostat system is not imaginary, and so there is no existence of
Hopf bifurcation in the washout steady-state solution. According to Theorem 2, the critical value of
the fractional-order as stated in the second condition can be obtained as

m (α∗) =
α∗π

2
− min|arg (λ) | = 0, (3.26)

α∗ =
2
π

min|arg (λ) |, (3.27)

where

arg (λ) = arctan
(

q
p

)
, (3.28)

α∗ =
2
π

arctan
(

q
p

)
=

2
π

arctan


√

411098126
399750

2552
399750

 = 0.9202904711 ≈ 0.9. (3.29)

Value of p and q are obtained from Eq. (3.24) and Eq. (3.25) by assuming parameter value in Table 1.
Hence, when α∗ = 0.9, the chemostat system in Eq. (3.2) shows Hopf bifurcation, at which the system
stability would be altered.
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Figure 3 is plotted to determine the dynamic behaviour at the Hopf bifurcation point. The phase
portrait diagrams of cell mass concentration against substrate concentration are plotted for values of
order of the fractional is α = 0.9.

Figure 3. Phase portrait plot of fractional-order chemostat system with α = 0.9.

The running state of the fractional-order chemostat system when fractional order α at the Hopf
bifurcation point is shown. The fractional-order chemostat system changed its stability once Hopf
bifurcation occurred. Therefore, we conjecture that the system of fractional-order chemostat may be
lost or gain its stability when the fractional order α is less than the Hopf bifurcation point, or α < 0.9
or otherwise. This shows that increasing or decreasing the value of α may destabilise the stable state
of the chemostat system. Therefore, these results show that the running state of the fractional-order
chemostat system is affected by the value of α.

3.4. Hopf bifurcation analysis of initial concentration of substrate

The initial concentration of the substrate, S 0, was chosen as the control parameter, while fractional
order α was fixed. The solutions of steady-state of the fractional-order chemostat model with S 0 as the
control parameter are

(i) Washout: (
S ∗0, X

∗
0
)

= (S 0, 0) , (3.30)

(ii) No Washout: (
S ∗1, X

∗
1
)

=

(
1
8
,

533(−1 + 8S 0)
6400

)
. (3.31)

The eigenvalues obtained from the washout steady-state solution are

λ1 = −
1

50
, (3.32)

AIMS Biophysics Volume 8, Issue 2, 182–197.
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λ2 = −
7(1 − 8S 0)

50(−7 − 4S 0
, (3.33)

and the eigenvalues from the no-washout steady-state solution are

λ1 = −4204 + 1652S 0 +

√
2
√

1364552S 2
0 − 245579768S 0 + 38666153

399750
i, (3.34)

λ2 = −4204 + 1652S 0 −

√
2
√

1364552S 2
0 − 245579768S 0 + 38666153

399750
i. (3.35)

These satisfied the first condition of Hopf bifurcation in Theorem 3. There exist a pair of complex
conjugate roots in terms of S 0, and the other eigenvalues were negative real roots in terms of S 0. The
transversality condition as the third condition is also satisfied. According to Theorem 3, the critical
value of the fractional order as stated in the second condition can be obtained as follows

m
(
S ∗0

)
=
α∗π

2
− min|arg (λ) | = 0. (3.36)

By referring to the study by [18], Eq. (3.37) can also be calculated as

q′
(
S ∗0

)
p
(
S ∗0

)
− q

(
S ∗0

)
p′

(
S ∗0

)
q2

(
S ∗0

)
+ p2

(
S ∗0

) , 0. (3.37)

From the calculations, the critical value of the initial concentration of the substrate is S 0 = 2.54. When
S 0 = 2.54, the chemostat system shows Hopf bifurcation, at which the stability of the system would be
altered.

Figure 4 presents the phase portrait diagrams of concentration of cell mass against concentration of
substrate when α = 1 for different values of the initial concentration of the substrate, which are S 0 = 2,
S 0 = 2.54 and S 0 = 3.5.

(a) (b) (c)
Figure 4. Phase portrait plot of chemostat system with α = 1 (a) S 0 = 2 (b) S 0 = 2.54 and
(c) S 0 = 3.5.
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The change in the running state when the value of the initial substrate concentration passes through
the Hopf bifurcation point is shown. The stability of the fractional-order chemostat system changed
once Hopf bifurcation occurred. In Figure 3(a), the fractional-order chemostat system is in a stable
state when the initial substrate concentration value is less than the Hopf bifurcation point, or S 0 < 2.54.
Meanwhile, when the value of the initial substrate concentration passes through the Hopf bifurcation
point, or S 0 ≥ 2.54, the fractional-order chemostat system lost its stability. This shows that increasing
the value of the initial substrate concentration may destabilise the stable state of the chemostat system.
These results show that the running state of the fractional-order chemostat system is affected by the
value of the initial substrate concentration. In real-life application, the value of the initial substrate
should remain at S 0 ≥ 2.54 to ensure that the chemostat system is at the unstable state. This is because
the unstable state is suitable for the production of cell mass [1]. Unstable state means the system
always move away after small disturbance, so the system must be at the unstable state because there
will be a change in amount of cell mass production.

Figure 5 depicts the phase portrait diagrams of cell mass concentration against substrate
concentration when α = 0.9 for different values of the initial concentration of the substrate, which are
S 0 = 2, S 0 = 2.54 and S 0 = 3.5.

(a) (b) (c)
Figure 5. Phase portrait plot of chemostat system with α = 0.9 (a) S 0 = 2 (b) S 0 = 2.54 and
(c) S 0 = 3.5.

The Hopf bifurcation points of system of fractional-order chemostat and system of integer-order
chemostat are different. Figure 4 shows the fractional-order chemostat system at a stable state for
all values of the initial substrate concentration when α = 0.9. The chemostat system destabilised
the stable state when the initial substrate concentration value is S 0 ≥ 2.54, as shown in Figure 3(b)
and Figure 3(c). This shows that the dynamic behaviour of the fractional-order chemostat system is
different compared with the integer-order chemostat system. In actual application, the value of the
initial substrate should remain at S 0 ≥ 2.54 to ensure that the chemostat system can be well controlled
in order to be suitable for cell mass production.

AIMS Biophysics Volume 8, Issue 2, 182–197.
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4. Conclusions

The stability analysis of the fractional-order chemostat model was conducted based on the stability
theory of FDEs. The integer-order chemostat model was extended to the FDEs. There are two
steady-state solutions obtained, which are washout and no-washout steady-state solutions. The Hopf
bifurcation of the order of α occured at the solutions of steady-state when the Hopf bifurcation
conditions is fulfilled. The results show that the increasing or decreasing the value of α may stabilise
the unstable state of the chemostat system. Therefore, the running state of the fractional-order
chemostat system is affected by the value of α. The Hopf bifurcation of the initial concentration of the
substrate, S 0, also occurred when the Hopf bifurcation condition is fulfilled. As the evidence from the
phase portrait plots, increase the value of the initial substrate concentration may destabilise the stable
state of the chemostat system. The value of the initial substrate should remain at S 0 ≥ 2.54 to ensure
that the chemostat system is at the unstable state since the unstable state is suitable for the production
of cell mass. These dynamical analyses are important to provide suitable values of the
fractional-order and the parameters in order to ensure the controllability and stability of the chemostat
to suit the actual chemostat environment.
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