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Abstract: By using the recently generalized version of Newton’s Shell Theorem [6] analytical 

equations are derived to calculate the electric potential energy needed to build up a charged sphere, 

and the field and polarization energy of the electrolyte inside and around the sphere. These electric 

energies are calculated as a function of the electrolyte’s ion concentration and the radius of the 

charged sphere. The work needed to build up the charged sphere,     (i.e. the total charge-charge 

interaction energy) decreases with increasing ion concentration of the electrolyte because of the 

electrolyte ions’ increasing screening effect on the charge-charge interaction. The work needed to 

build up the charged sphere appears as a sum of the field and polarization energy of the electrolyte. 

At zero ion concentration the electrolyte’s field energy is equal with     while the polarization 

energy is zero. At high electrolyte ion concentrations (          ) 50% of     appears as the 

polarization energy of the electrolyte, 25% as the electrolyte’s field energy inside the sphere and 25% 

as the electrolyte’s field energy around the sphere. 

Keywords: Debye length; screened potential; electrolyte’s field energy; charge-charge interaction 

energy 

 

1. Introduction 

The head groups of membrane lipids have either single charge (e.g. tetraether lipids [1,2]) or 

electric dipole (e.g. phospholipids [3]). Theoretical models of lipid membranes usually focus on short 

range (Van der Waals) lateral interactions between nearest neighbor lipids and ignore the long range 

charge-charge interactions [3,4]. This is because in the case of long range interactions one has to 

consider the entire system rather than the interactions between the nearest neighbor lipids. In order to 

get closer to the solution of this problem recently we developed a generalized version of Newton’s 

Shell Theorem [5,6]. According to the generalized Shell Theorem the potential around a charged 
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sphere of radius   is (see Eq.9 in ref.6) 

       
      

    
 
 

 

       
 

  
   at       (1) 

where   is the distance from the center of the charged sphere (see Figure 1) and the potential at 

    is (see Eq.10 in ref.6) 
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where          is the total charge of the sphere and    is the surface charge density,    is the 

Debye length in the electrolyte that is inside and around the charged sphere,    is the Coulomb’s 

constant and    is the relative static permittivity of the electrolyte. In ref.6 we also calculated the 

electric potential of two concentric charged spheres surrounded by electrolyte, and the membrane 

potential of a charged lipid vesicle surrounded by electrolyte with high ion concentration. At any 

electrolyte concentration one can calculate the electric potential of the charged lipid vesicle by 

numerical integration (see ref. 6). 

In this paper we consider a single charged sphere (as in ref.6) and by using Eqs.1,2 analytical 

equations are derived to calculate the work needed to build up the charged sphere and the 

electrolyte’s field energy inside and around the charged sphere. By means of these analytical 

equations one can also calculate the dependence of these energies from  ,  ,   (electrolyte ion 

concentration) and   (absolute temperature). 

 

Figure 1. Charged sphere. Light blue area: intra-spherical region; orange circle: charged 

sphere of radius R with total charge Q; white area around the circle: extra-spherical 

region; black arrow: electric field strength,     , at a distance Z from the center of the 

sphere. 

By using the potential        of the charged sphere (Eqs.1,2) the electrolyte’s field energy can 

be calculated in these two regions by the following equation [7]: 
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where           
    is the vacuum permittivity. Since our considered system is central 

symmetric the direction of the electric field vector,   is the radial direction (see Figure 1) and thus 

    
  

  
 and at each region the integration is taken from the lower to the upper radius of the region 

(i.e. from   to   at the intra-spherical region and from   to   at the extra-spherical region. 

2. Model 

To build a charged sphere it requires energy to overcome the repulsive forces between the 

charges already on the sphere and the charge approaching the surface of the sphere. Once the charge 

is on the surface of the sphere it is kept there by short range attractive forces. For example the 

charged lipids of a vesicle are kept in the membrane of the vesicle by the attractive, lateral, 

short-range interactions (Van der Waals interactions) with the surrounding lipid molecules [3,4]. 

According to the generalized Shell Theorem, Eqs.1,2, the potential on the surface of the partially 

charged sphere of radius   with charge q is: 
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The electric potential energy needed to build a sphere of total charge   is: 
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The electric field energy of the electrolyte inside the charged sphere,    , is calculated by using 

Eqs.2,3 (see Appendix 1): 
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The electric field energy of the electrolyte around the charged sphere,    , is calculated by using 

Eqs.1,3 (see Appendix 2): 

     
    
 

  
       

  
 
 

      

 

 

  

   
   

   
         

  

  
 

 

 
       

 

  
        (7) 

3. Results 

Here we calculate two types of electric energies: 1)    , the electric potential energy needed to 
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build up the charged sphere and 2)     and     , the electrolyte’s field energy inside and around the 

charged sphere, respectively. We assume that the overall neutral electrolyte contains only monovalent 

positive and negative ions and calculate the electric energies in the following range of monovalent 

ion concentrations:                   . Note, that the relative static permittivity of the 

electrolyte decreases with increasing ion concentration. However in the above concentration region 

the decrease is within one percent [8,9]. Thus in our calculations the relative static permittivity is 

taken as constant (     ). In this case, i.e. in the case of monovalent ions, the Debye length (in  ) 

is [10]: 

    
       

      
 

 

 
          (8) 

where                       is the vacuum permittivity,    is the relative static permittivity 

of the electrolyte,                   is the Boltzmann constant ,   is the absolute temperature, 

             is the charge of a positive monovalent ion,                is the Avogadro’s 

number,   is the monovalent (positive or negative) ion concentration (in        ) of the 

electrolyte inside and around the charged sphere. In our calculation we take always       . 

Based on Eq.5 in Figure 2     is calculated as a function of the electrolyte ion concentration at 

three different radii of the charged sphere. In the case of our calculations the surface charge density 

of the charged sphere at every radius is               . This is the charge density of PLFE (bipolar 

tetraether lipid with the polar lipid fraction E) vesicles if the cross sectional area of a PLFE is        

and the charge of a PLFE molecule is             (see refs.1,2,6). 

 

Figure 2. Calculated electric potential energy       of a charged sphere surrounded by 

electrolyte. The energy is plotted against the ion concentration (C ) of the electrolyte. The 

radius of the charged sphere is:          (black curve),         (red curve), 

        (blue curve). In the case of every charged sphere the charge density,    is 

the same:            . 

The field energy of the electrolyte inside       and around        the charged sphere is 

calculated by Eq.6 and Eq.7, respectively. These calculated energies are plotted against the ion 
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concentration of the electrolyte (see Figures 3B and 3A). 

 

Figure 3. Calculated field energy of the electrolyte around and inside the charged sphere. 

The field energies of the electrolyte A) around        and B) inside       the charged 

sphere are plotted against the ion concentration (C ) of the electrolyte. The radius of the 

charged sphere is:          (black curve),         (red curve),         

(blue curve). In the case of every charged sphere the charge density,    is the same: 

           . 

4. Discussion 

By using Eqs.5,6 and 7 one can calculate the energy needed to build a charged sphere and the 

field energy of the electrolyte surrounding the sphere inside and around. In the case of zero ion 

concentration these energies can be obtained from the above mentioned equations by taking infinite 

long Debye length (see Appendix 3):  
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The results in Eqs.10,11 are in accordance with the Shell Theorem [5]. According to the Shell 

Theorem at zero electrolyte ion concentration the electric potential inside the charged sphere is 

constant (see Eq.1 at ref.6). Thus the electric field strength is zero and according to Eq.3 the electric 

field energy      is zero too. Also, according to the Shell Theorem at zero electrolyte ion 

concentration the electric potential around the charged sphere is                  (see Eq.2 

in ref.6). After substituting this into Eq.3 we get a result similar to Eq.11. 

With increasing electrolyte ion concentration the electrical screening increases while the Debye 

length is approaching zero. As a consequence the energies,         and     , approach zero too 

(see Appendix 4). 
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In Figure 4 we compare the electric potential energy,     with the electrolyte’s field energy 

within and around the sphere (i.e.:         (dashed lines) and          (solid lines)) and with the 

polarization energy          (dotted lines, see explanation below) . 

 

Figure 4. Electrolyte’s field energies and polarization energy (   ,      and     ) 

relative to the electric potential energy (   ) are plotted against the ion concentration of 

the electrolyte ( ). Radius of the charged sphere:        (black lines),       (red 

lines),       (blue lines). Solid lines:          vs.  . Dashed lines:         vs.  . 

Dotted lines:          vs.   (calculated by Eq.12). 

According to Figure 4 close to zero ion concentration in the electrolyte          while 

     , i.e. the energy needed to build up the charged sphere is close to the electrolyte’s field energy 

around the sphere. In this case building up the charged sphere one works only against the repulsion 

of the charges already present in the sphere and the respective electrolyte’s field energy appears only 

around the sphere.  

However when the ion concentration of the electrolyte is higher than zero the work is expended 

also on the polarization of the electrolyte,     . Namely, when the surface charge of the sphere is 

zero the average charge density in the electrolyte is zero everywhere. At negative surface charge of 

the sphere the average charge density close to the surface of the sphere is positive and it is decreasing 

with increasing distance from the surface. In this case the energy available to build up the 

electrolyte’s field energy inside and around the charged sphere is:                    . Thus: 

    

   
    

   

   
 

    

   
         (12) 

With increasing electrolyte ion concentration the Debye length decreases (see Eq.8) while the 

screening effect of the electrolyte increases and thus the work to build up the charged sphere,     

decreases considerably (see Figure 2). From about           electrolyte ion concentration close 

to one quarter of the energy for building up the charged sphere appears as the electrolyte’s field 

energy inside the sphere, while another quarter appears as the electrolyte’s field energy around the 

sphere, and half of it appears as the polarization energy (see Figure 4).  

The electrolyte’s field energy around the charged sphere      also decreases with increasing 

electrolyte ion concentration (see Figure 3A) because the screening increases. But as it was 
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mentioned above      decreases more than     with increasing electrolyte ion concentration (see 

Figure 4, solid lines).  

Figure 3B shows the electrolyte’s field energy inside the charged sphere as a function of the ion 

concentration of the electrolyte. Here the electrolyte’s field energy is zero at zero ion concentration, 

      (Eq.10), because in this case the electric potential is constant inside the charged sphere (Eq.1 

in ref.6) and thus the respective field strength is zero. At higher than zero ion concentration of the 

electrolyte       because the absolute value of the electric potential decreases toward the center 

of the sphere (Figure 3A in ref.6) and thus the respective field strength is not zero. However, at very 

high electrolyte ion concentration     reduces to close to zero. This is the case because of the 

increased screening the electric potential,   inside the sphere becomes close to zero, i.e. close to 

constant and thus        . 

Finally, Figures 2,3 show that the energies (       ,     ) are decreasing with decreasing 

radius of the charged sphere while the charge density of the sphere,    remains the same. This is the 

case because according to Eqs.5–7 these energies are proportional to the square of the total charge of 

the sphere. In the case of zero electrolyte ion concentration after substituting        
  into 

Eqs.9, 11 we get           
 .  

5. Conclusions 

In this paper we considered a charged sphere surrounded by electrolyte. By using the 

generalized Shell Theorem [6] analytical equations have been derived to calculate the electric 

energies of this system (Eqs.5–7). The work needed to build up the charged sphere,     decreases 

with increasing ion concentration of the electrolyte because the increasing screening effect on the 

charge-charge interaction. The energy needed to build up the charged sphere appears as sum of the 

electrolyte’s field energy and the polarization energy of the electrolyte. At zero ion concentration the 

electrolyte’s field energy around the charged sphere (    ) is equal with    , while the electrolyte’s 

polarization energy        and the electrolyte’s field energy inside the sphere (   ) are both equal 

with zero. At high electrolyte ion concentrations (           ) half of     is for the 

polarization of the electrolyte and the other half is for the field energy of the electrolyte (i.e.      
            ).  
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