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Abstract: Aldose reductase (AR) is an enzyme of the polyol pathway implicated in long-term effect of 

diabetes mellitus. The development of new molecules as drugs for the inhibition of this enzyme is a 

growing area of research. Several in vivo and in vitro studies have been carried out to test the inhibitory 

effect of many organic compounds against AR, but the results have been limited due to their weak 

pharmacokinetic parameters and safety profile. In this study, molecular docking and molecular 

dynamics (MD) simulation were performed to establish the inhibitory effect of two critical bioactive 

compounds (astaxanthin and zeaxanthin) that were affirmed to be safe and powerful antioxidants. 

Docking studies revealed that both astaxanthin and zeaxanthin displays good binding affinity and 

inhibition to AR with binding energies of −5.88 kcal/mol and −5.63 kcal/mol, respectively. In contrast 

to epalrestat; the standard inhibitor having a binding energy of −5.62 kcal/mol. Amino acid residue 

analysis has shown that both compounds, including the standard inhibitor, bind to the same site due to 

their common interaction with Trp20 and Tyr48 at AR catalytic site. To complement molecular 

docking results, we performed MD simulations. The results show that the binding energies of the 

standard inhibitor, astaxanthin, and zeaxanthin are −134.3486 kJ/mol, −186.271 kJ/mol, and −123.557 

kJ/mol, respectively. In both cases, astaxanthin displays better inhibition to AR followed by the 

standard inhibitor and zeaxanthin.  
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1. Introduction  

Diabetes is a group of metabolic disorders associated with an increase in blood sugar (hyperglycemia) 

due to either inability of cells to respond to the action of insulin (a hormone that regulates the amount of 

blood sugar) or impairment in insulin secretion. Increased glucose level results in symptoms such as polyuria, 

polyphagia, and polydipsia. There are many complications associated with uncontrolled diabetes and are 

categorized into acute and chronic. Diabetic ketoacidosis and non-ketotic hyperosmotic coma are examples 

of some of the acute implications. In contrast, cardiovascular diseases, foot ulcers, renal damage (diabetic 

nephropathy), and eye damage (diabetic retinopathy) are the result of chronic effects of diabetes, inflicting 

various tissues and organ damage [1]. Diabetic retinopathy was found to be the most important cause of 

vision impairment in the western world, and cataract has been listed among the three causes of vision 

impairment across the globe. Diabetes was found to be one of the most critical risk factors in retinopathy and 

cataracts [2]. A cataract is the cloudiness of the eye lens, contributing to about 40% of all blindness. More 

than 17 million people had vision impairment due to cataracts, with 28000 new cases daily [3]. Cataract 

caused by diabetes is associated with an elevated level of sorbitol in the eyes' retina due to increased aldose 

reductase activity. Aldose reductase (AR), otherwise known as alditol: NADP+ 1-oxidoreductase with 

enzyme classification (EC) number 1.1.1.21, is an NADPH dependent enzyme implicated in the long-term 

effect of diabetes like diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, and cataractogenesis [2]. 

 

Figure 1. Structure of aldose reductase retrieved from the PDB database with ID: 1XGD 

and 2.1 Å resolution. 

The use of natural bioactive compounds such as flavones, flavonoids and coumarins obtained 

from photosynthetic systems, for the inhibition of aldose reductase is recently growing. Several 

research have been conducted to study aldose reductase inhibition using either synthetic or natural 

inhibitors to minimize the incidence of the chronic effects of diabetes, including blindness associated 
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with cataract [1]. Many compounds such as epalrestat, sorbinil, tolrestat, and fidarestat (Figure 2) 

display good inhibitory activity against aldose reductase in vivo using animal models. However, most of 

them were later withdrawn from the market due to their side effects and non-selectivity for the enzymes 

that share sequence homology to aldose reductase; for example, aldehyde reductase has 51% amino acid 

homology to aldose reductase. However, only epalrestat (a synthetic aldose reductase inhibitor) was 

found to be successful in a clinical trial and commercially available to treat diabetic neuropathy in Japan 

and other parts of the world [4]. Because of the increasing number of diabetic cataract cases worldwide, 

there is a need for an alternatives and more effective AR inhibitors for the control of diabetic cataracts 

and other long-term diabetes effects. 

 

Figure 2. Some active aldose reductase inhibitors a) Sorbinil, b) Epalrestat, c) Tolrestat, d) 

Fidarestat. 

Zeaxanthin and its structural isomer lutein are natural pigments that belong to xanthophyll 

carotenoids. They are found in dark-green leafy vegetables and egg-yolk. They are distributed in 

various tissues and form the principal part of the retina's eye lens and macula area. Many studies have 

indicated the potential benefit of xanthophyll in eye protection, decreased risk of cataracts, and 

age-related macular degeneration, breast, and lung cancer development, protection from stroke and 

cardiovascular diseases [5,6]. The mechanism of prevention of zeaxanthin cataractogenesis is 

attributable to its ability to absorb blue light and prevent oxidative stress [5]. 

Like zeaxanthin, astaxanthin belonged to xanthophyll carotenoids and was considered as a potent 

antioxidant capable of scavenging free radicals and exhibit anti-oxidative, anti-inflammatory, 

anti-apoptotic, and many other important pharmacological activities. It is an essential bioactive 

compound and a derivative of zeaxanthin and canthaxanthin containing ketone and hydroxyl 

functional groups. It is found in microalgae, yeast, trout, shrimp, and most of the red-colored aquatic 

life. Astaxanthin can be produced, employing both natural and chemical synthetic methods. 

Haematococcus pluvialis is one of the primary natural sources of astaxanthin. More than 50 researches 

have been carried out to explore astaxanthin's bioactivities, and it was established that astaxanthin 

display cardioprotective effect, improved eyesight, and anticancer activity, antidiabetic activity, skin 

protection, and many other activities. The antioxidant activity of astaxanthin was found to be due to 

polyene groups and multiple double bonds, and it can bind to the membrane to prevent lipid 

peroxidation. Its antioxidant activity is 65 times higher than ascorbic acid (vitamin C) and 50 times 

more potent than vitamin E, 11 times higher than beta carotene, and 2.7 times higher than lutein [7]. 

The potential effect of astaxanthin on metabolic cataract associated with type 1 diabetes has been 

investigated [8]. The authors found that astaxanthin could diminish the progression of cataract 

development in the eye lens of diabetic rats via its anti-oxidative stress activity. In a related study, 

astaxanthin was proved to be effective in preventing glucocorticoid-induced cataractogenesis in chick 
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embryo [9]. 

Albeit, there are reported in silico studies using molecular dynamics simulation and molecular 

docking that delineate the molecular interaction mechanism between aldose reductase and its 

inhibitors, but such investigations are limited. Although experimentally, aldose reductase has been 

reported to be inhibited by astaxanthin in Psammomys obesus [10]. Moreover, as far as we know, this is 

the first computational study of aldose reductase inhibitions explicitly using zeaxanthin and 

astaxanthin. It was also not established whether zeaxanthin and astaxanthin antioxidant activity could 

be related to the increase in NADPH (reduced nicotinamide adenine dinucleotide phosphate which 

indirectly participates in the elimination of free radicals) level through aldose reductase inhibition. In 

this study, we investigated in silico molecular interaction mechanism between zeaxanthin, astaxanthin, 

and aldose reductase to find binding conformations and possible inhibitory effect of zeaxanthin and 

astaxanthin to aldose reductase. Our study also compared the binding energy, inhibition constant, and 

other docking parameters of known aldose reductase inhibitor (Epalrestat) with zeaxanthin and 

astaxanthin bioinformatics tools. 

1.1. Theory 

Ligand binding energy corresponds to the energy released upon the formation of non-covalent 

binding interactions between an enzyme (E) and it is substrates (S) [11]. The interactions of enzymes 

with ligands are fundamental to both actions of numerous pharmaceutical compounds and a wide 

variety of biological processes. One of the essential characteristics of such interactions is the 

relationship between molecular structure and binding thermodynamics. It is a quantitative 

understanding of which would greatly benefit structure-based drug design [12]. The reversible process 

represents the formation of the complex, and the affinity of equilibrium association constant, , is 

given as follows [13]: 

           (1) 

          (2) 

At equilibrium, under conditions of constant pressure, the equilibrium constant can be related to the 

Gibbs free energy of binding ( ) by the equation 

         (3) 

R is gas constant with a value of , and T is the temperature in Kelvin. More negative 

values of  reflect a more favorable reaction [14]. In thermodynamics, binding is governed by 

enthalpic and entropic components [13] given by 

         (4) 

 is the binding free energy,  is the enthalpy,  is entropy, and T is the Kelvin scale's 

temperature. All the binding and free binding in biomolecular associations procedures are either driven 

from enthalpy ( ) or entropy ( ). The enthalpic component includes several types of non-covalent 



384 

AIMS Biophysics  Volume 7, Issue 4, 380–392. 

interactions, such as van der Waals, electrostatic, hydrogen bonds, and halogen bonds. In contrast, the 

entropic components reflect the contribution to binding due to the system's flexibility or dynamics. 

The entropic component calculation is ignored in the current study because it is complicated, and 

algorithms are computationally very demanding [15]. 

2. Materials and methods 

2.1. Ligands preparations 

All the ligands (Epalrestat, astaxanthin, and zeaxanthin) were retrieved from the PubChem 

compounds database [16] with PubChem ID of 15490120, 5281224, and 5280899, respectively. The 

structure files were saved as sdf format. These ligands were then converted into three-dimensional 3D .pdb 

format with Avogadro software [17]. 

 

Figure 3. Molecular structures of the inhibitors used in this study: (a) Epalrestat, (b) 

Astaxanthin, and (c) Zeaxanthin. 

2.2. Protein model preparations 

The co-ordinate of aldose reductase with PDB ID: 1XGD [18] was retrieved from the protein 

data bank (https://www.rcsb.org/). Crystallographic water molecules were removed, and hydrogen 

atoms were added to the crystal structure with the help of the AutoDock Tool before docking. The 

protein structures were prepared by Autodock 4.2 software [19]. 

2.3. Molecular docking 

The PDB files for both the targets were prepared using AutoDockTools (ADT). The ligand 

optimization was performed using Autodock 4.2 [19], Gasteiger charges were added, non-polar 

hydrogens were merged, and saved as PDBQT file. Atom charges, solvation parameters, and polar 

hydrogen were added to the protein receptor for docking simulation, and the file converted to the 
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PDBQT file. For calculation of docking interaction energy, the grid box was created and enclosed the 

protein molecules. The grid volume should be large enough to allow the ligand to rotate freely. The 

grid dimensions used were X = 126, Y = 126 and Z = 126. The autogrid, grid point spacing, was 0.492 

Å. The parameters used to create such a grid were stored in a grid parameter file, grid.gpf. Parameters 

considered during docking experiments were Genetic Algorithm (GA) runs 10, population size 150, 

mutation rate 0.02, and crossover rate 0.8. Docking simulations were carried out to 2.5 million energy 

evaluations steps with a maximum of 270000 generations and stored in a dock parameter file, dock.dpf. 

Upon completion of the docking simulation, 10 docked conformations were produced. The lowest 

energy conformations were regarded as the best binding conformations between ligands and the receptor. 

The interactions analysis of the selected docked conformations was plotted with Ligplot+ [20]. 

2.4. Molecular dynamics (MD) simulations and analysis 

Molecular dynamics (MD) simulations were performed with Gromacs 5.1.2 [21] using the 

GROMOS54A7 force field [22] for protein and solvated by the addition of TIP3P water molecules [23]. 

The starting conformation of each protein–inhibitor complex was taken from the molecular docking 

result of AutoDock. Force field parameters for each ligand were generated from the Automated 

Topology Builder (ATB) webserver [24] with the GROMOS54A7 force field. The box dimension 

created for each was 8 nm × 8 nm × 8 nm. Two Na
+
 counterions were applied to neutralize the system 

and prevent the infinite charge from the periodic boundary condition implemented along with the 

Particle Mesh Ewald (PME) [25]. Each system then undergoes the minimization of energy using the 

steepest descent algorithm at 50,000 steps. Then, we equilibrated the systems with simulated annealing 

for a period of 1-ns, that linearly raised the temperature from 100 to 300 K at 1 atm, in an NPT 

ensemble with velocity-rescaling thermostat and Berendsen barostat [26], so that the solvent slowly 

changed to the liquid phase, allowing solute molecules to move with greater freedom. Eventually, each 

system underwent production MD for 50.0 ns with temperature and pressure of 300 K and 1 atm, 

respectively, under NPT ensemble with velocity-rescaling thermostat and Parrinello-Rahman barostat [27] 

to maintain temperature and pressure of the system close to reference values. After completing the 

simulations, water molecules were eliminated from the trajectories and translational and rotational 

motions, so only internal motions of protein-ligand complexes were analyzed. Visual Molecular 

Dynamics (VMD) [28] was used to visualize and analyze the molecular structures during simulation 

setup and MD trajectories analysis.  

2.5. Binding free energy calculations 

The binding free energy of protein-ligand was evaluated using Gromacs and the MM/PBSA 

technique developed by [29], in a relatively computationally-efficient manner [30]. The equation gives 

the binding free energy ( ): 

      (5) 

Where and  represent the energies of the complex, protein, and inhibitors, 

respectively. The free energy of these parameters is calculated as the sum of the following terms:  

        (6) 
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        (7) 

         (8) 

Where  represents molecular mechanics free energy in a vacuum, which is computed using 

classical force fields;  is computed using the PBSA method;  is computed using the PB 

method, and the  is computed by solvent accessible surface area (SASA). While employing a 

single trajectory approach,  is the internal energy that makes a negligible contribution to the 

binding energy and generally cancels out [15]. For implicit solvation, the dielectric constant of 

proteins and solvent was set to 4 and 80. The solvent-accessible surface area (SASA) model was used 

for the calculation of nonpolar solvation energy. We used the default values of surface tension of the 

solvent and SASA energy constant that were set to 0.0226778 kJ/(mol Å
2
) and 3.84982 kJ/mol [31]. 

MM/PBSA calculations were performed for snapshots taken every 0.1 ns from the last 20 ns of each 

protein–inhibitor complex MD trajectories. Per energy residue contributions was also done to see the 

contribution of each amino acid residue to total binding free energy. 

3. Results and discussions 

3.1. Molecular docking results 

Molecular docking is an in-silico approach that is used to predict binding conformations and 

binding potential of organic compounds (mostly small organic molecules) called ligands to a large 

organic compound otherwise called receptors [32]. Molecular docking studies of epalrestat, 

astaxanthin, and zeaxanthin were performed with aldose reductase to estimate the intermolecular 

energy, binding free energy, and inhibition constant (Table 1). 

Table 1. Estimated the lowest binding energy of aldose reductase in complex with 

inhibitors obtained from molecular dockings. Predicted intermolecular energy and 

inhibition constants were also shown. 

Inhibitors types Intermolecular Energy 

(kcal/mol) 

Binding Energy 

(kcal/mol) 

Inhibition constants 

(uM)  

Epalrestat −7.41 −5.62 75.31 

Astaxanthin −9.46 −5.88 49.90 

Zeaxanthin −9.21 −5.63 74.71 
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Figure 4. Docking structure of AR in complex with inhibitors (top) and Interaction details 

(bottom) produced by Ligplot+ a) Epalrestat, b) Astaxanthin, and c) Zeaxanthin. 

All the hypothesized inhibitors showed good binding affinity and inhibition potential measured 

by the binding energy and inhibition constant. The binding energy (−5.62 kcal/mol) of the known 

inhibitor (epalrestat) was weaker than that of astaxanthin and zeaxanthin with binding energy −5.88 

kcal/mol and −5.63 kcal/mol, respectively. The better binding energy of astaxanthin and zeaxanthin 

relative to epalrestat could be related to their hydrophobic interaction with various amino acid residues 

in AR's active site. Based on the binding energy and inhibition constant values obtained, we inferred 

that astaxanthin and zeaxanthin could inhibit AR better than the known inhibitor. The inhibition 

constant for epalrestat, astaxanthin, and zeaxanthin recorded were 75.31, 49.00, and 74.71 µM, 

respectively. The lower the inhibition constant, the stronger the binding affinity. Our result agrees with 

that of [33], who studied the inhibitory effect of some selected flavonoids (xanthotoxin and other 

flavonoids). They observed that epalrestat (used as reference standard inhibitor) could bind and inhibit 

AR with a binding energy of −5.59 kcal/mol and inhibition constant of 80.08 µM while xanthotoxin 

has −7.2 kcal/mol and 4.86 mM of binding energy and inhibition constant, respectively. Although 

xanthotoxin has higher binding energy than astaxanthin and zeaxanthin in our studies, its inhibition 

constant is very low, indicating that astaxanthin and zeaxanthin could better inhibit AR compared to 

xanthotoxin. To further establish whether astaxanthin and zeaxanthin bind to the same active site of 

AR where standard inhibitor bind, we studied the interaction of various conformations of compounds 

with AR. According to [34,35,36], the key active site amino acid residues are Tyr48, His110, Lys77, 

Trp111, Trp20, and Lys21. In our study, we observed that AR-epalrestat interaction was mediated by 

Trp20, Val47, Tyr48, Lys77, His110, Trp111, Asn160, Tyr209, and Cys298 amino acids residues 
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mostly via hydrophobic interactions with three hydrogen bonds formation via Tyr48 and Asn160 (Figure 

4a [bottom]). Also Figure 4b (top) showed the docking structure of AR in complex with the Astaxanthin 

molecule. The amino acid residues that participated in the binding are Trp20, Lys21, Ser22, Pro23, Pro24, 

Tyr48, Trp295, Arg296, Val297, Cys298, Ala299, and Leu301 (Figure 4b [bottom]). In the docking 

structure of AR in complex with zeaxanthin molecule Figure 4c (top), the observed nature of the 

association between AR and zeaxanthin reveals Trp20, Lys21, Ser22, Pro24, Val47, Tyr48, Gln49, Arg296, 

Val297, Ala299, Leu300, and Leu301, as amino acids residues involved in the interactions as seen in 

Figure 4c (bottom). Based on this analysis, we reported that all the compounds bind to the AR active site 

due to the complementarity of the amino acids that participated in all the ligands' interactions with those in 

the AR active site. 

3.2. MD simulations 

To understand the nature of the association between AR and its inhibitors, MD simulations were 

performed to support the docking studies results further. Three MD simulation systems of 50 ns were 

prepared for the known inhibitor (epalrestat). Each of astaxanthin and zeaxanthin, respectively, in 

order to confirm the variation in the mobility of each of the inhibitors. The initial details of each 

system are summarized in Table 2. 

Table 2. Detailed of three systems considered in MD Simulations. 

System Number of TIP3P 

water molecules 

Number of Na
+ 

ions System sizes (nm) 

AR-Epalrestat 17705 2 8.38*8.38*8.38 

AR-Astaxanthin 17693 2 8.38*8.38*8.38 

AR-Zeaxanthin 17691 2 8.38*8.38*8.38 

MD simulations results have shown that known inhibitors and compounds could bind to certain 

common amino acid residues of AR molecules, consistent with our docking results. The known 

inhibitor formed hydrogen bonds with Trp20 (76.62%), Tyr48 (25.87%), and Val47 (15.42%) of AR. 

However, it also established hydrophobic interactions with Lys21, Asp43, Gln49, Glu51, Trp79, 

Phe121, and Lys262. Most of these residues were also found in docking results as amino acid 

residues that participated in the interaction between AR and Epalrestat. Furthermore, Tyr48 formed a 

hydrogen bond with epalrestat in both docking and MD simulations. Astaxanthin established 

hydrogen bond interactions with Arg296 (15.42%), Trp111 (18.41%) and Leu300 (17.41%), and also 

hydrophobic interaction with Trp20, Lys21, Tyr48, Phe121, Trp219, Arg293, Ala299, Pro310 and 

Glu313Ala1. Zeaxanthin formed interactions with Lys21, Pro23, Pro24, Val47, Glu51, Trp79, 

Trp111, Glu120, Phe122, and Lys262. However, in comparison with known inhibitor and 

astaxanthin, the following common residues Trp20, Lys21, Tyr48, Phe21, and Ala299, were 

observed. Similarly, epalrestat and zeaxanthin shared the common residues of Lys21, Val47, Glu51, 

and Trp79. 

3.3. MM/PBSA binding energy analysis 

To investigate the detailed interactions between AR in complexes with inhibitors, MM/PBSA 
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analysis was performed over the last 20 ns of all MD simulations. Time-averaged total binding free 

energy and the contributions from van der Waals, electrostatics, polar and nonpolar solvation are 

presented in Table 3. The range of binding free energy of AR in complex with inhibitors was 

observed from −123.557 kJ/mol to −186.271 kJ/mol. The results showed that the average binding 

free energy for AR in complexes with known inhibitor, astaxanthin, and zeaxanthin was −

134.755kJ/mol, −186.271kJ/mol, and −123.557 kJ/mol, respectively. 

Table 3. MM/PBSA binding free energy of each complex. Contributions from van der 

Waals interactions, electrostatic interactions, polar and apolar solvation are also 

presented. 

Inhibi

–tors 

type 

VdW 

Energy (SD) 

[kJ/mol] 

Electrostatics 

Energy (SD) 

[kJ/mol] 

Polar 

Solvation (SD) 

[kJ/mol] 

Apolar 

Solvation (SD) 

[kJ/mol] 

Total Binding 

Energy (SD) 

[kJ/mol] 

Epalr

estat 

−173.315 

(±19.093) 

−47.972 

(±9.748) 

102.526 

(±22.381) 

−15.994 

(±1.212) 

−134.755 

(±19.086) 

Astax

anthin 

−244.529 

(±20.977) 

−54.520 

(±16.280) 

140.664 

(±25.181) 

−27.885 

(±3.490) 

−186.271 

(±18.571) 

Astax

anthin 

−244.529 

(±20.977) 

−20.856 

(±16.587) 

117.821 

(±18.136) 

−25.044 

(±2.460) 

−123.557 

(±19.585) 

All the components of energy are representative of average values over the first 20 ns. MD 

simulations were calculated using the MMPBSA techniques, as shown in Table 3. Among the free energy 

components, van der Waals energy, electrostatics energy, and solvent accessible surface area (SASA) 

have a negative value of total binding energy. In contrast, polar solvation energy has positive total 

free binding energy. These findings supported the binding energy values obtained from the docking 

calculations. However, the low binding energy values obtained in MD was due to the energy 

contributions from solvation. However, it was observed that the contributions from Vander Waals 

energy were strongest compared to other energy components (Table 3). This might be a contributing 

factor toward the strongest binding affinity. The highest negative values of Van der Waals energy are 

an indication of massive contributions from hydrophobic residues. 

Per residue binding energy contribution for AR with known inhibitor suggested that Trp20, 

Lys21, Asp43, Val47, Tyr48, Gln49, Glu51, Trp79, Phe121, Lys262 and Ala299 (Figure 5) were the 

major residues interacting with the epalrestat. The most favorable interacting amino acid residues were 

Trp20, Tyr48, Phe121, Trp79, and Val47 with binding energies of −11.6309, −9.7238, −8.3614, −4.9392, 

and −4.3825 kJ/mol respectively. Astaxanthin bind with AR through these amino acid residues; 

Trp20, Lys21, Tyr48, Trp111, Phe121, Trp219, Arg293, Arg296, Ala299, Leu300, Pro310, and 

Glu313 (Figure 5). Amino acid residues that showed most favorable energy contribution were given 

in the following sequential order Leu300 > Tyr48 > Phe121> Ala299 >Trp20 each with binding of −

12.784, −8.432, −8.321, −7.2028 and −6.8900 kJ/mol respectively. In AR-zeaxanthin complex 

interaction, amino acid residues that interact favorably with AR were Phe122, Trp79, Pro23, Pro24, 

and Trp111 with binding energies of −6.978, −6.866, −4.982, −4.687, and −4.214 kJ/mol 

respectively. Based on per residues energy analysis, it is clearly observed that astaxanthin possesses 

the strongest binding energy. This could probably be due to the strong, attractive electrostatic energy 

contribution by Leu300. Further, in vitro studies are however needed to ascertain our findings.  
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Figure 5. Per residue energy contributions (in kJ/mol) of all the inhibitors, orange bars 

represent amino acids with unfavorable binding energy. In contrast, light green bars 

represent amino acids with favorable binding energy. 

4. Conclusions 

The structure-function relationship is very fundamental to the understanding of physiological 

processes. Biological function is based on molecular interactions within or between macromolecular 

structures. In our study, molecular docking and MD simulation techniques demonstrate that 

astaxanthin could efficiently interact and inhibit aldose reductase better than epalrestat. This 

inhibition might be due to the strongest energy contributions seen in Leu300 but not found in the 

known inhibitor. By implication, this natural molecule could serve as a safe alternative and a 

promising drug candidate for treating diabetes-induced cataract and other chronic effects associated 

with diabetes rather than using the chemically synthesized epalrestat. 
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