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Abstract: Binary toxin (Bin) is one of the bio-larvicidal toxin produced by Lysinibacillus 

sphaericus. Two component proteins, BinA and BinB toxins are required simultaneously to exert 

its larvicidal activity. The binary toxin has been proposed to act initially on the susceptible cell 

membrane. Here, the cell membrane binding of the binary toxin was imitated via specific 

histidine (His)-nickel ion (Ni
2+

) chelating. The N-terminal His-conjugated binary toxins (His-Bin) 

were attached onto the Ni
2+

-lipid bilayer surface besides its facilitating of purification process. 

The N-terminal conjugation of histidine tag did not interfere with the folding structure of both 

toxins. Subsequently, the attachment of binary toxins on the lipid membrane was successful with 

Ni
2+

-phosphatidylcholine (POPC)/phosphatidylethanolamine (POPE) bilayers (a model 

membrane that mimics the mosquito cell membrane) but not for Ni
2+

-phosphatidylcholine bilayer. 

However, His-BinA formed unstable attachment with Ni
2+

-POPC/POPE bilayers since it could be 

removed by buffer rinsing. In contrast, His-BinB required imidazole solution to detach from 

Ni
2+

-POPC/POPE. Particularly, His-BinB had higher binding affinity to Ni
2+

-ion than His-BinA. 

The lipid membrane attachment led to the initial finding that although BinA and BinB toxins 

share high homology structures, their capability for Ni
2+

 chelation was different. The local 

N-terminal structure of binary toxin seems to interfere the His-Ni
2+

 chelating of His-BinA.  

Keywords: Lysinibacillus sphaericus; binary toxin; histidine tagged protein; nickel ion chelating; 

quartz crystal microbalance with dissipation (QCM-D) 
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1. Introduction  

Lysinibacillus sphaericus (Ls) produces the binary toxin (Bin). Bin toxin is one of the 

bio-insecticidal toxins that has been increasingly used to control the mosquito vectors. Bin toxin is 

composed of 41-kDa BinA and 52-kDa BinB proteins, which are acting together for the toxicity 

function [1,2]. The levels of mosquito susceptibility depend on its species together with the 

recognition of toxin receptor [3]; highest toxicity to Culex spp. (vectors of West Nile virus and 

encephalitis), moderately active against Anopheles spp. (vectors of malaria), and no toxic to Aedes 

spp. (vectors of Dengue virus) [4]. However, an increase in the use of the toxins, and therefore, their 

long-term application have mainly led to the risk of insect resistance. The mechanism of this 

resistance is involved in the receptor binding of Bin toxin on larval mid gut cells [5,6,7]. A 

GPI-anchored protein, C. pipiens maltase 1 (Cpm1) on an apical cell membrane was identified as the 

receptor of BinB toxin [8,9]. The receptor binding of BinB has supposed to be the initial step of cell 

internalization of BinA-BinB co-complex [10] and the mitochondria-mediated apoptosis is 

subsequently observed [11,12].  

 

Figure 1. Three-dimensional crystal structure of binary toxins. (A) BinA structure 

(Protein Data Bank number, PDB: 5foy), (B) BinB structure (PDB: 3wa1) and (C) 

Superimposed structure of BinA and BinB. 

Amino acid sequences of BinA and BinB are high homologous with 25% identity and 40% 

similarity of their amino acid sequences implying a similar folding structure [13] (Supporting data 1). 

Recently, X-ray crystal structures of BinA and BinB proteins were resolved and confirmed their high 

homologous structure (Figure 1). The N-terminal domain (trefoil domain) is highly conserved to 

some sugar binding proteins whereas the C-terminal domain (β-sheet domain) is similar to aerolysin 

toxins, a β-pore forming toxin [14,15]. Up to date, the function of each domain of the binary toxin 

has not been identified. The toxic mechanism of binary toxin has been proposed to (i) receptor 

binding of BinB, (ii) BinA-BinB co-complexation for cell internalization and (iii) pore formation to 

release toxic unit into cytoplasm. However, the studies about the function of binary toxins have been 
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limited because of the receptor requirement to initiate the lipid membrane binding. The lipid bilayer 

may provide a suitable condition for further steps of the toxic mechanism of the binary toxin, such as 

BinA-BinB interaction and lipid membrane insertion. In this work, the cell membrane binding of 

binary toxin was mimicked via histidine (His)-nickel ion (Ni
2+

) chelating. The His-tag was 

conjugated at N-terminus of both binary toxin, His-BinA and His-BinB. On the other hand, the Ni
2+

 

was introduced on the lipid membrane surface with a specific lipid of DGS-NTA(Ni
2+

). Besides the 

proposed lipid-membrane binding, these results firstly reveal that although Bin toxins share their 

protein folding structure, their binding ability of His-NTA(Ni
2+

) on the lipid bilayers were different. 

Particularly, His-BinB interacts with Ni
2+

-ion stronger than His-BinA. The local N-terminal structure 

of BinA has been supposed to interfere the His-Ni
2+

 chelating process. 

2. Materials and Methods 

2.1 Recombinant BinA and BinB proteins expression 

The binary toxin from L. sphaericus strain 2297 was expressed as a recombinant protein. 

Histidine tag (6xHis) was conjugated at the N-terminus of BinA (His-BinA) and BinB (His-BinB). 

Both recombinant proteins were expressed by E. coli BL21(DE3) pLysS cells as described in 

previous report [16]. Briefly, the cultured cells were induced with 0.2 mM isopropyl β-D 

thiogalactopyranoside (IPTG) at OD600 of 0.7 and further grown at 18 
o
C for 5 hours. The cultured 

cells were harvested by centrifugation at 7,000 g for 10 minutes. The cell pellets were suspended in 

the Tris-buffered saline (TBS) pH 8.0 (50 mM Tris-HCl and 200 mM NaCl), and subsequently 

subjected to ultra-sonication to break the cells. The soluble His-BinA and His-BinB were separated 

by centrifugation at 12,000 g for 1 hour and kept for further purification. 

2.2 Histidine-tagged binary toxin purification 

Prior metal affinity chromatographic purification, the crude protein solutions were filtrated 

through 0.45 µm membrane. Then, the supernatants were loaded into a precharged Ni
2+

 column (HiTrap 

Chelating HP 5-ml column, GE Healthcare Life Sciences) that was pre-equilibrated with 

Tris-buffered saline (TBS) pH 8.0. The excess of binding and non-specific bound proteins were 

subsequently removed with 25 mM and 50 mM imidazole-TBS. His-Bin proteins were eluted from 

Ni
2+

 column with imidazole gradient solution in a concentration range from 50 mM to 250 mM at a 

flow rate of 1 ml/min (ÄKTA, GE Healthcare Life Sciences). The eluted proteins were collected as 

separated fractions. Finally, the column was washed with 500 mM imidazole-TBS. Each fraction was 

further analyzed by 12% sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE).  

For quartz crystal microbalance with dissipation (QCM-D) experiments, the protein fractions 

were collected and concentrated by ultrafiltration at 4 
o
C using a 30-kDa cutoff Centriprep column (Amicon). 

The residual imidazole in protein solution was removed by gel filtration. The concentrated proteins 

were applied into TBS-equilibrated desalting column (5-ml-HiTrap Sephadex G-25 column, GE 

Healthcare Life Sciences). Then, the proteins were eluted from the column by TBS injection.  

To produce active protein, the purified His-BinA and His-BinB toxins were activated by 

trypsin (L-1-tosylamide-2-phenylethyl chloromethyl ketone-treated) (Sigma) at a trypsin:protein 

ratio of 1: 20 (w/w). The proteins were incubated at 37 C for 2 hours. The proteolytic reaction was 
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stopped by adding 10 mM Phenylmathylsulfonyl fluoride (Sigma). 

2.3 Intrinsic fluorescence measurement 

The fluorescence spectra of the purified protein solution were recorded using a Jasco FP6300 

spectrofluorophotometer. The protein solutions at a concentration of 20 µg/ml were excited at 280 

nm, and the emission spectra were collected from 300 nm to 500 nm at a scanning speed of 100 

nm/min and emission slit of 1 nm. The presence spectrums of binary toxin were a subtracted value 

from a baseline value of buffer solution. The unfolded protein was used as a reference to compare 

changes of protein folding structure. The unfolded binary protein was prepared in 6 M Guanidine 

hydrochloride (Sigma). 

2.4 Lipid vesicle preparation and characterization 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero 

-3-phosphoethanolamine (POPE) were purchased from Sigma-Aldrich. 1,2-dioleoyl-sn-glycero-3- 

[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (DGS-NTA(Ni
2+

)) was purchased from 

Avanti. All lipids were aliquot and stored at −20 °C. 

The desired molar ratio of lipid mixtures was mixed in chloroform. Lipid films were formed by 

evaporating the organic solvent under a gentle nitrogen stream for at least 1 hour. The lipid films 

were hydrated above the melting transition temperature (Tm) for 2 hours with TBS. The hydrated film 

was intermittently vortexed during incubation until complete suspension. The vesicles were 

homogenized by using tip sonication with 50% duty cycle of 10 minutes (Branson sonifier). Then, 

the residual material was removed by centrifugation at 10,000g for 10 minutes. For pure POPC, the 

vesicles were repeatedly pressed through a polycarbonate membrane with a pore diameter of 50 nm 

by using a mini-extruder (Avanti). Before use, the vesicles size was determined by Zetasizer Nano 

ZS (Malvern Instrument). The vesicle solutions were stored at a temperature higher than Tm and were 

used within a week. 

2.5 Quartz Crystal Microbalance with Dissipation (QCM-D) measurement 

QCM-D experiments were carried out with Q-Sense E4 (Biolin Scientific). Lipid bilayer 

formation and further determination of Bin toxin-lipid interaction were performed on top of 

SiO2-coated sensor (QSX 303, Biolin Scientific). The sensors were sequentially cleaned with 

following steps of sonication in 2% (w/v) sodium dodecyl sulfate solution for 15 minutes and rinsing 

with ultrapure water (MilliQ, Merck). Then, the sensors were dried under nitrogen stream. The 

sensors were finally treated with UV/Ozone cleaner (Bioforce Nanosciences) for 30 minutes. The 

fundamental frequency (5 Hz) and the frequencies of the overtones (3, 5, 7, 9, 11, and 13) were 

evaluated prior running the experiment. The observed values of QCM-D results indicate the mass 

adsorption (M) and the building of layer (a viscoelastic) on the crystal surface. The changes in 

frequency (F) and dissipation (D) values were real time recorded simultaneously upon materials 

introduced into the QCM-D chamber. The F proportionally relate to the mass adsorption following 

Sauerbrey equation: M = −C(f/n), where C corresponds to the mass sensitivity constant of the 

crystal sensor with 17.7 ngcm
-2

Hz
-1

 and n is the overtone number. The presented F data is 

expressed as a normalized frequency (f/n). The D value specifies the viscoelasticity of adsorbed 
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layers on the surface sensor following an energy dissipation equation: D = Ed/(2Es). Low D values 

characterize the formation of a rigid layer whereas the high values relate to softer layers. The 

presence values correspond to the 5
th

 overtone unless otherwise stated. 

To form lipid bilayers, the QCM-D sensors were incubated with TBS under flow conditions, 

with a flow rate of 50 µl/min until reach to a stable baseline (at least 1 hour). Then, 0.1 mg/ml lipid 

vesicle solutions were slowly filled into the QCM-D chamber with flow rate of 50 µl/min. The lipid 

bilayer formation was indicated by changes of F and D values. After that, the excess vesicle was 

removed by buffer rinsing until reaching a stable baseline. The binary toxins were introduced into the 

system at flow rate of 50 µl/min and then the flow was paused for protein binding until the signals 

were stable. His-Bin toxins were eluted from Ni
2+

-lipid bilayer by imidazole-TBS solution at the 

flow rate of 50 l/min. The experiments were carried out at 25 °C. 

3. Results and Discussions 

3.1 Effect of histidine-tag on the tertiary structure of binary toxins 

 

Figure 2. Intrinsic spectrum of folding structure of binary toxins. Fluorescence spectra of 

the binary toxin. The proteins were excited at 280 nm. The emission spectra were 

recorded from 300 nm to 550 nm. Upper panel and lower panel are the fluorescence 

spectra profiles of BinA and BinB, respectively. 

The tertiary conformation (folding state) of the binary toxin was analyzed by intrinsic 

fluorescence spectroscopy. The purified proteins of approximately 20 µg/ml were excited at 280 nm 

and fluorescence emission spectra were recorded from 300 nm to 550 nm. The interfering of the 



138 

AIMS Biophysics  Volume 7, Issue 3, 133–143. 

histidine tag at N-terminus of binary toxin (His-BinA and His-BinB) could be determined from shift 

of emission spectrum. The activated binary toxin (native folding protein without histidine tag) 

showed a similar maximum spectrum at 326 nm. The presence of the histidine tag on the binary toxin 

structure did not significantly change the emission spectrum of the binary toxin. The emission 

maximum was detected at 320 nm and 324 nm for His-BinA and His-BinB, respectively. On the 

contrary, the unfolded BinA and BinB proteins (with and without histidine tag) showed a shift in the 

spectrum towards 350 nm (Figure 2). This result suggests that the overall folding structure of 

His-BinA and His-BinB have no deleterious effect by histidine tagged sequence. No spectrum shift 

was detected for His-Bin proteins when compared to the native folded protein. 

3.2 Interaction of His-BinA and His-BinB with Ni
2+

-lipid bilayers 

The binary toxin has been proposed to bind to a protein receptor on susceptible cell membranes 

as the initial step for its toxicity. In this experiment, the cell membrane binding of the binary toxin 

was imitated via histidine (His)-nickel ion (Ni
2+

) chelating. To approach the binary toxins onto the 

lipid surface, a his-tag was conjugated at N-terminus of both BinA and BinA (designed to His-BinA 

and His BinB) whereas DGS-NTA(Ni
2+

) lipid was included into the lipid bilayers. The 

phosphatidylcholine (POPC) bilayer plus 2% (mole) of DGS-NTA(Ni
2+

) lipid (Ni
2+

-POPC) was 

initially used as a lipid bilayer model for the binary toxin binding. The final changes of frequency 

value (F) and dissipation value (D) of Ni
2+

-POPC were about −25 Hz and 1.0*10
-6

, respectively. 

These values suggest complete formation of a lipid bilayer. In addition, the lipid bilayer formation 

process of Ni
2+

-POPC resembled to the pure POPC case, although the maximum values of vesicle 

adsorption for Ni
2+

-POPC was lower than for the POPC case (supporting data 2). Protein attachment 

was firstly determined for His-BinB at a protein concentration of 10 µg/ml (0.2 µM). Figure 3A 

shows that F and D values did not change implying no binding of His-BinB onto Ni
2+

-POPC 

bilayer. Although the protein concentration was increased to 50 µg/ml (1.0 µM), the lipid bilayer 

binding was not detected. A negative control of the lipid binding was carried out with POPC bilayers 

which the Ni
2+ 

was omitted from the lipid bilayer surface for His-protein binding. On the other 

hand, (negative) binding was also observed for the activated BinB (without his tag) with the 

Ni
2+

-POPC bilayer. The detection of the binding of BinB might be limited by either the technique 

sensitivity (17.7 ngcm
-2

Hz
-1

) or an unsuitable lipid bilayer property (e.g. lipid fluidity). Taking into 

account the molecular weight of the binary toxin, the lipid composition probably responds to the 

absence of binding events. Consequently, phosphatidylethanolamine (POPE) was mixed with 

phosphatidylcholine (POPC) to be able to build 1:1 POPC/POPE bilayers (which mimic the 

mosquito cell membrane) [17]. In addition, the DGS-NTA(Ni
2+

) lipid amount was increased to 5% (mole) 

to overcome the limitation of surface mass detection (relate to F). The 5% Ni
2+

-POPC/POPE 

bilayer was successfully formed as POPC and Ni
2+

-POPC bilayers (supporting data 2). Figure 3B 

reveals the binding of both His-BinA and His-BinB onto the Ni
2+

-POPC/POPE bilayer. On the 

contrary, the activated Bin toxin (without histidine sequence) was used as a negative control for 

histidine-Ni
2+

 chelating. As expected, the activated Bin toxin did not bind on Ni
2+

-POPC/POPE 

bilayer (supporting data 3). After 30 minutes of incubation, the total lipid binding of His-BinB and 

His-BinA were detected with F = −30.2 Hz and −21.9 Hz, respectively. The adsorbed mass of 

His-BinB and His-BinA on lipid bilayers can be calculated with the Sauerbrey relation (described in 

method section). The saturated binding of His-BinB and His-BinA on the Ni
2+

-POPC/POPE bilayer 
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resulted in an adsorbed mass of 534.5 ngcm
-2

 and 387.6 ngcm
-2

, respectively. The detected mass of 

His-BinB was higher than His-BinA by approximately 27.6%. The different deposited mass between 

His-BinB and His-BinA might be explained by their molecular weight (MW). BinB (51 kDa) is 

heavier than BinA (42 kDa) [1], which corresponds to approximately 17.6%. On the other hand, 

similar D values for His-BinA (1.9*10
-6

) and His-BinB (1.2*10
-6

) indicated non-significant 

different in viscoelasticity between the protein-lipid hybrid layers of His-BinB and His-BinA (i.e. 

low D values indicate a rigid layer while high values suggest a soft layer). Interestingly, His-BinA 

was detached from Ni
2+

-lipid bilayer with the buffer rinsing resulting in a final F = −6.2 Hz 

whereas the value for His-BinB was F = −24.6 Hz. After buffer rinsing, His-BinA and His-BinB 

were removed from the Ni
2+

-POPC/POPE bilayers of ca. 72% and ca. 18% of total bound protein, 

respectively. Simultaneously, the D value of His-BinA slightly decreased from 2.0*10
-6 

to 1.2*10
-6 

while the stable signal was observed for His-BinB with 1.2*10
-6

. The D value indicates a transient 

adsorption of His-BinA and the rigid nature of His-BinB/lipid layers. The detachment of His-BinA 

from Ni
2+

-ion by buffer rinsing contradicts to a high binding affinity of (6x)histidine and Ni
2+

 ion 

with a dissociation constant (KD) of 14*10
-9

 M [18]. On the contrary, the binding of His-BinB on 

Ni
2+

-POPC/POPE bilayers followed the expectation that high affinity resists to buffer rinsing 

requiring imidazole for Ni
2+

-detachment. The lower binding affinity of His-BinA also was 

demonstrated with the purification step. During the eluting step of protein from Ni
2+

-column, 

His-BinA was eluted with 100 mM imidazole, whereas His-BinB required a higher imidazole 

concentration of 250 mM (Supporting data 4). These results indicate that the histidine sequence at 

N-terminus of BinB chelates with Ni
2+

-ion stronger than BinA.  

Although the conformational structures of BinA and BinB are highly homologous (Figure 1), a 

different function has been proposed for them. The X-ray crystal structure reveals the trefoil domain 

at N-terminus of BinA and BinB is the most different region of molecule [15]. Therefore, the 

N-terminal trefoil domain of BinA is supposed to interfere its Ni
2+

-chelation efficiency. Moreover, 

His-BinA tends to interact with lipid membrane than BinB [19]. If the membrane interaction 

influences the overall structure of BinA, it is possible that the lipid bilayer may reduce the binding 

affinity of histidine tag together with the local structure of trefoil domain. These expectations might 

explain that the histidine tag at N-terminus of BinA is enough for the protein purification but not for 

the lipid bilayer attachment. 
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Figure 3. Interaction of binary toxins with Ni
2+

-lipid bilayers. The lipid bilayers were 

formed via lipid vesicle fusion. The lipid bilayer formation is indicated as zero value at 

the beginning of each plot (taken as a reference for further change in frequency). The 

solutions were injected into the QCM-D chamber at flow rate of 50 µl/min. The 

experiments were carried out at 25 °C. (A) 2% (Ni
2+

)-POPC bilayers, and (B) 5% 

(Ni
2+

)-POPC/POPE bilayers. The blue arrow indicates to the injection of same solution 

whereas the black and red arrows indicate to the injection of different solutions into the 

system of His-BinA and His-BinB, respectively. 

After protein attachment, the interaction between BinA and BinB was further investigated. The 

interaction was particularly demonstrated for His-BinB and activated BinA. The attachment of 

His-BinB on Ni
2+

-POPC/POPE bilayer mimics the initial step of cell membrane disruption (toxicity). 

Later, BinA has been proposed to interact with BinB for co-internalization into the susceptible cells [10]. 

Figure 3B shows that activated BinA did not interact with its complementary BinB as indicated by 

unchanged of F and D signals. In addition, activated BinB showed a similar result with 

non-interaction with His-BinA. However, BinB could be attached on the lipid membrane via 

histidine-Ni
2+

 chelating (mimic the protein receptor binding on cell membranes), the interaction 

between BinA and BinB could not be observed. This result suggest that the BinA-BinB interaction is 

a complex process rather than a single protein docking mechanism on lipid surface. The change in 

conformational structure due to its actual protein receptor binding may trigger the BinA-BinB 

interaction. However, a clear evidence of BinA-BinB co-complex on lipid membranes has not been 

reported yet. In addition, the final rinsing step with imidazole solution resulted in decreasing of the 

F and D values closed to the zero value. This suggest the detaching of His-BinA and His-BinB 

from the Ni
2+

-POPC/POPE bilayer clue in that neither BinA nor BinB insert into the lipid bilayer. 

The higher affinity of His-BinB, in contrast with His-BinA, was confirmed by Ni
2+

-binding 

competition. The 50 µg/ml of mixed His-BinA/His-BinB solution (the final protein concentration of 

each is equal) was incubated with Ni
2+

-POPC/POPE bilayer. A mixture of activated BinA and 
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activated BinB solution was used as a negative control (Figure 4). The final F and D values for 

His-Bin and Ni
2+

-lipid bilayer binding were −35.1 Hz and 1.5*10
-6

, respectively. Subsequently, 

Tris-buffered saline rinsing removed the non-specific bound molecules leading to a final F = −28.2 

Hz, whereas the D value remained almost constant. The protein removed from the lipid bilayer 

surface was about 20% of the total bound protein, which was closed to the number obtained for 

His-BinB (18%). In the case of His-BinA, the detached protein reached about 72%. The results 

suggest that His-BinB was the major protein occupying Ni
2+

-ion on the lipid bilayer. This confirms 

that His-BinB has higher binding affinity against Ni
2+

-ion than His-BinA. 

 

Figure 4. Binding competition of His-BinA and His-BinB onto Ni
2+

-lipid bilayer. The 

protein solution containing 50 µg/ml of each His-BinA and His-BinB was incubated with 

5% (Ni
2+

)-POPC/POPE bilayer for 70 minutes at 25 °C. After reaching a stable baseline, 

the systems were rinsed with Tris-buffered saline at the flow rate of 50 µl/min.  

4. Conclusions 

In conclusion, the histidine tag has no effect on the folding structure of binary toxin. This 

facilitates protein purification. Moreover, the histidine tag associates the binding of binary toxin onto 

the Ni
2+

-POPC/POPE bilayer in particular for His-BinB. In contrast, His-BinA was removed from 

the lipid surface with buffer rinsing. Although BinA and BinB share conformational folding structure, 

their Ni
2+

 binding affinity were different. The trefoil domain at N-terminus of BinA has been 

proposed to interfere with the histidine-Ni
2+

 binding. In addition, the BinA-BinB interaction may be 
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triggered by its actual protein receptor rather than protein docking on lipid surface.  
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