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Abstract: Cyclists use to wear different helmets and adopt different body positions on the bicycle to 

minimize resistance. The aim of this study was to compare a standard helmet with the new aero road 

helmets in a bicycle-cyclist system by CFD on the dropped position. An elite level road cyclist 

volunteered to this research. The cyclist was scanned on his racing bicycle on the dropped position 

wearing competition gear and a standard helmet and an aero road helmet. A three-dimensional 

domain around the cyclist with 7 m of length, 2.5 m of width and 2.5 m of height and meshed with 

more than 43 million of prismatic and tetrahedral elements. The numerical simulations were 

conducted at 11.11 m/s. The numerical simulations outputs were viscous, pressure and total drag and 

coefficient of drag. The standard helmet presented a viscous drag of 10.52 N, a pressure drag of 16.51 

N and a total drag of 21.98 N. The aero road helmet presented a pressure drag of 7.40 N, a viscous 

drag of 12.56 N and a total drag of 19.96 N. Moreover, the aero road helmet presented a lower 

viscous, pressure and total drag coefficient in comparison to the standard helmet. It is possible to 

conclude that an aero road helmet imposes less drag in comparison to a standard helmet. 
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1. Introduction 

Cycling has been considered as one of the most popular sports around the world. The major 
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concern about cyclist’s performance is to reach their averaged maximal speed as soon as possible and 

maintain it over a race. According to Newton’s second law (equation 1), acceleration is given by the 

ration between force and mass (equation 2). Knowing that, cyclists propulsion may overcome the 

resistance (equation 3) [1]. 

      (1) 

Where, F is the force, m the mass and a is the acceleration. 

   
 

 
  (2) 

  
             

 
  (3) 

Where, Fprop are the propulsive forces and Fres the resistive forces in negative direction of the 

motion. 

Cyclists aim to improve performance minimizing the winning time and effort during the race. 

To maintain the averaged speed, cyclists may deliver energy to the pedals. Among the delivered 

energy by the cyclist, some is necessary to overcome resistance and other lost by the bicycle-cyclist 

system. 

    
            

 
  (4) 

Some strategies are adopted to reduce the required energy at a given speed or pace. Cyclists 

used to wear different helmets and adopt different body positions on the bicycle to minimize 

resistance [2,3]. Drag is the main resistive force in cycling and contributes about 90% of the 

resistance [4–6]. Among the different positions (normal, dropped and aero), there is the drooped 

position [7]. This position aims to reduce frontal surface area and drag in comparison to the normal 

position [7]. Moreover, it is dependent of anthropometrics, trunk position and bicycle control in the 

different road curves and slopes; whereas the aero position is mainly used in straight events [8–11]. 

Drag can be assessed by analytical procedures, coasting deceleration methods, wind tunnel 

testing and numerical simulations by computer fluid dynamics (CFD) [12]. However, CFD has been 

used to understand the fluid flow behavior around an object [12,13]. This methodology helps to 

control confounding factors such as temperature, side winds or assumptions such as drag coefficient. 

Wind tunnel testing is considered the gold standard method; however, the tests are expensive and 

demand a considered time consumption [12]. The analytical procedures required a set of assumptions 

and estimations and coasting technics do not allow to control environmental conditions [12]. 

Helmets designs aim to improve cyclists performance, reducing the winning time. Upon the 

different helmets type, a so called: (i) standard and; (ii) aero road helmet. This new aero road helmets 

are characterized by different tail lengths and reduced air vents, intending to improve efficiency and 

aerodynamics [3,14,15]. Recently, elite road cyclists have been using these “new” aero road helmets 

due the impossibility to use time-trial helmets in track races. That might be related with the 

importance of minimize drag and improve efficiency, as in time-trial helmets [3]. However, it is yet 

unclear what is the effect of these new type of helmets on a rider’s aerodynamics. 

To date, this is the first attempt that this new type of helmets is tested in the dropped position. 
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Moreover, most studies with helmets are made in the aero position or only assess the helmet. Thus, 

the aim of this study was to compare a standard helmet with the new aero road helmets in a 

bicycle-cyclist system by CFD. It was hypothesized that the aero road helmet imposes a lower drag 

in the bicycle/cyclist system. 

2. Materials and method 

2.1. Subject 

An elite level road cyclist, racing regularly at national level events volunteered to this research. 

The bicycle-cyclist system mass was 62 kg (cyclist: 55.0 kg of body mass and 1.76 m of height). All 

procedures were in accordance to the Helsinki Declaration regarding human research and a written 

consent was obtained beforehand. 

2.2. Scanning the model 

The cyclist was scanned on his racing bicycle on the dropped position wearing competition gear 

and each of the two helmets. The scans were wearing a standard helmet (Figure 1 at left; Giant, Rev 

Helmet) and an aero road helmet (Figure 1 at right; Giant, Pursuit Helmet) (Figure 1). The Rev 

Helmet type pull the incoming air from the front and side channels to back; whereas the Pursuit 

Helmet aims to produce the wind-cheating effects of time-trial helmets to the road without 

sacrificing ventilation with only two ventilation channels (front and back). 

The scanning process was made with a Sense 3D scanner (3D Systems, Inc., Canada) and saved 

in the Sense Software (Sense, 3D Systems, Inc., Canada). The scanner precision was 0.0009 m (0.9 

mm) at 0.5 m (50 cm) distance. The Sense software allowed to clean, fill holes and solidify the 

geometry, then the model was exported as stereolithographic file (.stl). The Geomagic studio (3D 

Systems, USA) was used to edit and post process the geometry in stl format. The models were 

meshed, smoothed, clean self-intersections, spikes and non-manifold edges on Geomagic studio. 

CAD models were created from the geometries [13] (Figure 1). 

 

Figure 1. Three-dimensional models of the cyclist on the dropped position with a 

standard (left) and an aero road helmet (right). 
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2.3. Boundary conditions 

In Ansys Workbench software (Ansys Fluent 16.0, Ansys Inc., Pennsylvania, USA) the models 

were imported to start the numerical simulations process. The boundary dimensions were created in 

the geometry module with a three-dimensional domain around the cyclist with 7 m of length, 2.5 m 

of width and 2.5 m of height (Figure 2). The domain was meshed to represent the fluid flow in the 

opposite direction to the cyclist with more than 43 million of prismatic and tetrahedral elements and 

the cell size were near 25.72 µm and (Ansys Mesh, Ansys Inc., Pennsylvania, USA). The cyclist was 

placed at 2.5 meters of the inlet portion [16]. 

 

Figure 2. Three-dimensional domain of the cyclist on the dropped position with a 

standard helmet. 

During a race, the mean speed is about 11.1 m/s (~ 40 km/h) [17]. The velocity was set at the 

inlet portion of the enclosure surface (-z direction) at 11.1 m/s (~ 40 km/h). The turbulence intensity 

was assumed as 1×10
−6%

. The bicycle-cyclist system surface was established as zero roughness, 

non-slip wall and scalable wall functions were assigned. 

2.4. Numerical simulations 

The Fluent CFD code (Ansys Fluent 16.0, Ansys Inc., Pennsylvania, USA) run the 

Reynolds-averaged Navier–Stokes (RANS) equations (equations 5, 6, 7 and 8) and assess the fluid 

flow behavior (equation 5), Reynolds Stresses (equation 6), temperature (equation 7) and mass 

transfer (equation 8). The RANS equations transform instantaneous values into means. Fluent CFD 

code (Ansys Fluent 16.0, Ansys Inc., Pennsylvania, USA) solve these equations by the finite volume 

approach. The Realizable k-e was selected as the turbulence model where the velocity histograms are 

very similar to the standard k-e, RST and RNG k-e models [18]. The standard wall function was 

selected for this simulation. 
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Where, Ui and xi are the instantaneous velocity and the position, p the instantaneous pressure, t 

is the time, ρ the fluid density, v is the molecular kinematic viscosity, cp heat capacity, k is the 

thermal conductivity and Sij the strain-rate tensor, c is the instantaneous concentration, and D is the 

molecular diffusion coefficient. The Reynolds stresses component (             ), describes the turbulence 

of the mean flow being the exchange of momentum by the change of the fluid parcels. The Reynolds 

stress is given by: 

                       
 

 
       (9) 

Where, vt is the turbulent viscosity and the mean strain rate Sij is given by, 

     
 

 
 
   
   

 
  

   
  (10) 

The turbulent kinetic energy (TKE) is given by, 

    
 

 
              (11) 

And the kronecker delta (δij), 

      
         
         

  (12) 

The SIMPLE algorithm was used for pressure–velocity coupling. The pressure interpolation and 

the convection and viscous terms of the governing equations discretization schemes were defined as 

second. The least-squares cell-based method computed the gradients. Pressure and momentum were 

defined as second order and second order upwind and the turbulent kinetic energy and turbulent 

dissipation rate as first order upwind. The convergence occurred automatically by the Ansys Fluent 16.0 (Ansys 

Fluent 16.0, Ansys Inc., Pennsylvania, USA) before 1,404 interactions. 

2.5. Outcomes 

After the numerical simulations, outputs such as viscous, pressure, total drag and coefficient of 
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drag are possible to obtain. Ansys Fluent Software (Ansys Fluent 16.0, Ansys Inc., Pennsylvania, 

USA) computed the surface area. 

To compute the drag force, equation (13) was used: 

    
 

 
     

  (13) 

Where, Fd is the drag force, Cd represents the drag coefficient, v the velocity, A the surface area 

and ρ is the air density (1.292 kg/m
3
). 

Pressure coefficient (Cp) and relative velocity magnitude (m/s) graphical representation were 

obtained in Ansys Fluent 16.0 (Ansys Fluent 16.0, Ansys Inc., Pennsylvania, USA) after the 

numerical simulations. The contours of pressure and velocity were obtained without filled 

geometries. 

3. Results 

The aero road helmet presented a lower viscous, pressure and total drag in comparison to the 

standard helmet (Figure 3). The standard helmet presented a viscous drag of 10.52 N and the aero 

road helmet 7.40 N. The pressure drag of the standard helmet was 16.51 N for the selected speed and 12.56 

N for the aero road helmet. Moreover, the total drag of the standard helmet was 21.98 N and the aero 

road helmet was 19.96 N. 

 

Figure 3. Viscous, pressure and total drag at 11.11 m/s for the standard and aero helmet. 

The aero road helmet presented a lower viscous, pressure and total drag coefficient in 

comparison to the standard helmet (Figure 4). The standard helmet presented a viscous drag 

coefficient of 0.30 and the aero road helmet 0.21. The standard helmet pressure drag coefficient was 0.46 

N for the selected speed and 0.35 for the aero road helmet. The total drag coefficient of the standard 

helmet was 0.76 and the aero road helmet was 0.56. 
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Figure 4. Viscous, pressure and total drag coefficient at 11.11 m/s for the standard and 

aero helmet. 

The aero road helmet a lower pressure coefficient (Cp) in comparison to the standard helmet (Figure 5). 

The standard helmet presented a Cp between -3.94 and 1.08; whereas the aero road helmet presented 

a Cp between -3.63 and 1.05. 

 

Figure 5. Coefficient of Pressure for standard helmet (left) and aero road helmet (right) 

at 11.11 m/s. 

The aero road helmet presented a lower relative velocity magnitude (m/s) in comparison to the 

standard helmet (Figure 6). The relative velocity magnitude for the standard helmet ranged between 3.11x10
-3

 

and 22.24 m/s. The relative velocity magnitude for the aero road helmet ranged between 2.87x10
-3

 

and 22.2 m/s. 
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Figure 6. Relative velocity magnitude in (m/s) for standard helmet (left) and aero road 

helmet (right) at 11.11 m/s. 

4. Discussions 

The aim of this study was to assess the aerodynamics of an elite cyclist wearing a standard and 

an aero road helmet on the dropped position by computer fluid dynamics. The main results were that 

the aero road helmet presented lower viscous, pressure and total drag, such as viscous, pressure and 

total drag coefficient. 

An elite level cyclist volunteered for this research. Aerodynamic analysis by CFD are usually 

made with elite subjects, representatives of the sport [3,4,13]. Cyclist’s averaged speed in tours is 

near 11.11 m/s (≈ 40 km/h) [17]. This was the selected speed to assess drag in our study. Moreover, 

during a race, the dropped position is one of the adopted positions to minimize drag in comparison to 

the normal position [7]. In our study, the dropped position was the selected position. The numerical 

simulations by CFD has been used to assess cyclists drag in different situations [12,13]. CFD 

presented concordance with wind tunnel experiments [7,19,20]. 

The standard helmet imposed a higher drag in comparison to the aero road helmet. The standard 

helmet total was 21.98 N and the aero road helmet 19.96 N. Forte et al. [21], compared a standard 

and an aero helmet at wheelchair racing speeds (maximal 6.5 m/s). The differences between helmets 

were near 30%. However, the authors only evaluated the head and helmet. In our study, the 

bicycle-cyclist system was assessed with the different helmets and the total drag differences was 9%. 

The differences magnitude might be explained by: (i) the selected speeds were different; (ii) the fluid 

flow around the bicycle-cyclist geometry was different from the head and helmet. Brownlie et al. [22], 

also reported that time trial helmets reduce the cyclists drag. These findings seem to be in accordance 

with our study. The drag coefficient with the standard helmet was 0.76 and the aero road helmet was 0.56. 

The drag coefficient is dependent of the geometry form or shape [23,24]. Moreover, the fluid flow 

between helmets may also explain the drag coefficient changes [23–25]. In our study, the difference 

between the two helmets in drag coefficient was 26%. In Beaumont et al. [3] study, the drag 

coefficient differences between three helmets were about 3.1%. However, the authors only assessed 

drag with the cyclist body and the bicycle was not included in the analysis. In our study, the pressure 

coefficient was slightly higher in the standard helmet in comparison to the aero road helmet. The 

same phenomenon was observed in the relative velocity magnitude between helmets. The reduced air 
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vents might also explain the differences between the helmets. Helmets with smooth surfaces are 

designed by engineers and sports scientists to minimize drag coefficient [3,14,15]. This may also 

contribute to reduce parasite turbulence and drag [26].  

Overall, the pressure coefficient and relative velocity magnitude did not presented an 

accentuated difference. This is supported by the Blocken et al. study [7], the authors reported Cp near -1 

and 1. In our study, the highest Cp was 1.08. This may suggest that the drag differences were due the 

fluid flow around bicycle-cyclist geometries with the different helmets [21, 23–26]. In our study, the 

selected aero road helmet presented less air vents and drag coefficient in comparison to the standard 

type. Upon that, cycling practitioners may choose to use aero road helmets type with reduce air vents 

to produce the wind-cheating effects of time-trial helmets instead of normal helmets with front/side 

and back air channels. 

The present study present the following limitations: (i) only one position was assessed; (ii) the 

cyclist spent more time in the normal position than in the dropped position; (iii) numerical 

simulations were only performed at one speed; (iv) different temperatures were not tested; (v) the 

cyclist was only representative of elite level, so results might not be extrapolated to others. It can be 

addressed as further research: (i) comparisons between more helmets types; (ii) design and customize 

a specific helmet for the athlete; (iii) assess drag with different temperatures and positions; (iv) 

evaluate active drag by numerical simulations. 

5. Conclusions 

It is possible to conclude that an aero road helmet imposes less drag in comparison to a standard 

helmet. Thus, coaches should advise their athletes to use aero road helmets during a race. The 

resistance acting on an elite cyclist in the dropped position was higher with a standard helmet than 

with an aero road helmet. 
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