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Abstract: Human lung cancer is an extremely heterogeneous disease. Cell heterogeneity and 
diversity are responsible for lung cancer’s invasion, metastasis and the resistance to therapies. Recent 
developments of single-cell analysis make it possible for DNA sequencing, RNA sequencing and 
genomic element sequencing for single-cells from lung cancer. Methodology of single-cell 
sequencing was improved to reduce the errors in the processes due to applying tiny amount of the 
genetic materials. The single-cell sequencing for lung cancer has begun to reveal the deep insights of 
the cancer evolution and provided the new targets for clinical care. In this review, we briefly describe 
the methods of isolation, amplification and sequencing of single-cells. We also discuss the current 
progress in the research of lung cancer and the future prospects in single-cell analysis for the disease. 
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1. Introduction 

Lung cancer is one of the leading causes of cancer death around the world [1]. Lung cancer can 
be divided into two broad categories. Small cell lung cancer (SCLC) accounts for 15% of lung 
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cancer cases and is a highly malignant tumour exhibiting neuroendocrine characteristics. Non-small 
cell lung cancer (NSCLC) can further be classified into three major subtypes: adenocarcinoma, 
squamous cell carcinoma, and large cell carcinoma. Adenocarcinoma accounts for 38.5% of all lung 
cancer cases, with squamous cell carcinoma accounting for 20% and large cell carcinoma accounting 
for 2.9% [2]. In recent years, the systematic approaches with epigenetic studies, transcriptional 
profiling, exome sequencing, chromatin immunoprecipitation (ChIP) sequencing brought a huge 
influx of data to lung cancer. However, the data from cancer mass tissue cannot illustrate clonal 
selection during the cancer growth. It is also difficult to resolve cell to cell variations and identify 
rare mutated cells that may play key roles in disease progress [3]. Intra-tumour heterogeneity is 
resulted from the fast changing of the lineages diverge of tumours [4]. The genetic heterogeneity of 
cancer is significantly responsible for tumour progression and the outcomes of treatments [5]. Single-
cell genome profiling can provide the highest-resolution analysis of intra-tumour genetic 
heterogeneity and also reduce the complexity of the genomic signal through the physical separation 
of cells [6,7]. The correlation between genotype-phenotype in single-cells can also provide important 
information for selecting the most appropriate clinical treatment for targeting heterogeneous  
cancer [8]. With the developments of single-cell isolation, amplification and sequencing technology, 
it is possible to sequence DNA and RNA samples in single-cells both from solid lung tumour mass 
or circulating tumour cells from blood, therefore identifying the relationships between genetic 
mutations, expressions and tumour diagnosis, progress and efficiency of targeting or immune 
therapies for lung cancer. Single-cell sequencing data just emerged for lung cancer and already had 
impacts for our understanding of the heterogeneity and diversity of the disease. In this review, we 
briefly introduce the methodologies for single-cell sequencing and the current research progress for 
lung cancer. We also discuss the future prospects of the research on the disease. 

2. The Methods of Single-cell Sequencing of Cancer 

Single-cell sequencing consists of three major steps: single-cell isolation, whole genome 
amplification (WGA) or whole-transcriptome amplification (WTA) and next generation sequencing.  

2.1. Single-cell isolation  

To obtain high quality single-cell sequencing data depends on efficient physical isolation of 
individual cells, amplifications of the genome or transcriptome of single cell to acquire sufficient 
materials for downstream analysis, identifying true variations from technological biases [7]. One of 
the major challenges of analyzing single-cell genomics data is to develop tools that differentiate 
technical artefacts and noise introduced during single-cell isolation, WGA, WTA and sequencing 
from true biological variation. During single-cell isolation, the population of cells being interrogated 
can be biased through selection of cells based on size, viability or propensity to enter the cell cycle. 
Using cell line cells as control may be problematic as cell lines or cell types may not be diploid; they 
can be highly aneuploid or even polyploid, and these affect experimental performance [7].  

Cancer single-cells are normally obtained from two kinds of tissues. One is from solid tissue; 
the other is from body fluids containing circulating cancer cells. To get the single-cells from solid 
tissues is a technically challenge and requires mechanical or enzymatic dissociation that keeps the 
cells viable while not biasing for specific subpopulations. Patients-derived xenograft (PDX) cells 
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provide good model for single cancer cell analyses of parental tumours [9]. Diseased tissues can have 
different dissociation kinetics and also have varied dissociation between samples of the same disease. 
Laser-assisted microdissection (LAM) can provide a low-throughput way of isolating DNA from 
single-cells in solid samples [10]. LAM is also used to isolate rare cells [3]. For circulating cells, 
automatic sorting and manual manipulation have been developed to isolate single-cells. 
Fluorescence-activated cell sorting (FACS) is one of the most common methods for single-cells 
isolation for circulating cells. Manual manipulation includes serial dilution, micropipetting, 
microwell dilution and optical tweezers [7]. Many commercial platforms have been developed for 
isolating circulating tumour cells (CTCs). These included the CellSearch system, the Magsweeper 
system [3]. These methods require magnets and EpCAM antibody or CD45 antibody to conjugate at 
nanoparticles. The DEPArray system uses microchip and the CellClector applies robotic 
micromanipulation capillary system to isolate single-cells [11,12]. Nanofilters are used to isolate rare 
cells by size exclusion for obtaining single-cells [13]. Nuclear isolation was also showed the 
advantage of single-cell sequencing on frozen tissue [14]. CellSearch system and Magsweeper 
system can be used for CTC enrichment and DEPArray system provides CTC sorting and recovery 
for previously enriched samples. Automated micromanipulation uses droplets or micro-mechanical 
valves in microfluidic devices, it is important to accurately confirm that a single-cell has been 
physically isolated before the sequencing so that spurious biological conclusions are not made after 
evaluating chambers that are empty or contain multiple cells [7]. 

2.2. Single-cell DNA and RNA sequencing 

The methods to perform single-cell DNA and RNA sequencing have been developed in recent 
five years. Single-cells contain tiny amount of genetic materials for analysis. Sequencing DNA or 
RNA from single cell is technically challenging. A typical cancer cell contains 6–12 pg of DNA and 
10–50 pg of RNA [15]. After successful isolation of single cells, the next steps are WGA or WTA to 
increase sufficient input genetic material for constructing sequencing libraries. During the process of 
amplification, a number of errors may arise after sequencing. The technical errors include allelic 
dropout events, amplification distortion, false positive or negative errors and coverage non-
uniformity [16]. Starting with two genome copies by sorting out tetraploid nuclei improves the 
recovery of the genome about 10% by using degenerate oligonucleotide primed PCR (DOP)- 
PCR [14,17]. The method can be worked with flow-sorting and next generation sequencing (NGS) to 
have good resolution of copy number profiles from single cells [18], but it is not suitable for 
detecting mutations at base pair resolution due the poor physical coverage [3]. Other genome 
amplification method is multiple displacement amplification (MDA). MDA can achieve high 
physical coverage by applying the Phi29 for a single-cell genome [19]. DNA polymerase Phi 29 is 
increasingly used in molecular biology for multiple displacement DNA amplification procedures, 
and has a number of features that make it particularly suitable for single-cell sequencing. It allows 
mutations to be detected at base pair resolution. Multiple annealing and looping based amplification 
cycles (MALBAC) is another DNA single-cell sequencing method that performs a quasi-liner 
amplification of the genome with a polymerase for strand-displacement, Bst polymerase is one of the 
polymerases for the PCR reaction [20]. The method is suitable for copy number profiling. Single 
nucleus exome sequencing (SNES) reduces technical error rates due to taking advantage of G2/M 
nuclei which duplicate the amount of genomic DNA in a single cell, providing four copies of the 
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genome as input material and thereby reducing technical error rates [21]. SNES also applies MDA 
for amplification. Before performing any single-cell sequencing study, one should carefully plan 
which method will be implemented and statistical method from ecology and population genetics to 
estimate the sample sizes for the experiment power [4]. Copy number variation (CNV) analysis has 
been successfully performed for single-cell studies [22,23]. The studies demonstrated the potential to 
overcome WGA-bias and to detect CNVs (more than 1 Mb) at the single cell level through low 
coverage massively parallel sequencing [22]. nbCNV is a read-depth based method to detect the copy 
number variants in single-cells. It applies negative binomial distributions to approximate loci along 
the whole genome. It has demonstrated that nbCNV achieved superior performance and high 
robustness for the detection of CNVs in single-cell sequencing data [23].  

Single-cell RNA sequencing data can reveal the global expression profile and exon splicing 
expression with appropriate depth and analysis [24]. It can identify the functional heterogeneity or 
diversity of a population of cancer cells and uncover the molecular characters, specific signals and 
pathways of cancer [25]. It also can detect mutations in the transcripts of the single cells [26]. Since 
it is not yet possible to directly sequence RNA molecules, a common strategy applied to capture the 
single-cell transcriptome relies on three steps: RNA reverse transcription into first-strand cDNA, 
second-strand synthesis and cDNA amplification [27]. To profile RNA transcriptomes in single cells, 
initial methods are to use oligo-dT primers following by ligation adapter PCR or make liner 
transcription with T7 RNA polymerase [28]. Strong 3’ bias could happen due to the inefficiency for 
fist-strand cDNA synthesis by reverse transcriptase. Moloney Murine Leukemia Virus (MMLV) 
reverse transcriptase only amplifies full length mRNA that can reduce sequencing errors [29]. 
Unique molecular indexes (UMIs) were developed to label each RNA molecule with unique barcode 
prior to WTA, thereby reduce amplification bias [30]. After WTA, the resulting cDNA libraries are 
barcoded and pooled for multiplexed next generation sequencing. A shallow RNA-sequencing could 
faithfully detect the heterogeneity and activated signalling pathways about 50,000 reads per cell 
being sufficient for unsupervised cell-type classification [31]. qRT-PCR can be used for a panel of 
genes in single cells and may have even higher sensitivity compared with RNA-sequencing in single 
cells [32]. The interpretation of single-cell sequencing data is also a challenge as appropriate 
computational and statistical methods are the key requirements for the success of experiments [33]. 
There are six single-cell RNA sequencing methods that are commonly used in the lab, these are 
poly(A) tailing, template switching, In vitro transcription, rolling circle amplification, 5’ selection 
and 3’ selection [27]. SMART-seq is a template switching method that utilizes an intrinsic property 
of RT M-MuLV to add three to four cytosines specifically to the 3’ end of the first cDNA strand to 
anchor a universal PCR primer. It ensures that full length transcripts are amplified [34]. CEL-seq and 
MARS-seq are methods to pool cells and libraries to reduce labour intensive of in vitro transcription 
(IVT) for single-cell sequencing [35,36]. STRT-seq is more suitable for large-scale quantitative 
analysis, as well as for the characterization of transcription starting sites. It is a highly multiplexed 
and strand-specific single-cell RNA 5’ end sequencing [37]. 

The co-sequencing methods of genome and transcriptomes in singles-cell system were reported, 
the data could lead to a multidimensional analysis of heterogeneity, stratification and phenotype 
regulation in cancer [38,39]. 
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2.3. Single-cell genomic elements analysis  

Single-cell epigenetic assays are very promising tools that can reveal the cellular variation of 
the regulating elements of the genome with the complicated phenotypes of human cancer, future 
research in the methodology will focus on the improving the bisulphite-sequencing and the coverage 
of sequencing assays [25]. 

DNase I hypersensitive sites (DHSs) provide important information on the presence of 
transcriptional regulatory elements and the state of chromatin in mammalian cells. Single-cell DNase 
sequencing can detect genome-wide DHSs at the single-cell level. The DHSs are highly reproducible 
among individual cells. Among different single-cells, highly expressed gene promoters and 
enhancers associated with multiple active histone modifications display constitutive DHS whereas 
chromatin regions with fewer histone modifications exhibit high variation of DHS. There were 
thousands of tumour-specific DHSs associated with promoters and enhancers critically involved in 
cancer development [40]. 

DNA methylation refers to the addition of the methyl group to the cytosine of a CpG 
dinucleotide in CpG islands by DNA methyltransferases [41]. Specific tumour-suppressor genes are 
usually significantly hypermethylated at their promoter regions or associated during  
carcinogenesis [42]. The hypomethylation of repetitive DNA sequences across the genome is the 
other cancer epigenomic regulation. Single-cell reduced representation bisulfite sequencing was 
developed and enabled to detect 0.5 to 3.7million CpG sites in a single-cell genome [43,44]. These 
approaches provide single-nucleotide resolution of CpG methylation patterns representing an 
exciting start to explore the CpG methylation in single-cell, although the overall coverage still need 
to be improved. 

3. Single-cells Sequencing for Lung Cancer 

As lung cancer is an extraordinary heterogeneous and diverse disease, single-cell sequencing 
will provide unique opportunities to identify clinically important subpopulations within 
heterogeneous tumour cell populations. The work for lung cancer just began, but with the 
development of the technology for single-cell isolation and sequencing, it will play more and more 
important roles in the research for lung cancer. 

A recent study conducted a single-cell RNA-Sequencing analyse 336 single-cell RNA-
Sequencing libraries from seven cell lines of lung adenocarcinoma [45]. Individual cells treated with 
the multi-tyrosine kinase inhibitor vandetanib revealed that house-keeping genes reduced their 
relative expression diversity during the treatment; the genes that were directly targeted by vandetanib, 
the EGFR and RET genes remained constant. The gene expression patterns of cancer-related genes 
were more diverse than expected based on the founder cells. Characteristic patterns in gene 
expression divergence, which would not be revealed by transcriptome analysis of bulk cells, may 
also play important roles when cells acquire drug resistance [45]. 

Lung adenocarcinoma is characterised by genetic alteration in the receptor tyrosine kinase 
(RTK-RAS-mitogen-activated protein kinases (MAPK)) pathway [46]. Specific targeting therapy has 
been developed to the mutations of EGFR, KRAS, BRAF and ALK. The targeting therapy for one 
mutation often leads to the resistance due to new mutation emerges in cancer cells. It requires more 
comprehensive investigation of genomic analysis of individual lung adenocarcinoma patients [47]. 
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The individual lung cancer cells originated from a common ancestor and share early tumour-
initiating genetic mutation, but tumour cells frequently diverge and show heterogeneity in growth, 
drug resistance and metastases [48,49]. The genetic heterogeneity is significantly associated with 
tumour progression and the treatment outcomes of lung cancer [50].  

In a recent report on single-cell mRNA sequencing for 34 patient-derived patients-derived 
xenograft tumour cells from lung adenocarcinoma patients, fifty lung cancer specific single 
nucleotide variations were observed to be heterogeneous in individual PDX cells, Including 
KRASG12D. PDX cells that survived in vitro anti-cancer treatment displayed consistent transcriptome 
signatures with the group characterised by KRASG12D [26]. The further analysis the 34 patient-
derived PDX tumour cells for the intrinsic transcriptomic signatures identified two distinct intra-
tumoural subgroups that were primarily distinguished by the gene module G64. The G64 module 
was predominantly composed of cell-cycle genes. E2F1, a transcription factor, most likely mediates 
the expression of the G64 module in single lung adenocarcinoma cells. The G64 module also 
indicated inter-tumoural heterogeneity based on its association with patient survival and other 
clinical variables such as smoking status and tumour stage [51]. 

Circulating tumour cells (CTCs) offer an alternative source for the detection of genetic 
alterations, as a form of “liquid biopsy” [52]. Currently the CellSearch system is the only FDA-
approved CTC enumeration system [53]. Development of a reliable platform to detect and capture a 
small number of mutation-bearing CTCs from a blood sample is necessary for the development of 
non-invasive cancer diagnosis. A capture system for single CTCs based on high-density 
dielectrophoretic microwell array technology was developed to detect single cells from lung cell line 
cells. The detection rate was markedly higher than that obtained using the CellSearch system, 
suggesting the superior sensitivity of the system in detecting EpCAM-tumour cells. Isolation of 
single captured tumour cells, followed by detection of EGFR mutations, was achieved using Sanger 
sequencing [53].  

In a recent report on detection of CNV, MALBAC was applied for whole-genome amplification 
to sequence single CTCs from lung adenocarcinoma and small-cell lung cancer (SCLC) patients. 
Every CTC from an individual patient, regardless of the cancer subtypes, showed reproducible CNV 
patterns, similar to those of the metastatic tumour of the same patient. Different patients with the 
same lung adenocarcinoma shared similar CNV patterns in their CTCs. Patients of small cell lung 
cancer had CNV patterns distinctly different from those of adenocarcinoma patients. Those finding 
indicated that CNVs at certain genomic loci are selected for the cancer metastasis and the 
reproducibility of cancer-specific CNVs offers potential for CTC-based cancer diagnostics [54]. 

A study that used a model CTC system of spiked tumour cells to determine EGFR mutation in 
single cancer cells by applying LAM to isolate individual CTCs. Followed by WGA of the DNA for 
exon 19 micro-deletion, L858R and T790M mutation detection by PCR sequencing. EGFR 
mutations were successful measured. Sequencing of the amplicons showed allele dropout in the 
amplification reaction, but mutations were correctly identified in 80% of the amplicons. To 
overcome allele dropout and to obtain reliable information about the tumour’s EGFR status, multiple 
individual tumour cells should be assayed [55]. 

A recent study on copy-number aberrations (CNAs) in circulating tumour cells from pre-
treatment SCLC blood samples just was published. After analysis of 88 CTCs isolated from 13 
patients (training set), a CNA-based classifier was generated. Then the results were validated in 18 
additional patients (testing set, 112 CTC samples) and in six SCLC patient-derived CTC explant 
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tumors. The classifier correctly assigned 83.3% of the cases as chemorefractory or chemosensitive. A 
significant difference was observed in progression-free survival (PFS) between patients designated 
as chemorefractory or chemosensitive by using the baseline CNA classifier. Notably, CTC CNA 
profiles obtained at relapse from five patients with initially chemosensitive disease did not switch to 
a chemorefractory CNA profile, which suggests that the genetic basis for initial chemoresistance 
differs from that underlying acquired chemoresistance [56]. 

Table 1. The applications of single-cell analysis for lung cancer.  

The first  

author 

Publication  

year 

Lung 

cancer  

type 

Cell  

source

Cell 

isolation 

method 

Amplification  

method 

Single-cell 

analysis 
Reference

Ran 2013 NSCLC 

Cell 

line 

cells 

LAM mini WGA kit 

Identifying single 

NSCLC cell, 

identification of 

mutation 

[55] 

Ni 2013 
NSCLC, 

SCLC 
CTC CellSearch MALBAC 

CNV patterns in  

lung cancer 

patients 

[54] 

Kim 2015 NSCLC Tissue PDX SMART-seq 

Transcription 

profiling, 

expressed 

mutation profiling 

[26] 

Min 2015 NSCLC Tissue PDX SMART-seq 

Transcription 

profiling, 

identification of 

subpopulation 

[51] 

Suzuki 2015 NSCLC 

Cell 

line 

cells 

C1 system SMART-seq 

Transcription 

profiling, 

expression 

diversity for 

treatment 

[45] 

Park 2016 NSCLC CTC MagSifter Nanowell 
Mutation 

profiling 
[57] 

Carter 2017 SCLC CTC CellSearch WGA kit CNV profiling [56] 

NSCLC: Non-small cell lung cancer; SCLC: Small cell lung cancer; CTC: Circulating tumour cells; 
LAM: Laser-assisted microdissection; PDX: Patients-derived xenograft; MALBAC: Multiple 
annealing and looping based amplification cycles; WGA: Whole genome amplification; CNV: Copy 
number variation; SMART:Switching mechanism at 5’end of the RNA trenascript. 

In another recent report of a massively parallel, multigene-profiling nanoplatform to 
compartmentalize and analyse hundreds of single CTCs, a single-cell nanowell array performed CTC 
mutation profiling using modular gene panels. Multigene expression, profiling of individual CTCs 
from NSCLC patients had remarkable sensitivity. It was ideal for single-cell mutation profiling of 
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individual lung cancer CTCs toward minimally invasive cancer therapy prediction and disease 
monitoring [57]. 

The current progress for single-cell analysis of lung cancer was summarized in the Table 1. 

4. The Limitations of Single-cell Sequencing and Future Research Direction of Lung Cancer 

The major concern of single-cell sequencing in clinics is the high cost of sequencing and the 
platforms appropriate for different clinical requirements for screening, detection, monitoring, or 
personal therapy guidance. The progresses of technology and marketplace competition have reduced 
the cost of sequencing, and more kits are now available. 

The first limitation of single-cell sequencing is the low coverage, which is a common scenario 
when WGA, WTA or chromatin profile amplicons are sequenced. Aside from current DNA 
methylation methods that suffer from low coverage, even the commonly used full-length RNA 
amplification kit gives mostly fragments of sequences that are far from full-length. The development 
of more sensitive methods to increase the overall coverage, and the consistency of the coverage 
between single-cells will be the objective for clinicians and researchers. The second limitation is the 
technologies available for the comprehensive molecular analysis of a single-cell is still at the infant 
stage, and few technologies have the ability to robustly detect the whole proteome of a single- 
cell [58]. The third challenge is temporal and spatial measurements of the molecular profile in a 
single-cell. In situ sequencing and real-time sequencing, as well as in vivo analysis of the DNA and 
RNA from single-cells, have been developed, but these methods need to enhance sensitivity, 
coverage, and accessibility, and a reduction in cost [59,60]. The in vivo technology for single-cell 
analysis would provide real-time dynamics as demonstrated with other in vitro technologies. To this 
end, progress has been made with just a limited number of transcripts [61]. The fourth challenge 
involves data analysis. Most algorithms currently used for single-cell sequencing analysis were 
originally designed for bulk cell samples. These analysis methods do not take into account the 
inherent properties of a single-cell or any amplification- or sequencing-introduced biases, noise, 
incomplete coverage, or errors. Therefore, enhanced algorithms are needed to meet the new era of 
single-cell sequencing [25]. 

Single-cell sequencing will be a valuable asset to assist the design of regimens for personalized 
tumour therapies based on tumour subpopulation-specific genetic alterations in individual  
patients [62]. Most single-cell sequencing for DNA and RNA work in lung cancer was performed for 
adenocarcinoma. There is little information of data from other lung cancer such as small cell lung 
cancer, squamous cell carcinoma, and large cell carcinoma. The different genetic landscapes for 
different lung cancer have different heterogeneities and diversities. With the development of the 
techniques for single-cell sequencing, it will bring more exciting data from all types of lung cancer 
and will eventually identify rare variants that are responsible for cancer’s invasion, metastatic and 
resistance for the targeting therapy or immunotherapy. 
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