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Abstract: Cryo-EM is a rapidly developing method to investigate the three dimensional structure of 
large macromolecular complexes. In spite of all the advances in the field, the resolution of most 
cryo-EM density maps is too low for de novo model building. Therefore, the data are often 
complemented by fitting high-resolution subunits in the density to allow for an atomic interpretation. 
Typically, the first step in the modeling process is placing the subunits in the density as a rigid body. 
An objective method for automatic placement is full-exhaustive six dimensional cross correlation 
search between the model and the cryo-EM data, where the three translational and three rotational 
degrees of freedom are systematically sampled. In this article we present PowerFit, a Python package 
and program for fast and sensitive rigid body fitting. We introduce a novel, more sensitive scoring 
function, the core-weighted local cross correlation, and show how it can be calculated using FFTs for 
fast translational cross correlation scans. We further improved the search algorithm by using 
optimized rotational sets to reduce rotational redundancy and by limiting the cryo-EM data size 
through resampling and trimming the density. We demonstrate the superior scoring sensitivity of our 
scoring function on simulated data of the 80S D. melanogaster ribosome and on experimental data 
for four different cases. Through these advances, a fine-grained rotational search can now be 
performed within minutes on a CPU and seconds on a GPU. PowerFit is free software and can be 
downloaded from https://github.com/haddocking/powerfit. 
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1. Introduction  

Determining the architecture of large macromolecular complexes is of considerable interest to 
understand their function and mechanisms. Classical high-resolution methods such as X-ray 
crystallography and NMR-spectroscopy might, however, struggle in doing that for large complexes 
that might be too flexible to crystallize or too large for peak assignment because of spectral overlap 
in NMR. Cryo-electron microscopy (cryo-EM) is quickly becoming the method of choice to gain 
structural insight into the nature of such large macromolecular assemblies. Especially with recent 
advances in detector technology and improved software and algorithms, the resolution of cryo-EM 
density maps is steadily increasing, occasionally at the point where models can be build in the 
density ab initio [1]. Still, for the bulk of the determined structures the level of detail is too low to 
routinely allow this and additional information is required to build an atomic representation of the 
system [2]. 

Typically, cryo-EM data are complemented with known high-resolution three dimensional (3D) 
models determined either experimentally or via homology modeling. These represent the pieces of 
the density puzzle that should all be fitted together in the map. The first step in the high-resolution 
modeling process is placing the subunits as rigid entities at the correct position in the density. This is 
often done manually using graphics software, most notably UCSF Chimera using its fit-in-map 
function [3]. This is unfortunate as it is subjective and can lead to over-interpretation of the density 
map, as there is no objective scoring function to give an indication of the goodness-of-fit. This is 
especially problematic if flexible fitting is applied afterwards, since for the refinement to make sense 
the subunit should be located in a local minimum, else it might drift away from its initial position 
during the process. To this purpose a plethora of automatic rigid body fitting software has been 
developed [4]. A major class among those is the cross-correlation based programs, which are often 
combined with a full-exhaustive six dimensional (6D) grid search of the three translational and three 
rotational degrees of freedom [5–12]. This leads to a thorough and objective analysis of all possible 
solutions to locate the global cross-correlation minimum. 

The first full-exhaustive cross-correlation based software was published by Volkman and 
Hanein [5]. The approach was further developed by Chacon and Wriggers [8] using the Fast Fourier 
Transform (FFT) algorithm in combination with the cross-correlation theorem, which decreases the 
computational complexity of the search. In addition, they applied a Laplace pre-filter on the density 
and search object, significantly extending the applicable resolution range [8]. Roseman introduced 
the more sensitive local cross-correlation (LCC) score to fit subunits instead of whole complexes in 
the density [7]. Wu et al. acknowledged the problem of overlapping densities of neighboring subunits 
at lower resolutions and developed a core-weighted (CW) cross-correlation score to minimize this 
effect by biasing the weight of density toward the core of the search object [10]. Recently, Hoang et 
al. implemented a GPU-hardware-accelerated version based on FFT techniques to calculate the LCC 
score [12], building on the earlier work by Roseman [13]. 

Here we report on further developments in cross-correlation based rigid body fitting. In the 
Methods section, we first shortly describe the essence of exhaustive cross-correlation based fitting 
and introduce a new cross-correlation function that combines the core-weighted approach of Wu et al. 
with the LCC, demonstrating how it can be calculated using FFTs. Furthermore, to decrease the time 
required to perform a full exhaustive search we use the optimal rotation sets developed by    
Karney [14] and decrease the size of the density by automatically resampling the data, if possible, 
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and trimming padded regions. In the Results section, we investigate the sensitivity of the newly 
developed scoring function by automatically fitting the subunits of the 80S D. melanogaster 
ribosome [15]. Lastly, we present a performance comparison against other fitting software using the 
GroEL/GroES system with experimental data [16]. 

We implemented our approach in a Python software package called PowerFit, which can run on 
multi-core CPU machines and can be GPU-accelerated using the OpenCL framework. PowerFit has 
been tested on Linux, MacOSX and Windows operating systems and is Free Software. The source 
code with detailed installation instructions and application examples can be found at 
https://github.com/haddocking/powerfit. 

2. Materials and Method 

2.1. State of the art of rigid body cross-correlation based fitting 

The goal of cross-correlation rigid body fitting is to determine the three translational and three 
rotational degrees of freedom of the model that optimize the cross-correlation score between the 
high-resolution model and the density. To this end, the model is first blurred to the resolution of the 
cryo-EM data to properly calculate the goodness-of-fit. It should be noted that, although the notion 
of the exact resolution of a cryo-EM density is still a matter of debate and can actually be anisotropic, 
the reported resolution of the data is usually sufficient for fitting purposes. This blurred model is then 
fitted by performing a systematic, full-exhaustive search of the 6D space and saving locations 
corresponding to high cross-correlation values. Predictably, the problems with this approach are 
sensitivity of the scoring function and speed of the search.  

The sensitivity of the global cross-correlation score as originally used by Volkman and   
Hanein [5] is often compromised as, typically, subunits instead of the whole complex are fitted into 
the density. To make things worse, at lower resolution the local densities of neighboring subunits are 
overlapping, resulting in systemic noise mainly at the edges of the search model. To overcome the 
first problem, Roseman introduced the local cross-correlation function, which effectively is the 
cross-correlation normalized under the running footprint of the shape of the model [6]. This localizes 
the score to only the region of interest, making the fitting of subunits feasible. As for the effect of 
overlapping densities of neighboring subunits, this can be minimized by biasing the density toward 
the core of the search object. Wu et al. incorporated this concept by calculating the core-index of 
each voxel of the search object, where the core-index is a measure for how far the voxel is from an 
edge [9]. To further enhance the sensitivity of the scoring function, a Laplace pre-filter can be 
applied to the cryo-EM density and search object [7]. Originally combined with the global 
cross-correlation, it was recently shown that combining it with the LCC further extends the 
applicable resolution range [12].  

To increase the efficiency of the search and minimize computational costs, the main innovation 
was the use of the cross-correlation theorem in combination with FFTs. By discretizing the model 
density on a grid with the same voxel spacing and size as the cryo-EM grid, a translational scan can 
be performed using the FFT-accelerated approach. This reduces the computational complexity from 
N2 to N log(N), where N is the total number of voxels of the cryo-EM data. After each translational 
scan, the model density is rotated and the process is repeated until a pre-set rotational sampling 
density is achieved, meaning that the time required for a search depends linearly on the number of 
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rotations sampled. The rotation step can be accelerated by directly rotating the density of the search 
object instead of repeatedly rotating the high-resolution model and blurring it afterwards. The 
GPU-architecture especially is suited for this task as tri-linear interpolation can be done with 
high-efficiency [12]. 

2.2. Increasing the sensitivity by combining the LCC with the core-weighted approach 

Originally the core-weighted procedure was combined with the global cross-correlation, which 
significantly extended the resolution range in which a subunit could be successfully fitted into the 
density. The same procedure is expected to also improve the sensitivity of the better performing LCC. 
Combining the two approaches results in what we defined here as the core-weighted LCC (CW-LCC) 
scoring function: 
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where the summation is over all the N voxels that are within a distance of half the resolution of any 
atom of the search object indexed by i, wi is the core-index of voxel i, ρc and ρo are the intensities of 
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the regular LCC by setting wi = 1. The Laplace pre-filtered scoring function is defined by performing 
the mapping ߩ௫ →  ௫ in Eq (1). In order to calculate the CW-LCC we first need to define theߩଶߘ
core-index of each voxel. 

2.2.1. Determining the core-index wi 

The core-index is a measure for how close a voxel is to the core of the density of the subunit 
that is being fitted. We calculate the core-index by progressively eroding a binary mask of the search 
object and summing each eroded mask together, see Figure 1A for a 2D example. This guarantees 
that voxels at the surface have a low core-index value, while voxels deeply buried get a higher value, 
even for complex shapes. 

2.2.2. Using Fourier techniques to calculate the CW-LCC 

Starting from Eq (1) and following in the spirit of Roseman [13], we can normalize the 
core-weighted density ݓߩ of the template by setting ߩ

௪തതതത ൌ 0 and ߪ
௪ ൌ 1, which simplifies Eq 

(1) to 

CW‐LCC ൌ  
ଵ

ே

∑ ఘ
ሺሻ∙௪ఘሺሻ

ಿ


ටሺ࣋
ೢതതതതሻమିሺ࣋

ೢሻమതതതതതതതത
                                                    (2) 



77 

AIMS Biophysics  Volume 2, Issue 2, 73-87. 

where ߩ
 indicates the normalized core-weighted density. This leaves three terms to be determined: 

the nominator, which we refer to as the core-weighted global cross-correlation (CW-GCC); the 
square of the average core-weighted density, (࣋

௪തതതതሻଶ, and the average of the squared core-weighted 
density, ሺ࣋

௪ሻଶതതതതതതതത, of the cryo-EM data. These can be calculated using FFTs as follows 

CW‐GCC ൌ ࣠ିଵሺ࣠ሺ࣋࢝
ሻ∗ ൈ  ℱሺ࣋ሻሻ                                            (3) 

ሺ࣋
௪ሻଶതതതതതതതത ൌ ࣠ିଵሺ࣠ሺ࢝ଶሻ∗ ൈ  ࣠ሺ࣋

ଶሻሻ                                                (4) 

ሺ࣋
௪തതതതሻଶ ൌ ࣠ିଵ൫࣠ሺ࢝ሻ∗ ൈ  ࣠ሺ࣋ሻ൯

ଶ
                                                (5) 

where ࣠ and ࣠ିଵ are the Fast Fourier transform and its inverse, respectively, * is the complex 
conjugate operator, ൈ is the element wise multiplication operator, w is the core-weighted mask, ρc 
and ρo are the calculated and experimental densities, respectively. In Eq (3) it is the search object that 
is multiplied with the core-weighted mask, instead of the cryo-EM density. It is this trick which 
allows the CW-GCC to be calculated using FFTs. Note that even though there are 9 Fourier 
transforms required to calculate the CW-LCC, only 6 need to be calculated for every orientation 
sampled, as the 3 Fourier transforms of the cryo-EM data can be calculated just once before the 
search. So the FFT-accelerated CW-LCC effectively costs only one Fourier transform more than the 
regular LCC [12]. 

 

Figure 1. (A) Illustration of the calculation of the core-weighted mask. The initial 
binary mask is progressively eroded and summed. (B) Illustration of the impact of 
resampling and trimming on a slice of the GroEL/GroES density where each square 
consist of 8 × 8 voxels. After resampling and trimming the final size is significantly 
reduced.  
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2.3. Speeding up the search 

2.3.1. Using optimized rotation sets to limit rotational degeneracy 

Since the computational complexity of the exhaustive search depends linearly on the number of 
rotations sampled, optimizing and limiting rotational degeneracy is important for an efficient search. 
However, sampling rotations or orientations in a systematic and efficient manner is a non-trivial 
exercise. As such, the number of orientations that are sampled to guarantee a certain rotational 
sampling density can differ widely. For example, COLORES uses proportional Euler angles [7], 
while gEMFitter performs an icosahedral tessellation to generate rotations [12], resulting in 1264 and 
900 orientations sampled for a coarse 24° search, and 119664 and 92160 for a fine 5° search, 
respectively. In our implementation, we make use of the optimal rotation sets determined by Karney, 
originally developed for solid state NMR [14]. These sets were pre-calculated by enclosing the 
hypersphere of unit quaternions and require only 648 orientations for a 20.83° search and 70728 
orientations at a 4.71° sampling rate. This is an enhancement of the sampling efficiency of at least a 
factor of 1.3 compared to gEMFitter, while offering a denser rotational sampling interval. 

2.3.2. Decreasing the map size by resampling and trimming the density 

In addition to the number of rotations sampled, the computational complexity of the search 
scales with N log(N) where N is the number of voxels of the data. This is the major determinant for 
the computational resources required. Limiting the density size is thus key to limiting the time 
required for a search. Cryo-EM data are often oversampled with respect to their resolution incurring 
a significant computational cost to perform an exhaustive search. Because neighboring voxel 
intensities will be highly correlated, resampling the cryo-EM data will not affect the scoring 
sensitivity significantly. However, as there is still signal after the resolution cutoff, resampling the 
cryo-EM data to Nyquist rate will introduce aliasing effects and image distortions. Therefore, we 
choose to resample the cryo-EM map to a default rate of 2 times Nyquist, i.e. the data are resampled 
such that the voxel spacing is 1/4th of the resolution, allowing for a safe buffer to minimize aliasing 
effects.  

In addition to that, cryo-EM data are usually generously padded with voxels containing only 
noise. It is not uncommon for the padding to increase the number of voxels in each direction by a 
factor of 2 or more. This comes at a considerable cost when performing an exhaustive search as the 
number of voxels grows by a factor of 8 or more. To eliminate the computational cost incurred by 
this padding, we trim the padded voxels. The effect of resampling and trimming is shown in Figure 
1B on a slice of the GroEL/GroES complex (EMD-1046).  

2.4. Implementation and availability 

We implemented our methods in a Python package named PowerFit that comes with a 
command line tool eponymously named powerfit. A flowchart of the powerfit algorithm is shown in 
Figure 2. It requires as input a PDB structure, a cryo-EM map and its resolution. Optional parameters 
are the rotational sampling density (default = 10.83°), whether to resample and/or trim the density 
and use the Laplace pre-filter and/or core-weighted procedure, and the number of PDBs that should 
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be written to file after the search. In addition, the number of CPU processors available to the search 
can be specified or whether the computations should be off-loaded to the GPU.  

 

Figure 2. Flowchart of the powerfit algorithm. 

After invoking powerfit, the software will first try to resample the cryo-EM map to 2 times 
Nyquist rate and then trim it. A density of the search object (the 3D structure) is constructed by a 
Gaussian convolution where the standard deviation is a function of the resolution. Also, a binary 
mask is computed out the structure, where voxels within half a resolution distance from any atom in 
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the model are set to 1 and otherwise 0. Both the search object density and mask are discretized on 
grids of equal sizes and spacing as the cryo-EM density map to allow for an FFT-accelerated search. 
The Laplace pre-filter is applied on the cryo-EM and template densities, if requested. A 
core-weighted mask is calculated from the initial binary mask using the procedure described above. 
The data necessary for the search are offloaded to the GPU if requested. The template and mask are 
rotated using tri-linear interpolation, where texture memory acceleration as described by Hoang et al. 
is used when possible. For each rotation sampled, a translational correlation scan is performed using 
FFTs. The rotational solution with the highest score is saved at every grid position. This continues 
until the requested rotational sampling density is achieved. At the end, the grid, which contains at 
each position the highest found cross correlation score for all sampled rotations, is segmented using a 
3D watershed algorithm [17] in order to remove redundant solutions. The location of each maximum 
together with its correlation score and corresponding rotation are written to file as well as the 
corresponding PDB coordinates of the top N solutions (where N is a user-defined parameter).  

PowerFit is written in the Python language (Python2.7) and requires the NumPy, SciPy and 
Cython packages. The CPU version can be further accelerated by installing the FFTW3.3 library 
together with pyFFTW. To offload the computationally intense search to the GPU, we used the 
OpenCL framework together with the clFFT library, a high-performance FFT library for OpenCL. 
Python bindings were available through the pyopencl and gpyfft packages. PowerFit is licensed 
under the MIT license and can be downloaded from http://www.github.com/haddocking/powerfit 
together with instructions on how to install and use it. It has been successfully tested on Linux, 
MacOSX and Windows systems and its GPU-accelerated version can run on both AMD and NVIDIA 
GPUs, minimizing vendor lock-in.  

3. Results and Discussion 

3.1. Scoring sensitivity of the core-weighted LCC 

To test the scoring sensitivity of the CW-LCC, we used PowerFit to fit each subunit of the 80S 
D. melanogaster ribosome [15] independently in the density at different resolutions. To this end, we 
simulated cryo-EM data from a deposited model (4v6w) from 6Å to 30Å resolution in 1Å increments. 
The cryo-EM data were created using a Python script based on the molmap function in UCSF 
Chimera. Subsequently, we fitted each subunit using the LCC and CW-LCC score and also together 
with the Laplace pre-filter (L-LCC and L-CW-LCC) resulting in four different scoring functions. As 
there are 86 subunits in the assembly, we performed 8600 exhaustive searches in total (86 subunits × 
25 resolutions × 4 different scores). The voxel spacing of the simulated data was 1/4th of the 
resolution with a maximum of 4Å using a rotational sampling density of 20.83° (648 rotations). We 
defined a fit as successful if the positional RMSD of a solution in the top 10 was smaller than 8Å 
compared to the reference structure (4v6w), which is a reasonable 2 voxel spacing away from the 
correct solution at 16Å resolution and lower. Since we were testing the sensitivity of the scoring 
function, the orientation of the correct model was used during each search. The results of the scoring 
comparison are shown in Figure 3B. 
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Figure 3. (A) The 80S ribosome assembly of D. melanogaster (4v6w). (B) The 
success rate from the fitting of 86 individual subunits is plotted versus the resolution 
of the cryo-EM data for the four different scoring functions (LCC = local cross 
correlation; CW-LCC = core-weighted LCC; L-LCC; Laplace pre-filtered LCC; 
L-CW-LCC = Laplace pre-filtered CW-LCC). 

All four scoring functions can fit all subunits correctly in the density at 6Å and 7Å resolution. 
However, the performance of the LCC begins to decrease after 8Å resolution and the number of 
successful cases drops markedly up to 18Å resolution, to further only decrease. The CW-LCC score 
performs significantly better, only starting to drop at 10Å resolution. After that, it follows a similar 
pattern as the LCC with a quick drop first and a more stable region in the end. The core-weighted 
approach extends the applicable resolution range of the LCC by a respectable 3Å. The scoring 
functions combined with the Laplace pre-filter are evidently performing better. The L-LCC score is 
almost 100% successful up to 12Å resolution. The success rate drops at lower resolutions, though not 
as fast as the LCC and CW-LCC score and follows a rather linear trend, which is in contrast with the 
other scoring methods. The best performing score is the L-CW-LCC as expected. It is capable of 
fitting all subunits up to a resolution of 12Å and is near-perfect up to 15Å resolution. Similar to the 
L-LCC score, the success rate drops linearly up to 30Å resolution.  

This analysis demonstrates that including both the Laplace pre-filter and the core-weighted 
approach results in the most sensitive scoring function. The Laplace pre-filter seems to have the 
largest impact, changing the drop rate of the curve to a linear one, while the inclusion of the 
core-weighted approach results in a right shift of the curve.  

3.2. Fitting performance of powerfit 

3.2.1. Fitting subunits in the GroEL/GroES complex 

As an experimental test case for powerfit, we used the GroEL/GroES complex (EMD-1046, 



82 

AIMS Biophysics  Volume 2, Issue 2, 73-87. 

Figure 4) [16], which has been used in the cryo-EM modeling challenge and makes comparison with 
other software possible [12,18]. The crystal structure of GroEL/GroES (1GRU) was used as a 
reference. We fitted a subunit of the trans, cis rings of GroEL and the whole GroES ring (as with 
other software attempts, fitting individual subunits of GroES was not successful [12]) independently 
in the density, using the four different scoring functions, with and without resampling. The rotational 
sampling density was set at 4.71°. For the cis and trans rings we took the top 7 best scoring fits and 
calculated the average RMSD to the 1GRU reference structure; for the GroES ring we took the best 
fit only. The results are shown in Table 1. 

 

Figure 4. The GroEL/GroES complex with density (EMD-1046) with its reference 
structure fitted inside (1GRU). The subunits used in the full exhaustive search are 
shown on the right. 

Table 1. Fitting performance on the GroEL/GroES complex of the Laplace pre-filter 
local cross correlation (L-LCC) and core-weighted LCC (L-CW-LCC) score. 

 Average RMSD of fitted subunits (Å) 
Trans Cis GroES 

L-LCC L-CW-LCC L-LCC L-CW-LCC L-LCC L-CW-LCC
Resampled 5.5 5.2 7.6 7.3 4.4 4.4 
Full map 2.9 3.4 4.6 3.8 4.6 4.2 

The LCC score was not capable of fitting any subunit properly as was noted earlier [12]. In case 
of the GroES lid, it actually places it upside-down in the density. The CW-LCC is more successful in 
this respect, and properly fits the GroES ring at the top of the density with an RMSD of 7.4Å using 
the full map and 4.4Å when using the resampled map. However, it still fails to accurately fit the trans 
and cis subunits in the density. In general, the Laplace pre-filter scoring functions are capable of 
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fitting all subunits successfully in the density, with no significant difference in accuracy considering 
the resolution of the data. As expected, the accuracy lowers when we resample the map to two times 
Nyquist, though the difference is less than one voxel spacing; when refitting the top 7 solutions using 
one translational scan in the fitted orientation with the regular voxel spacing, similar results are 
obtained, but at a markedly lower computational cost (see next section). The fitting results from 
powerfit (RMSD of 3.4, 3.8 and 4.2Å) are competitive compared to previous published ones: 
gEMfitter reported an RMSD of 2.8, 4.0 and 5.3Å for the trans, cis and GroES ring [12], respectively, 
and Segger 3.1, 5.1 and 6.0Å [19]. 

3.2.2. Timing comparison of powerfit 

We also investigated the effect of trimming and resampling the density on the time required to 
perform a run. As the Laplace pre-filter only needs to be applied once, the timings of the regular and 
Laplacian scores are similar. We therefore only show times for the L-LCC and L-CW-LCC scores. 
The results of the timing runs are shown in Table 2.  

Table 2. Time required for a coarse (20.81°) and fine (4.71°) rotational search on the 
GroEL/GroES complex. 

 L-LCC L-CW-LCC 

Coarse Fine Coarse Fine 
CPUd GPUe CPUd GPUe CPUd GPUe CPUd GPUe 

Full mapa 3m 32s 18s 6h 23m 23m 50s 4m 1s 22s 7h 13m 30m 8s 

Trimmedb 58s 7s 1h 37m 3m 54s 1m 4s 7s 1h 50m 4m 39s 

T + Rc 10s 4s 13m 6s 1m 6s 10s 4s 14m 47s 1m 14s 
a Size of full map: 128 × 128 × 128; b Trimmed map: 72 × 72 × 90; c Trimmed + resampled: 36 × 36 × 45;  
d Intel Core i7-3632QM; e NVIDIA Geforce GTX680. 

Running a coarse 20.81° rotational search can be done in a few minutes, even on a single 
processor with a map size of 128 × 128 × 128 voxels. However, for a fine rotational sampling density 
of 4.71° an exhaustive search already requires more than 6 hours. Using a GPU (NVIDIA Geforce 
GTX680) to accelerate the search reduces the time required to approximately 30 minutes. When 
trimming the density before the search, which in the GroEL/GroES case reduces the map size to 72 × 
72 × 90 voxels, the time required for a fine search drops to ~1.5 to 2 hours on a single processor and 
only 5 minutes on a GPU. It should be emphasized that trimming the map does not have any impact 
on the search accuracy and thus should always be applied for a faster search. Further minimizing the 
map size by resampling the density results in 36 × 36 × 45 voxels, and only requires 15 minutes on a 
single CPU and 1 to 2 minutes on a GPU. Thus, we advise to always use the trimming option and 
start a search using the resampled option. The resulting solutions can than be refitted using a single 
translational scan on the non-resampled map for an optimal speed to accuracy trade-off. 

We compared the fitting times of powerfit against another GPU-accelerated rigid body fitting 
software gEMfitter [12]. The results are shown in Table 3. Running gEMfitter using a 5° rotational 
sampling density (92160 orientations) with the L-LCC scoring functions, requires 5 hours and 48 
minutes against 6 hours and 23 minutes for powerfit, without any of the simplifications introduced 
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here, on a single processor (Intel Core i7-3632QM). As the bulk of the time is spent on computing 
FFTs, the difference in performance might be found in the fact that the gEMfitter binary has been 
compiled with the mkl-library and powerfit with GCC. gEMfitter also has a resampling option, 
which reduces the running time to 38 minutes. Only applying the resampling option reduces the 
running time for powerfit to 41 minutes, and combined with trimming the running time drops further 
to ~13 minutes using the same L-LCC scoring function. We could not properly compare the 
GPU-accelerated version of gEMfitter against powerfit as the provided gEMfitter binary runs only on 
Ubuntu systems with NVIDIA GPUs and was not at the authors’ disposal. However, the gEMfitter 
article reports 11 minutes running time using a NVIDIA C2075 GPU, which is significantly shorter 
than powerfit without trimming and resampling. With the latter two options turned on, the powerfit 
timings drop to close to 1 minute on a GTX680 GPU card. Again, since the bulk of the time is spent 
on computing FFTs, the difference probably arises in the efficiency of the FFT implementation: the 
CUDA FFT implementation is specifically optimized for NVIDIA GPUs while the clFFT 
implementation is mainly optimized for AMD architecture, but runs on all OpenCL supported 
architectures. So there is a choice between performance versus portability, although, with trimming 
and resampling enabled, powerfit is still faster.  

Table 3. Timing comparison between powerfit and gEMfitter using a fine rotational 
search on the GroEL/GroES complex. 

 CPUa GPU 

 gEMfitter powerfit gEMfitterb powerfitc 

Full map 5h 48m 6h 23m 11m 25m 48s 

Resampledd 38m 2s 41m 25s - 1m 40s 

T + Re - 13m 6s - 1m 6s 
a Intel Core i7-3632QM; b NVIDIA Tesla C2075; c NVIDIA Geforce GTX680; d Resampled map: 64 × 64 × 64; 
e Trimmed + resampled: 36 × 36 × 45. 

3.2.3 Additional complexes fitted with powerfit 

To validate our approach further, we applied powerfit on three additional cases in the resolution 
range of 8.9 to 13.5Å (Table 4, Figure 5). EMDB entry 2325 is another GroEL/GroES complex, but 
at a considerably higher resolution of 8.9Å compared to the 1046 density [20]. The increased level of 
detail allowed to fit each GroES subunit independently in the map, irrespective of the scoring 
function used, with the correct 7 fits found in the top 7. The other two cases are ribosomes with a 
GTPase [21] and methyltransferase [22] bound to it, subunits with comparable size. For entry 1884 
with a reported resolution of 9.8Å, the RsgA GTPase was correctly fitted in the density by all four 
scoring functions and was found within the top 2 best scoring solutions. The ribosome map 2017 
with the bound KsgA methyltransferase has a somewhat lower resolution of 13.5Å. In this case, the 
LCC was incapable of correctly fitting the subunit in the density. The other scoring functions placed 
the subunit properly in the map, with the correct fit found within the top 3 best scoring solutions.  
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Figure 5. Cryo-EM densities together with the subunits that were independently 
fitted: (A) GroES subunit in GroEL/GroES complex (EMD-2325), (B) RsgA GTPase 
in 30S ribosome (EMD-1884), and (C) KsgA methyltransferase in 30S ribosome 
(EMD-2017). 

Table 4. Additional complexes fitted with powerfit by performing a fine rotational 
search (4.71°) using the four scoring functions (LCC = local cross correlation; 
CW-LCC = core-weighted LCC; L-LCC; Laplace pre-filtered LCC; L-CW-LCC = 
Laplace pre-filtered CW-LCC). 

EMDB entry Resolution (Å) PDB IDa Score RMSD (Å) Rank 

2325 8.9 3ZPZ:O 

LCC 1.7b 1 - 7 
CW-LCC 1.9b 1 - 7 
L-LCC 1.7b 1 - 7 

L-CW-LCC 1.5b 1 - 7 

1884 9.8 2YKR:W 

LCC 2.5 1 
CW-LCC 3.0 2 
L-LCC 2.2 1 

L-CW-LCC 2.2 1 

2017  13.5  4ADV:V 

LCC 60.8 1 
CW-LCC 1.3 1 
L-LCC 5.9 1 

L-CW-LCC 4.7 3 
a The PDB code together with the chain ID is shown; b Average RMSD of the top 7 solutions compared to the 

fitted GroES ring. 

4. Conclusion 

In this work we have introduced PowerFit, an open source Python package, which comes with a 
command line tool powerfit to perform an exhaustive cross-correlation based rigid body search. It 
implements a new core-weighted enhanced LCC score that significantly expands the applicable 
fitting resolution range. In addition, powerfit minimizes the computational time requirements by 
using optimized rotation/orientation sets, trimming and resampling the electron density, and 
leveraging the computational resources provided by GPUs. PowerFit is therefore a valuable addition 
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to the structural biologist toolbox, allowing obtaining an objective initial fit of high-resolution 
subunits in low-resolution cryo-EM density maps within a reasonable time. 
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