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Abstract: In this study, we formulate a mathematical model in the framework of the Atangana-
Baleanu fractional derivative in Caputo sense to study the transmission of tungiasis. In this formulation,
interactions between the human host and the sand fleas are taken into consideration, including factors
like infestation rate, incubation duration, and recovery rate. We calculate the basic reproduction
parameter for the system, symbolized by R0 with the help of the next-generation matrix technique.
A novel numerical scheme for encapsulating the non-local and memory-dependent aspects of the
system is conceptualized via the Atangana-Baleanu fractional derivative. We prove the existence and
uniqueness of the solution of the model of the infection and establish stability of the steady-states
of the model. In addition to this, numerical simulations are carried out to evaluate the efficiency
of interventions like campaigns for better sanitation and treatment, and to investigate the influence
of various management techniques on the prevalence of tungiasis. The outcomes of the numerical
simulations give us information about the possible efficacy of different control strategies in lowering
the incidence of tungiasis. This research gives quantitative tools to enhance decision-making processes
in public health treatments and advances our understanding of the dynamics of the tungiasis.
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1. Introduction

Tungiasis is a parasitic skin condition brought on by female sand fleas and is sometimes referred to
as jiggers or sand flea infestation. Tropical and subtropical regions, especially the regions of America,
Asia, Africa and the Caribbean, are infected with this disease. The flea enters into the skin, usually
in areas where the skin is thin, such as the toes, heels and the spaces between toes and fingers [1].
The female sand flea burrows into the skin and grows into a small, swollen, and painful lesion, often
resembling a tiny white or black dot. The flea then lays eggs inside this lesion and after development
to complete the life cycle. The primary symptom of tungiasis is intense itching, leading to scratching,
which can cause secondary bacterial infections. The affected area may become red, swollen, and
painful. Over time, the lesions may grow larger and more uncomfortable [2]. Tungiasis is usually
diagnosed based on clinical signs and symptoms. The presence of a specific lesion in the toes or feet,
especially in areas with a history of sand flea infestations, helps with diagnosis [3]. The most effective
treatment for tungiasis is the removal of the embedded sand fleas using sterilized instruments or a
needle. The lesion should be cleaned and disinfected to prevent infections. In severe cases, topical
antibiotics may be prescribed if secondary infections have developed [4]. Preventive measures include
avoiding walking barefoot in sandy or contaminated areas and wearing protective footwear.

Surgical extraction of embedded sand fleas under sterile medical conditions [5] can also be
considered an efficacious therapeutic approach for its management. Tungiasis is a preventable
condition, but it can cause significant discomfort and complications if left untreated [6]. If you
suspect you have tungiasis or are experiencing symptoms, it is essential to seek medical attention for
proper diagnosis and treatment. The infected areas often experience subpar living conditions and
inadequate sanitation, making the inhabitants particularly susceptible to the infestation [7]. The
afflicted populations face serious health and economical difficulties as a result of this neglected
tropical illness. The mechanics of tungiasis transmission must be understood in order to adopt
effective control measures and lessen the disease’s effects. Jiggers, chigoe flea infection, and pulex
penetrans infestation are a few of the historical names for tungiasis [8]. The female sand flea that
transmits the disease burrows into the skin, concentrating on the feet, causing painful sores,
inflammatory reactions, and secondary infections if left untreated.

Mathematical models have significantly contributed to enhancing comprehension of the
fundamental mechanisms of biological processes for public health [9–15]. Over the years, researchers
and public health experts have dedicated significant efforts to gain insight into the spread of various
infections [16]. Previous research has concentrated on a variety of disease-related topics [17, 18],
from clinical symptoms and epidemiology to control methods and therapies. The frequency and
geographic distribution of tungiasis have been examined in studies, revealing insight on the disease’s
burden and its effects on afflicted people [19, 20]. Kahuru et al conducted a study focused on
employing an optimal control approach within a mathematical model to analyze the dynamics of
tungiasis within a community [21]. The researchers in [22] established the stability results of the
transmission dynamics of the disease. After that, the theory of optimal control is utilized, all with the
ultimate goal of reducing the numbers of infested humans, infested animals, and sand flea
populations [23]. The processes of disease transmission and the potential effects of interventions like
better sanitation, health education, and treatment campaigns have both benefited greatly from these
modeling studies [24]. Mathematical modeling of infectious diseases enhances our understanding of
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the diseases, facilitates evidence-based decision-making, and helps implement targeted interventions
to reduce the burden of the condition in affected communities. In this work, we will enhance our
scientific comprehension of tungiasis dynamics to provide more valuable perspectives for efficient
management approaches. Through the utilization of mathematical modeling and simulation methods,
we will evaluate the prospective consequences of treatments and facilitate decision-making within the
realm of public health to improve the effectiveness of interventions and control measures.

Fractional calculus is a branch of mathematics that deals with derivatives and integrals of
non-integer orders. It extends the concepts of traditional calculus, which involves integer-order
derivatives and integrals. Fractional calculus has found applications in various scientific
fields [25–30], including epidemiology, where it can be used to model the spread of infectious
diseases. It has been acknowledged that fractional calculus offers a more flexible framework for
describing complex real-world problems [31, 32]. The Atangana-Baleanu fractional derivative is a
type of fractional derivative that has been applied to various mathematical models, including epidemic
models [33, 34]. Fractional calculus generalizes the concept of traditional derivatives and integrals to
non-integer orders, allowing for a more flexible representation of complex phenomena, such as
anomalous diffusion or power-law behaviors [35]. In the context of epidemic models, the
Atangana-Baleanu fractional derivative has been utilized to introduce memory effects and long-range
interactions into the system. In addition to this, these models can capture more realistic scenarios and
provide insights into the long-term behavior of infectious diseases. Hence, we choose to represent
the dynamics of tungiasis using a fractional framework to obtain more precise results.

This article is organized as follows: The fundamental concepts and results of the fractional theory
related to the ABC operator is presented in Section 2. In Section 3, we formulated a mathematical
model for tungiasis through the ABC operator in the fractional framework. In Section 4, the suggested
model is subsequently examined. In Section 5, the solution of the recommended model is investigated
with the help of fixed-point theory. Then, we introduced a numerical scheme to highlight the dynamical
behaviour of the system in Section 6. Finally, ending remarks of the work are presented with future
work in Section 7.

2. Preliminaries of fractional-calculus

The main relevant findings and definitions of classical Caputo [36] and Atangana-Baleanu fractional
derivatives [37] will be presented here and will be useful in the following portion of the paper.

Definition 2.1. Let f : [p, q] → R be a given function, then the fractional derivative of Caputo
fractional derivative of order ȷ is given by

C
p D ȷt (u(t)) =

1
Γ(n − ȷ)

∫ t

p
un(κ)(t − κ)n− ȷ−1dκ,

for ȷ ∈ (n − 1, n), where n ∈ Z.

Definition 2.2. The Atangana-Beleanu fractional derivative for a given function f in the Caputo form
is introduced as

ABC
p D ȷt f (t) =

B( ȷ)
1 − ȷ

∫ t

p
f ′(κ)E ȷ

[
− ȷ

(t − κ) ȷ

1 − ȷ

]
dκ,
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where f ∈ H1(p, q), q > p, and ȷ ∈ [0, 1]. In addition to this, B( ȷ) is the normalization function which
satisfies the condition B(0) = B(1) = 1.

Definition 2.3. The integral of the ABC derivative is denoted by ABC
p I ȷt f (t) and is defined as:

ABC
p I ȷt f (t) =

1 − ȷ
B( ȷ)

f (t) +
ȷ

B( ȷ)Γ( ȷ)

∫ t

p
f (κ)(t − κ) ȷ−1dκ.

Theorem 2.1. Assume f in a manner that f ∈ C[p, q], then we have the equation below mentioned
in [37]:

∥ABC
p D ȷt ( f (t))∥ <

B( ȷ)
1 − ȷ

∥ f (t)∥, where ∥ f (t)∥ = maxp≤t≤q| f (t)|.

Furthermore, it has been established that ABC derivatives satisfy the Lipschitz condition [37].

∥ABC
p D ȷt f1(t) − ABC

p D ȷt f2(t)∥ < ϑ1∥ f1(t) − f2(t)∥.

3. Evaluation of the dynamics

Here we present a mathematical model of Tungiasis disease. In this approach, the total population
is divided into four categories: group that practices good hygiene (P), susceptible (S), infected (I),
and treated (T ) groups. Then, the total population is

N(t) = P(t) + S(t) + I(t) + T (t).

At birth, the population that is most susceptible is recruited at a rate of (1 − γ)υ, whereas the group
that practices good hygiene is recruited at γυ where υ represents the rate of recruitment at birth and γ
represents the likelihood of being recruited into the category of good hygiene practices. The
appropriate hygiene practice group (P) develops susceptibility (S) at a rate of φ. Individuals from the
class (S) move to the class (I) with a rate Γ. The infected individuals (I) transfer to the treated group
(T ) at a rate of ϱ following therapy. We indicated the natural death rate by µ. The infection rate Γ is
defined as

Γ =
σεI

N
,

where ε is the contact rate with infected people and σ is the likelihood of being infected after repeated
exposure to infected people. Then our model with the above assumptions for tungiasis disease is as
follows: 

dP
dt = γυ − (φ + µ)P,
dS
dt = (1 − γ) υ + φP − (Γ + µ)S,
dI
dt = ΓS − (ω + ϱ + µ)I,

dT
dt = ϱI − µT ,

(3.1)

with appropriate initial condition

P(0) > 0, S(0) > 0, I(0) > 0, T (0) > 0. (3.2)
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Table 1. Parameter values with interpretation used in the proposed system.

Parameter Interpretation
γ Probability of recruitment in P(t)
υ Birth or recruitment rate
φ The losing rate of protection
µ Death occurs naturally in each class
Γ Infection rate from susceptible to infected class
ω Disease induced mortality rate
ϱ Treatment rate for the infection
σ Rate of transmission of the infection
ε Contact rate of infection

It is acknowledged that epidemic models through the Atangana-Baleanu fractional derivative can
more accurately represents the dynamics of infectious diseases than conventional integer derivatives.
This inclusion enables a more comprehensive exploration of epidemic spread in intricate settings
characterized by long-range interactions and memory effects, fostering an improved comprehension
of the underlying mechanisms. Consequently, the refined insights gained from these fractional
derivative-based models hold the potential to enhance the precision of epidemic predictions and
facilitate the development of more efficacious control strategies. Nonetheless, it is crucial to
acknowledge that the introduction of fractional derivatives into mathematical models may introduce
increased system complexity, necessitating the utilization of specialized mathematical and numerical
techniques for rigorous analysis and simulation. Thus, the model (3.1) recommended above can be
written in fractional form as 

ABC
0 D ȷtP = γυ − (φ + µ)P,
ABC
0 D ȷtS = (1 − γ) υ + φP − (Γ + µ)S,
ABC
0 D ȷtI = ΓS − (ω + ϱ + µ)I,
ABC
0 D ȷtT = ϱI − µT .

(3.3)

All of the parameters in the recommended model (3.1) for tungiasis disease are considered to be
positive. Furthermore, the term ABC

0 D ȷt in the above model indicates the ABC derivative. The effects of
memory which arise in the epidemiological process but are not incorporated in the classical operators,
are the driving force behind fractional order models. In Table 1, we illustrated the parameters of the
recommended model with description.

4. Analysis of the model

In this section, we deal with some analysis of the model, like steady-state analysis, and find the
basic reproduction ratio R0 for the above model (3.3). As the system (3.3) models the population of
humans, all state variable solutions with nonnegative beginning conditions are nonnegative ∀t > 0 and
have a feasible region bound as follows:

Ξ =

(
(P,S,I,T ) ∈ R4

+;S,P,I,T ≥ 0;N ≤
υ

µ

)
.

AIMS Bioengineering Volume 10, Issue 4, 384–405.



389

In the upcoming step, we will focus on the steady-states of the suggested system of the infection. First,
we take the following:

ABC
0 D ȷtP =

ABC
0 D ȷtS =

ABC
0 D ȷtI =

ABC
0 D ȷtT = 0,

then, the model (3.3) becomes 
0 = γυ − (φ + µ)P,
0 = (1 − γ) υ + φP − (Γ + µ)S,
0 = ΓS − (ω + ϱ + µ)I,
0 = ϱI − µT .

(4.1)

The disease-free equilibrium of an epidemic model refers to a stable state where the infectious disease
has been eliminated from the population. Understanding the disease-free equilibrium is essential in
assessing the effectiveness of control strategies and vaccination programs. It serves as a benchmark to
measure the success of public health interventions in eliminating or controlling infectious diseases and
preventing outbreaks. For the infection-free steady-state, we set

P = Po,S = So,I = Io,T = T o and N = No.

Thus, we have

Eo = (Po,So,Io,T o) =
(
0,

(1 − γ) υ
(Γ + µ)

, 0, 0
)
.

The endemic equilibrium (EE) of an epidemic model refers to a stable state where the prevalence of the
infectious disease remains constant over time. Understanding the endemic equilibrium of an epidemic
model is crucial in assessing the long-term behavior of the infection and evaluating the quality of
control measures in maintaining the disease at a manageable level. It provides valuable insights into
the stability and persistence of the infection in a population and is a fundamental concept in the study
of infectious disease dynamics. We indicate the EE of the system by (E∗) and substitute Γ = σεI

N
. Then

from (4.1), we have 
0 = γυ − (φ + µ)P∗,
0 = (1 − γ) υ + φP∗ −

(
σεI∗

N∗
+ µ

)
S∗,

0 = σεI∗

N∗
S∗ − (ω + ϱ + µ)I∗,

0 = ϱI∗ − µT ∗.

(4.2)

Solving the above system (4.2), we have

E∗


P∗

S∗

I∗

T ∗

 = E∗


γυ

φ+µ
N∗(ω+ϱ+µ)
σε

1
(ω+ϱ+µ)

[
(φ−γµ+µ)υ

(φ+µ) −
N∗µ(ω+ϱ+µ)

σε

]
ϱ

µ(ω+ϱ+µ)

[
(φ−γµ+µ)υ

(φ+µ) −
N∗µ(ω+ϱ+µ)

σε

]
 .

The basic reproduction number is a fundamental concept in epidemiology that quantifies the
potential of an infection to spread. It represents the average number of secondary infections generated
by a single infected individual in a fully susceptible environment. If the basic reproduction number is
less than 1, it means that, on average, each infected individual will cause fewer than one new infection
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during their infectious period. In this case, the disease will not be able to sustain itself in the
population, and it will eventually die out. If this parameter is equal to 1, this implies that, on average,
each infected individual will cause exactly one new infection during their infectious period. The
disease will reach a stable endemic equilibrium, where the number of new infections is balanced by
the number of recoveries, resulting in a constant prevalence of the disease in the population. If this
parameter is greater than 1, this implies that each infected individual, on average, will cause more
than one new infection during their infectious period. In this case, the disease has the potential to
spread, and if left uncontrolled, it may lead to an epidemic outbreak.

We symbolized this number as R0 and calculate it through the next-generation matrix method [38].
We take the infected class of the system (3.1), so we have

ABC
0 D ȷtI = ΓS − (ω + ϱ + µ)I. (4.3)

Let F be the matrix containing parameters that are entering into infected class and V be the matrix
containing those parameters that leave infected classes while neglecting the negative signs, so we get

F = ΓS =
σεIS

N
,

and
V = (ω + ϱ + µ)I.

This implies that R0 =
σε

ω + ϱ + µ
, which is the required R0 of the recommended system.

Theorem 4.1. For ȷ = 1, the infection-free steady-state E0 of the system (3.3) is locally asymptotically
stable if R0 < 1, otherwise it is unstable.

Proof. Let ȷ = 1 and take the Jacobian matrix of the model (3.3) at infection-free steady-state E0 as

J(Eo) =


−(φ + µ) 0 0 0
φ −

(
σεIo

N
+ µ

)
−σεI

o

N
0

0 σεIo

N

σεSo

N
− (ϱ + ω + µ) 0

0 0 ϱ −µ

 .
The above Jacobian matrix has the following characteristic equation:

|J(Eo) − λI| = 0,

furthermore, we have∣∣∣∣∣∣∣∣∣∣∣∣
−(φ + µ) − λ 0 0 0

φ −
(
σεIo

N
+ µ

)
− λ −σεI

o

N
0

0 σεIo

N

σεSo

N
− (ϱ + ω + µ) − λ 0

0 0 ϱ −µ − λ

∣∣∣∣∣∣∣∣∣∣∣∣ = 0,

and simplifying, we have

(−(φ + µ) − λ)

∣∣∣∣∣∣∣∣∣
−

(
σεIo

N
+ µ

)
− λ −σεI

o

N
0

σεIo

N

σεSo

N
− (ϱ + ω + µ) − λ 0

0 ϱ −µ − λ

∣∣∣∣∣∣∣∣∣ = 0,
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which implies that λ1 = −(φ + µ) and∣∣∣∣∣∣∣∣∣
−

(
σεIo

N
+ µ

)
− λ −σεI

o

N
0

σεIo

N

σεSo

N
− (ϱ + ω + µ) − λ 0

0 ϱ −µ − λ

∣∣∣∣∣∣∣∣∣ = 0,

the simplification of which implies that

(−µ − λ)

∣∣∣∣∣∣−
(
σεIo

N
+ µ

)
− λ −σεI

o

N
σεIo

N

σεSo

N
− (ϱ + ω + µ) − λ

∣∣∣∣∣∣ = 0.

From the above, we have λ2 = −µ and∣∣∣∣∣∣−
(
σεIo

N
+ µ

)
− λ −σεI

o

N
σεIo

N

σεSo

N
− (ϱ + ω + µ) − λ

∣∣∣∣∣∣ = 0

Hence, all the eigen values are negative. Furthermore, we have J1(E0) given by

J1(E0) =
− (

σεIo

N
+ µ

)
−σεI

o

N
σεIo

N

σεSo

N
− (ϱ + ω + µ)

 = 0.

To show the required result, we have to show that Tace(J1(Eo)) < 0 and Det(J1(Eo)) > 0, so

Trace(J1(Eo)) = −
(
σεIo

N
+ µ

)
+
σεSo

N
− (ϱ + ω + µ) ,

= −µ + σε − (ϱ + ω + µ) ,

= −µ + σε − ϱ − ω − µ,

= −2µ + σε − (ϱ + ω),

Trace(J1(E0)) = − (2µ − σε + (ϱ + ω)) < 0,

which implies that
Trace(J1(Eo)) < 0.

Also, we have

Det (J1(E0)) =

∣∣∣∣∣∣−
(
σεIo

N
+ µ

)
−σεI

o

N
σεIo

N

σεSo

N
− (ϱ + ω + µ)

∣∣∣∣∣∣
=

[
−

(
σεIo

N
+ µ

) (
σεSo

N
− (ϱ + ω + µ)

)
−

(
−
σεIo

N

) (
σεIo

N

)]
.

Because R0 < 1 is given, so the Det will be positive, that is, Det(J1(E0)) > 0. Hence, the infection-free
steady-state of the recommended system is locally asymptotically stable (LAS) for R0 < 1 and unstable
in other cases.

Theorem 4.2. For ȷ = 1, the endemic steady-state (E∗) of system (3.3) is LAS if R0 > 1 and is unstable
in other circumstances.
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Proof. Let ȷ = 1 and take the Jacobian matrix of system (3.3) at endemic steady-state (E∗) as

J(E)∗ =


−(φ + µ) 0 0 0
φ −

(
σεI∗

N∗
+ µ

)
−σεI

∗

N∗
0

0 σεI∗

N∗
σεS∗

N∗
− (ϱ + ω + µ) 0

0 0 ϱ −µ,

 ,

furthermore, we get

J(E∗) =


−(φ + µ) 0 0 0
φ −

(
σεW
N∗
+ µ

)
−σεW
N∗

0
0 σεW

N∗
−(ϱ + ω + µ) 0

0 0 ϱ −µ,

 ,

in which W = 1
(ω+ϱ+µ)

[
(φ−γµ+µ)υ

(φ+µ) −
N∗µ(ω+ϱ+µ)

σε

]
. The characteristic equation is

(φ + µ + λ)(µ + λ)
[
λ2 +

(
σεW
N∗
+ µ

)
λ + σε(ω+ϱ+µ)W

N∗

]
= 0, which implies that λ1 = −(φ + µ) and λ2 = −µ

with the following

λ2 +

(
σεW
N∗
+ µ

)
λ +
σε(ω + ϱ + µ)W

N∗
= 0. (4.4)

Substituting the value of W into (4.4), we get

λ2 + mλ + n = 0, (4.5)

in which m = Ro((φ−γµ+µ)υ)
(φ+µ)N∗ and n = σε(φ−γµ+µ)υ(φ+µ)N∗ − (ω + ϱ + µ)µ. Hence it is clear that m, n > 1, also R0 =

σε
ω+ϱ+µ

> 1. The eigenvalues provided by equation (4.5) are negative according to the Routh-Hurwitz
criteria. Thus, whenever R0 > 1, the EE of the proposed model of tungiasis is locally asymptotically
stable.

5. Fractional order model solution

In this section of the paper, we utilize fixed point theory to demonstrate the existence and
uniqueness of the fractional order model (3.3) solution. The system of equations can be represented in
the following way: {

ABC
0 D ȷt s(t) = U(t, v(t)),
v(0) = v0, 0 < t < T < ∞.

(5.1)

In the above (5.1), v(t) = (P,S,I,T ) is the vector form of the state variables and U is a continuous
vector function. Moreover,U is given by

U =


U1

U2

U3

U4

 =


γυ − (φ + µ)P,
(1 − γ) υ + φP − (Γ + µ)S,
ΓS − (ω + ϱ + µ)I,

ϱI − µT

 ,
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and v0(t) = (P(0),S(0),I(0),T (0)) are initial conditions. In addition to this, the Lipschitz condition is
fulfilled byU as

∥U(t, v1(t)) −U(t, v2(t))∥ ≤ N∥v1(t) − v2(t)∥. (5.2)

In the upcoming step, the existence and uniqueness of the fractional order dynamical model (3.3) will
be proved.

Theorem 5.1. The solution of fractional order (FO) model of equations (3.3) will be unique if the
below mentioned condition satisfies:

(1 − ȷ)
ABC( ȷ)

N +
ȷ

ABC( ȷ)Γ( ȷ)
T ȷmaxN < 1. (5.3)

Proof. In order to demonstrate the desired result, we utilize the Atangana-Beleanu (AB) fractional
integral, as defined in (2.3), on system (5.1). This yields a non-linear Volterra integral equation as
follows:

v(t) = v0 +
1 − ȷ

ABC( ȷ)
U(t, r(t)) +

ȷ

ABC( ȷ)Γ( ȷ)

∫ t

0
(t − κ) ȷ−1U(κ, v(κ))dκ. (5.4)

Take I = (0,T ) and the operator Φ : G(I,R4)→ G(I,R4) defined by

Φ[v(t)] = v0 +
1 − ȷ

ABC( ȷ)
U(t, v(t)) +

ȷ

ABC( ȷ)Γ( ȷ)

∫ t

0
(t − κ) ȷ−1U(κ, v(κ))dκ. (5.5)

Equation (5.4) takes the following form

v(t) = Φ[v(t)], (5.6)

and the supremum norm on I is indicated by ∥.∥I and is

∥v(t)∥I = sup
t∈I
∥v(t)∥, v(t) ∈ G. (5.7)

Certainly, G(I,R4) with norm ∥.∥I becomes a Banach space and∥∥∥∥∥ ∫ t

0
F (t, κ)v(κ)dκ

∥∥∥∥∥ ≤ T∥F (t, κ)∥I∥v(t)∥I , (5.8)

with v(t) ∈ G(I,R4), F (t, κ) ∈ G(I2,R) in a manner that

∥F (t, κ)∥I = sup
t,κ∈I
|F (t, κ)|. (5.9)

Here, utilizing the definition of Φ shown in (5.6), we have

∥Φ[v1(t)] − Φ[v2(t)]∥I ≤
∥∥∥∥∥ (1 − ȷ)

ABC( ȷ)
(U(t, v1(t)) −U(t, v2(t)) +

ȷ

ABC( ȷ)Γ( ȷ)
×∫ t

0
(t − κ) ȷ−1(U(κ, v1(κ)) −U(κ, v2(κ)))dκ

∥∥∥∥∥
I

(5.10)
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Additionally, by applying the Lipschitz condition (5.2) and the triangular inequality, in combination
with the result in (5.8), we arrive at the below expression after simplification:

∥Φ[v1(t)] − Φ[v1(t)]∥I ≤
( (1 − ȷ)N

ABC( ȷ)
+

ȷ

ABC( ȷ)Γ( ȷ)
NT ȷmax

)
∥v1(t) − v2(t)∥I . (5.11)

Consequently, we have the following:

∥Φ[v1(t)] − Φ[v1(t)]∥I ≤ B∥v1(t) − v2(t)∥I , (5.12)

in which
B =

(1 − ȷ)N
ABC( ȷ)

+
ȷ

ABC( ȷ)Γ( ȷ)
NT ȷmax.

It is evident that when condition (5.3) is met, Φ becomes a contraction, implying that the fractional
order dynamical system (5.1) possesses a unique solution.

6. Iterative scheme and results

In this section, we will present an iterative scheme for the numerical solution of the recommended
model (3.3) of the infection. First, an iterative scheme will be developed and then the the solution
pathways of the system will be represented through the scheme to understand the dynamics. We use
the newly established numerical approach (iterative) proposed for the approximation of the AB integral
operator [39]. We briefly describe and apply the aforesaid approach to our dynamical system (3.3) in
order to show the impact of different parameters on the infection.

Here, rewriting system (5.4) of the infection into the fractional integral equation form using the
fundamental theorem of fractional calculus:

s(t) − s(0) =
(1 − ȷ)
ABC( ȷ)

U(t, s(t)) +
ȷ

ABC( ȷ) × Γ( ȷ)

∫ t

0
U(κ, x(ξ))(t − κ) ȷ−1dξ. (6.1)

At t = tξ+1, ξ = 0, 1, 2, ..., we have

s(tξ+1) − s(0) =
1 − ȷ

ABC( ȷ)
U(tξ, s(tξ))+

ȷ

ABC( ȷ) × Γ( ȷ)

∫ tξ+1

0
U(κ, s(κ))(tξ+1 − κ) ȷ−1d ȷ,

=
1 − ȷ

ABC( ȷ)
U(tξ, s(tξ))+

ȷ

ABC( ȷ) × Γ( ȷ)

ξ∑
j=0

∫ t j+1

t j

U(κ, s(κ))(tξ+1 − κ) ȷ−1d ȷ. (6.2)

The function U(κ, s(κ)) can be estimated over the interval [t j, t j+1], and we apply the interpolation
polynomial

U(κ, s(κ)) �
U(t j, s(t j))

h
(t − t j−1) −

U(t j−1, s(t j−1))
h

(t − t j), (6.3)
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then substituting in (6.2), we get

s(tξ+1) = s(0) +
1 − ȷ

ABC( ȷ)
U(tξ, s(tξ)) +

ȷ

ABC( ȷ) × Γ( ȷ)
ξ∑

j=0

(U(t j, s(t j))
h

∫ t j+1

t j

(t − t j−1)(tξ+1 − t) ȷ−1dt

−
U(t j−1, s(t j−1))

h

∫ t j+1

t j

(t − t j)(tξ+1 − t) ȷ−1dt
)
. (6.4)

After computing these integrals, the approximate answer is as follows:

s(tξ+1) = s(t0) +
1 − ȷ

ABC( ȷ)
U(tξ, s(tξ)) +

ȷ

ABC( ȷ)

ξ∑
j=0(h ȷU(t j, s(t j))

Γ( ȷ + 2)
((ξ + 1 − j) ȷ(ξ − j + 2 + ȷ) − (ξ − j) ȷ(ξ − j + 2 + 2 ȷ))

−
h ȷU(t j−1, s(t j−1))
Γ( ȷ + 2)

((ξ + 1 − j) ȷ+1 − (ξ − j) ȷ(ξ − j + 1 + ȷ))
)
. (6.5)

Finally, for the suggested model, we achieved the following recursive formulae:

P(tξ+1) = P(t0) +
1 − ȷ

ABC( ȷ)
U1(tξ, s(tξ)) +

ȷ

ABC( ȷ)

ξ∑
j=0(h ȷU1(t j, s(t j))

Γ( ȷ + 2)
((ξ + 1 − j) ȷ(ξ − j + 2 + ȷ) − (ξ − j) ȷ(ξ − j + 2 + 2 ȷ))

−
h ȷU1(t j−1, s(t j−1))
Γ( ȷ + 2)

((ξ + 1 − j) ȷ+1 − (ξ − j) ȷ(ξ − j + 1 + ȷ))
)

S(tξ+1) = S(t0) +
1 − ȷ

ABC( ȷ)
U2(tξ, s(tξ)) +

ȷ

ABC( ȷ)

k∑
j=0( f ȷU2(t j, s(t j))

Γ( ȷ + 2)
((ξ + 1 − j) ȷ(ξ − j + 2 + ȷ) − (ξ − j) ȷ(ξ − j + 2 + 2 ȷ))

−
h ȷU2(t j−1, s(t j−1))
Γ( ȷ + 2)

((ξ + 1 − j) ȷ+1 − (ξ − j) ȷ(ξ − j + 1 + ȷ))
)

I(tξ+1) = I(t0) +
1 − ȷ

ABC( ȷ)
U3(tξ, s(tξ)) +

ȷ

ABC( ȷ)

ξ∑
j=0(h ȷU3(t j, s(t j))

Γ( ȷ + 2)
((ξ + 1 − j) ȷ(ξ − j + 2 + ȷ) − (ξ − j) ȷ(ξ − j + 2 + 2 ȷ))

−
h ȷU3(t j−1, s(t j−1))
Γ( ȷ + 2)

((ξ + 1 − j) ȷ+1 − (ξ − j) ȷ(ξ − j + 1 + ȷ))
)

T (tξ+1) = T (t0) +
1 − ȷ

ABC( ȷ)
U4(tξ, s(tξ)) +

ȷ

ABC( ȷ)

ξ∑
j=0
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( f ȷU4(t j, s(t j))
Γ( ȷ + 2)

((ξ + 1 − j) ȷ(ξ − j + 2 + ȷ) − (ξ − j) ȷ(ξ − j + 2 + 2 ȷ))

−
f ȷU4(t j−1, s(t j−1))
Γ( ȷ + 2)

((n + 1 − j) ȷ+1 − (ξ − j) ȷ(ξ − j + 1 + ȷ))
)
. (6.6)
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Figure 1. Visualization of the tracking path behavior of the suggested model under varying
fractional parameter values ȷ, i.e., ȷ = 0.5, 0.6, 0.7, 0.8.
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Figure 2. Illustration of the solution pathways of the suggested model with varying values
of the losing rate of protection φ, i.e., φ = 0.40, 0.45, 0.50, 0.55.
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Figure 3. Illustration of the solution pathways of the suggested model with varying values
of the treatment rate ϱ, i.e., ϱ = 0.02, 0.04, 0.06, 0.08.
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Figure 4. Representing the time series of the class of the proposed system of the infection
with varying values of the transmission probability σ, i.e., σ = 0.40, 0.50, 0.60, 0.70.
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Figure 5. Visualization of the tracking path behavior of the suggested model under varying
fractional parameter values ȷ, i.e., ȷ = 0.85, 0.90, 0.95, 1.00.

We will utilize the above alterative approach to investigate the dynamical behaviour of the
recommended fractional model of tungiasis. It is well-known that the graphical view analysis of
epidemic models provide a comprehensive exploration of the model’s behavior, leading to a better
understanding of the epidemic’s spread and potential control strategies. Here, we will perform
different simulations to visualize the impact of different input factors on the system.

The values of the input parameter and state variables of the system are assumed for numerical
purposes. For our investigation, we conducted a series of simulations to analyze the behavior of the
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system under different conditions. In these simulations, we varied specific parameters and observed
their impact on the solution pathways of the system. First, in Figure 1 and Figure 5, we examined
the effect of the fractional parameter ȷ on the dynamics of the system. By changing the fractional
order, we aimed to understand its role in shaping the infection spread in the society. Notably, we
observed that decreasing the fractional parameter led to a reduction in the infection rate within the
community. This finding indicates that the fractional parameter can serve as a crucial control parameter
for managing the epidemic. In Figure 2, we focused on the losing rate of protection and its influence on
the dynamics of the tungiasis infection. The results clearly indicate that this parameter plays a pivotal
role in determining the risk of infection within the population. A higher losing rate of protection was
found to increase the susceptibility to infection, posing a potential threat to public health.

The treatment rate was the primary parameter of interest in Figure 3. By varying the treatment rate
ϱ, we explored its impact on the transmission dynamics of the system. The simulation revealed that
the treatment rate significantly affects the control of the infection. Higher values of ϱ demonstrated a
more effective reduction in infection rates, suggesting its importance in implementing effective
intervention strategies. Lastly, Figure 4 focused on understanding the influence of the transmission
probability on the tungiasis dynamics. Through this simulation, we visualized how changes in the
transmission probability affect the overall dynamics of the infection. The results clearly illustrated
that the transmission probability is a critical factor in shaping the infection spread within the
community.

Our numerical analysis provided valuable insights into the control and dynamics of tungiasis. The
fractional parameter, losing rate of protection, treatment rate, and transmission probability all emerged
as significant factors that influence the infection’s behavior. In the realm of tungiasis control and
intervention, our discovered insights provide a foundational framework for the formulation of effective
strategies aimed at managing and mitigating the spread of the infection within affected populations.
It is, however, crucial to acknowledge that the values employed in this analysis were assumptions
crafted for numerical expediency and may not faithfully replicate real-world scenarios. Consequently,
for heightened precision in predictions and practical implications, an imperative next step involves
the meticulous validation and refinement of our model using authentic real-world data. This process
is indispensable for aligning our theoretical framework with the intricacies of tangible scenarios and
enhancing the applicability of our findings in the context of tungiasis control and management.

7. Conclusion

In this study, we formulated an epidemic model for tungiasis disease in the framework of fractional
Atangana-Baleanu derivative to conceptualize the transmission route of the infection. The biologically
meaningful steady-states of the system are investigated through analytic methods. We determined the
basic reproduction number of our fractional model, symbolized by R0. The existence and uniqueness
of the model’s solution has been demonstrated. We have shown that the infection-free steady-states of
the recommended model are locally asymptotically stable if R0 < 1 and unstable in other cases, while
the endemic steady-state is locally asymptotically stable if R0 > 1 and unstable in other circumstances.
A numerical scheme is presented to illustrate the solution pathways of the recommended system of
the infection. The dynamical behaviour of the model is presented with the variation of different input
parameters. We recommended the most critical factors of the system for the control and subsequent of

AIMS Bioengineering Volume 10, Issue 4, 384–405.



402

tungiasis. It is acknowledged that delays play a fundamental role in capturing the temporal dynamics
of systems [40]. Incorporating delays into mathematical models enhances their predictive power and
allows for a more accurate representation of real-world phenomena [41–43]. In the future work, we
will incorporate time delay in the transmission dynamics of the disease to comprehend the dynamics
of the disease and provide more accurate information for prevention.
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