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Abstract: Many bioheat transfer problems involve linear/non-linear equations with non-linear or 

time-dependent boundary conditions. For heat transfer problems, the presence of time and 

space-dependent functions under Neumann and Mixed type boundary conditions characterize trivial 

applications in bioengineering, such as thermotherapies, laser surgeries, and burn studies. This 

greatly increases the complexity of the numerical solution in several problems, requiring fast and 

accurate numerical solutions. This paper has a main objective evaluate an adaptive mesh refinement 

radial basis function method strategy for the classical Penne’s bioheat transfer modeling. Our 

numerical results had errors of ~0.1% compared to analytical solutions. Thus, the proposed 

methodology is accurate and has a low computational cost. For step function heating, two RBF shape 

parameters were applied, again achieving excellent results. The distributions of the nodes in the 

solution domain show that the primary source of error in the numerical solutions came from the 

boundary conditions. This finding should arouse the interest of engineers and scientists in the 

development of new strategies for problems involving boundary conditions with periodic functions. 
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Nomenclature 

1. Introduction 

Penne [1] presented the classical model for governing heat transfer in tissues. The formulation 

is simplistic and is composed of an energy conservation balance with a source term. Penne’s equation 

is the most used among the various models proposed to study heat transfer in biological tissues [2,3]. 

This is because of its mathematical simplicity and its ability to predict the temperature field 

reasonably well in various applications [4]. 

The simplicity of bioheat transfer modeling is associated with the absence of convective terms 

in the mathematical formulation. This feature is usually positive, making computational approaches 

more stable. However, bioheat transference problems can present high numerical complexity due to 

the presence of source terms, non-trivial boundary conditions [5], and complex geometries [6]. 

Symbol Description Unit 

   Coarse node parameter - 

   Refine node parameter - 

   Blood perfusion m3/s/m3 

  Radial basis function - 

   Numerical time step s 

c Specific heat of tissue J/(kg·K) 

cb Specific heat of blood J/(kg·K) 

h0 Heat convection coeficient W/(m2·K) 

k Thermal conductivity of tissue W/(m·K) 

L Distance between skin surface and body core m 

Qm Metabolic rate of tissue W/m3 

Qr Spatial heating W/m3 

r Euclidean distance - 

t Time s 

T Tissue temperature oC 

T0 Steady state temperature oC 

Ta Arterial temperature oC 

Tc Blood temperature oC 

Tf Fluid temperature oC 

x Spatial coordinate m 

  Thermal diffusivity m2/s 

  Multiquadric shape parameter - 

  Radial basis function interpolator - 

  Density of tissue Kg/m3 

 b Density of blood Kg/m3 
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Analytical solutions to specific bioheat transfer problems are available in the literature [7–9]. 

However, [10] noted that there is not yet a general analytical form for the solution of Penne’s 

equation. In this way, accurate numerical solutions remain essential for the resolution of the model in 

question. 

The Radial Basis Function (RBF) method was applied by [11] to solve partial differential 

equations and thus garnered the attention of engineers and scientists because of its simplicity, even 

with complex geometries and non-linear problems of different dimensions [12]. However, the 

application of the RBF method for heat bioheat transfer problems is still in development [13]. It is 

currently restricted to applications and evaluations of the RBF method to classical problems (burns 

and thermotherapy in different dimensions and multi-domains) [14,15]. 

One of the main characteristics of the RBF method is that it does not make use of a mesh, which 

facilitates the construction of complex geometries in complex dimensions and enables the 

development of spatial adaptive algorithms. The literature on the RBF method presents a series of 

spatial adaptive algorithms for classical convection-diffusion equations [16,17]. The mentioned 

authors present different algorithms for choosing the best node location. They presented enthusiastic 

results involving convective problems and functions with high gradient regions. However, they have 

limitations concerning the domain’s dimension. On the other hand, [18] presented the multi-domain 

Residual Subsampling Method (RSM), an adaptive node refinement strategy that enables the user to 

set parameters allowing the addition and removal of nodes based on residuals evaluated at a finer 

point set. This fact might be of interest to bioheat numerical problems since RSM can be useful to 

refine the boundary domain’s (regions with high gradients in bioheat problems) and coarse-smooth 

gradient regions (usually on the internal nodes in bioheat problems), reducing computational time, 

and lowering the integration errors. However, the mentioned algorithms were not evaluated for the 

classical bioheat applications, and their stability and convergence in transient problems are still being 

researched. To our knowledge, for conventional bioheat modeling, no work involving the RBF 

technique has presented a spatial adaptive numerical solution. The presence of non-linear source 

terms and Neuman and Mixed boundary conditions suggests the implementation of such algorithms 

aiming at solutions of high accuracy and high computational performance as performed in 

applications concerning mesh-based methods [19], neural network modeling [20] and boundary 

value methods [21,22]. 

Recently [23] proposed a bioheat transfer study implementing the Radial Basis Function method. 

In this study, constant and sinusoidal boundary conditions were evaluated in three types of heat 

transfer models, i.e., Penne’s bioheat model, single-phase lag model. The authors contributed with a 

physical analysis restricted to sinusoidal and constant heating boundary conditions and the physical 

parameters. However, the quality of numerical RBF solutions was no discussed or compared with 

benchmark solutions. The bioheat model and its respective boundary conditions and physical 

parameters directly impact the propagation of the tissue’s thermal signals. Additionally, the precision 

of the numerical methodology may be a source of solution errors and numerical instability. This 

investigation topic becomes essential when the modeler proposes adopting numerical methods with 

empirical parameters and mesh refinement strategies. Moreover, the numerical method should 

overcome the complexity inherent to transient models, source terms, and step/sinusoidal boundary 

conditions. The importance of a performance analysis concerning RMS as a methodology for solving 

transient problems is emphasized by [18]. 

The present work aims to evaluate a spatial adaptive methodology coupled with the 

RBF-meshless method to obtain numerical solutions of the classic bioheat model. 

The analytical solutions developed by [8] by Green’s function method will be applied to 
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evaluate the numerical solution in three scenarios: constant skin surface heating, heating the skin 

surface using a step function, and heating the skin surface using a periodic function. 

2. Materials and method 

2.1. The bioheat transfer model 

Most theoretical analyses on heat transfer in living tissues are based on Penne’s equation, which 

describes the influence of blood flow on the temperature distribution in tissue. 

In this work, in line with [8], only one-dimensional models with constant thermal parameters 

will be used, which results in a good approximation when heat propagates in the direction 

perpendicular to the skin surface. 

Penne’s bioheat transfer general equation for one-dimension analysis can be described as; 

  
  

  
  

   

                                                                     (1) 

where     and   are the density, specific heat, and thermal conductivity of the tissue, respectively; 

   and    denote the blood’s specific density and heat; ωb blood perfusion; Ta the arterial 

temperature that is treated as a constant; T the temperature of the tissue;    the heat generated by 

metabolism; and         is the source of heat due to external applied heat. 

According to [8], the initial temperature profile for the rest state of biological bodies can be 

obtained by solving the following equation and its boundary conditions. 

 
       

                                                                             (2) 

                                                                                           (3) 

  
      

  
                                                                                (4) 

where,                is the steady-state temperature profile before heating,    is the blood 

temperature and often considered as constant,    is the apparent heat convection coefficient 

between the surface of the skin and the surrounding air physiologically in the basal state, and is a 

general contribution of natural convection and radiation, and    is the air temperature. The surface’s 

skin is set on     while the center of the body in    . 

During a practical thermal process, the boundary condition presented by Eq 4 is always 

dependent on time, which can be generalized to: 

  
  

  
                                                                                        (5) 

Or 

  
  

  
                                                                                        (6) 

where,       represents the surface heat flux dependent on time, and       is the medium cooling 

temperature on the time and the coefficient of heat convection between the medium and the surface 

of the skin. In this work, the body temperature was considered constant (  ) considering that the 

biological body tends to maintain a stable central temperature, i.e., 

                                                                                            (7) 
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2.2. The Radial Basis Function Method 

A radial base function      is a radially symmetrical n-dimensional function:       which 

depends only on the Euclidean distance (        ) between a center   and a point evaluated in   . 

In this work, multiquadric radial base function was applied to interpolate an f(x) function into    

assuming that 

             
                                                                            (8) 

where                 
  

 and   is a non-zero empirical parameter. 

The coefficients   are calculated by solving the linear system presented in the form       

         . 

2.3. Discretization of bioheat transfer equation by Radial Basis Function Method 

Beginning from Eq 8, the partial derivatives can be easily obtained from the following Eqs 9 

and 10: 

     

  
    

  

  

 
       

    

 

 
                                                        (9) 

And 

      

       
   

   
 
       

  

          
 
 
   

 
                                          (10) 

Consider Eq 1 as a function temperature       . The Crank-Nicolson [24] discretization 

scheme consists of a finite difference approach to approximate partial derivatives on        by the 

following equation. 
          

  
  

 

 
                                                                  (11) 

Considering the terms    and    as constant in the Eq 1 and expanding the Eq 11 will result in: 

      
  

 
  

       

        
           

  

 
  

    

        
               (12) 

where         and   represents the sum of the constant terms contained in the model 

             . From Eq 12, two new operators will be defined,   and   , considering 

              and 
   

    
   

    as follows: 

         
  

 
  

       

        
                                                   (13) 

      
  

 
  

    

        
                                                         (14) 

Finally, the operators   and    will be used to approximate the function        using the 

radial base function, shown below: 

   
          

                                                                     
   

 
   (15) 

Equation 15 generates a system of linear equations, which can be solved by LU decomposition 
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to obtain the unknowns,       from the known values of   , at a previous time step. Then they give 

rise to T(x, t) by means of Eq 8. 

2.4. Meshfree node adaptive algorithms – Residual Subsampling Method 

The residual subsampling method developed by [18] is a simple and easy method to add, 

reallocate, and remove the nodes based on an interpolation process. 

This method consists of generating an initial discretization using equally spaced N points and 

finding the Radial Basis Function approximation. The Figure 1, illustrate this first RSM step for 

interpolate a step function. 

 

Figure 1. Interpolation of a step function on initial and midpoint nodes. 

Next, the interpolation error of the midpoints between the nodes is calculated as illustrated in 

Figure 2. 

 

Figure 2. Local interpolation errors and limits to remove and add nodes. 
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Points at which the error exceeds a threshold become (refine limit) θr centers, and the centers 

that are between two points whose error is below a lower threshold (coarse limit) θc are removed. 

Contour nodes are always left intact. Figure 3 shows the final set node after an iteration of RSM for 

interpolating a step function. 

 

Figure 3. Interpolation result after only one iteration of RSM. 

The shape parameter of each center is chosen based on spacing with the nearest neighbors, and 

the Radial Basis Function approximation is recalculated using the new center set. The original 

approach by the Residual Subsampling Method is made by Multiquadrics RBF. However, it should 

be easily adapted to other global support RBFs. The coarse and refinement process should be 

repeated until an error criterion be reached. 

In short, the adaptation process follows the family paradigm of resolving 

estimating/approaching until a stopping criterion is met [18]. 

The Residual Subsampling Method can be easily modified to solve linear or non-linear 

problems of contour value. Figure 4 shows the flowchart of this method applied to the present study. 
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Figure 4. Flowchart of Radial Basis Function with mesh refinement strategy for bioheat 

transfer problems. 
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3. Results and discussion 

In the following calculations, the typical skin physical properties will be applied as proposed  

by [8]: ρ = ρb = 1000 kg/m
3
, c = cb = 4200 J/(kg·K), Ta = Tc = 37 °C, k = 0.5 W/(m·K),          

ωb = 0.0005 m
3
/s/m

3
, Qm = 33800 W/m

3
. The convection coefficient of apparent heat due to natural 

convection and radiation is taken as h0 = 10 W/(m
2
·K). The forced convection coefficient is applied 

as hf = 100 W/(m
2
·K), while the temperature of the surrounding fluid was chosen as Tf = 25 °C. Also, 

as demonstrated in many works [6,25,26], the indoor temperature of the tissue usually tends to be 

constant at a short distance, such as 2 to 3 cm, so it will be used in        in this study. 

The local (  ) and global (  ) errors will be calculated using the following equations: 

                                                                                       (16) 

    
 

 
              

 
                                                                 (17) 

where      is the analytical solution, and      is the numerical solution. 

3.1. Skin surface under constant heating 

This method of heating is often used in hot plate tests. This test was introduced in 

pharmacology by [27] to test the efficiency of new analgesics in use at the time and has since been 

widely used by researchers and scientists in the field [28,29]. The hot plate test evaluates the reaction 

time to thermal stimuli of mice placed on hot plates at 55 °C [27,29]. 

The numerical solution for surface temperature response is shown in Figure 5, while the 

numerical solution of the temperature response along the tissue compared to its analytical solution is 

shown in Figure 6. The curves presented are the transient temperatures of the tissues subject to three 

surface heating constants: P0(t) = 1000 W/m
2
, P0(t) = 500 W/m

2
, and P0(t) = 200 W/m

2
. 

 

Figure 5. Skin surface temperatures for different surface heating constants. 
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Figure 6. Comparison against numerical and analytical solutions for skin temperature 

profiles at simulation time = 5000 seconds. 

Table 1 shows the values of the shape parameters used for model calibration and the values of 

errors E
2
 and E

 
 resulting from the comparison of numerical results with the analytical solution for 

the constant heating condition of the surface. 

Table 1. Numerical parameters and respective relative and absolute errors for adaptive strategy. 

P0 (W/m2) Δt N   θr θc E2 (%) E  (%) 

200 20 67 0.74 10−3 10−6 0.023 0.051 

500 20 64 0.82 10−3 10−6 0.039 0.063 

1000 20 70 1.09 10−3 10−6 0.031 0.058 

Table 2. Numerical parameters and respective relative and absolute errors for an RBF 

method without node mesh refinement. 

P0 (W/m2) Δt N   E2 (%) E  (%) 

200 20 301 7668 0.023 0.056 

500 20 301 8569 0.026 0.076 

1000 20 301 11268 0.053 0.117 

Analyzing Figures 5 and 6, and the results presented in Table 1, it was concluded that all error 

rates were below 0.1%. Also, the final values of nodes were extremely low for the three powers used, 

indicating an excellent performance of the proposed numerical methodology. It is important to focus 

on the uniformity of the errors presented by the technique, which can be observed more specifically 

in Table 1, which presents the maximum errors close to the global errors. Another phenomenon to be 

highlighted is the greater concentration of nodes on the boundaries, indicating that the contour 

regions present greater instability, caused by the formulation of the boundary condition or the 

non-linear terms of the equation. Table 2 corroborates the mentioned results when comparing the 

RBF adaptive node strategy in Table 1 against the RBF uniform node strategy in Table 2. 
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3.2. Surface heating by a step function 

Practical examples of this case can be found in ophthalmologic surgeries through a single laser 

pulse [30] or skin burns due to an instant fire, hot plate, liquid, and gas for a short period. In the atomic 

explosion, the burn caused by the high-temperature shock wave also belongs to this problem [8]. 

Figure 7 shows the transient temperature response to a heating on the surface of the step 

function P0(t) = 1000 W/m
2
 for t < 1200 s and P0(t) = 0 for t ≥ 1200 s, while spatial heating Qr = 0 

and ωb = 0.0005 m
3
/s/m

3
. 

The numerical solution of the temperature response to heating by a step function compared to 

its analytical solution is presented in Figure 8, as well as the distribution of the resulting nodes in 

solving the problem. 

 

Figure 7. Temporal skin surface temperature profile under step heating boundary condition. 

 

Figure 8. Temperature spatial profile for step heating boundary condition at simulation 

time = 2500 seconds. 
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Table 3 shows the respective values of the shape parameters used for RBF mesh refinement 

strategy and regular node distribution. The values of errors E
2
 and E

 
 result from the comparison 

with the analytical solution for the condition of the heating of the surface by a step function. 

Table 3. Shape parameters and errors for the step function scenario. 

RBF strategy P0 

(W/m2) 

Δt N       θr θc E2 (%) E  (%) 

Node refinement 1000 10 288 0.673 0.448 10−6 10−10 0.025 0.049 

Without node 

refinement 

1000 10 501 11762 7300 - - 0.028 0.051 

To preserve good performance, the form factor of the multiquadric function had to be changed 

during the simulation, justified by the behavior of the step function in the contour. Therefore, for 

heating times below 1200 s, the applied value was    = 0.673, and for longer times    = 0.448. 

Analyzing Figures 7 and 8, and the results presented in Table 3, it was concluded that the error 

rates presented values below 0.1%. The final number of nodes was very low, thus supporting the 

application of the proposed numerical methodology. It was also observed that the regions with the 

highest concentration of nodes were on the boundaries. The skin surface is a region of greater 

instability in the execution of the model, due to the sudden change of heat flux on the surface. This 

fact raises the difficulty of maintaining the desired stability and convergency criteria and makes it 

necessary to triple the number of nodes compared to the previous scenario. 

3.3. Surface heating under a periodic function 

Many researchers have investigated the effects of warming by a periodic function of biological 

tissues [32,25,33]. This type of heating is used in medicine and reflects a situation in which heating 

is caused by repeated laser irradiation in thermotherapy procedures [8], and is also used to measure 

blood perfusion in biological tissues [25]. 

Using the current solution in the finite domain, the temperature for periodic heating – both of 

the skin surface and inside biological bodies – can be easily obtained. Periodic surface heating can be 

expressed as [8]. 

                                                                                      (18) 

Figure 9 shows the response of transient temperature in biological bodies subject to surface 

heating by a periodic function. 
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Figure 9. Transient temperature response to surface heating by a periodic function. 

The numerical solution of the temperature response to heating by a periodic function compared 

to its analytical solution is presented in Figure 10, as well as the distribution of the resulting nodes in 

solving the problem. 

 

Figure 10. Node location and tissue temperature under a surface heating by a periodic 

function at simulation time = 2500 seconds. 

Table 4 shows the values of the shape parameters used for model calibration and the values of 

errors E
2
 and E

 
 resulting from the comparison with the analytical solution for the condition of the 

heating surface by a periodic function. 
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Table 4. Shape parameters and errors for surface heating condition by a periodic function. 

RBF strategy P0 (W/m2) Δt N   θr θc E2 (%) E  (%) 

Node refinement 1000 + 500*cos (0.02*t) 1.25 162 0.2 10−4 10−10 0.425 0.982 

Without node refinement 1000 + 500*cos (0.02*t) 1.0 151 5849 - - 0.680 2.252 

Analyzing Figures 9 and 10, and Table 4, it was concluded that the error rates were around 0.1%, 

which are acceptable considering that only 162 nodes were needed to solve the problem. The points 

were distributed almost evenly along the tissue, but in the central region, it can be noted that there 

was a slight absence of points because the tendency is for the points to focus on the contours. It is 

essential to highlight the error uniformity of adaptive strategy when compared against the regular 

node distribution. This is a desirable phenomenon for numerical approaches representing the 

numerical stability and absence of local oscillations. 

4. Conclusion 

Here we have presented a performance evaluation of the RBF node refinement strategy to solve 

bioheat transfer problems. 

The numerical results had an excellent approximation relative to the analytical solutions, thus 

confirming that RBFs (coupled with a spatial node refinement strategy) are acceptable methods for 

solving bioheat transfer problems with low set of nodes. The novel RBF approximation for boundary 

condition involving step function presented excellent results. Additionally, the numerical solution 

showed uniformity on local and global error norms for all simulated scenarios. 

However, it is essential to highlight that for surface heating by step function and periodic 

function, the transient terms in these respective boundary conditions directly affected the proposed 

methodology’s performance. Additionally, the adaptive strategy may work excessively to maintain 

the error precision imposed by θr and θc parameters inducing instability in integration on 

time—however, the numerical approach still presenting good results. This fact should be considered 

in problems with irregular geometries. It should not be trivial to guarantee the presence of nodes only 

inside the domain coordinates. Additionally, remove a boundary node in 2D or 3D models within 

complex geometries may generate serious stability problems. 

As a proposal for future work, we suggest expanding the adaptive technique proposed in this 

work for applications in 2- and 3-dimension bioheat transfer models involving multilayer problems, 

complex geometries, and the presence of convective terms. Practical adaptive radial basis function 

approach by bio-heat transfer modeling computed together with biomechanics may present complex 

modeling phenomena as soft tissue movement and thermal expansion/shrinkage effect [34,35] and 

should be investigated. 
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