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Abstract: Non-conventional yeasts are an excellent option for a number of different industrial 

bioprocesses. They possess beneficial natural phenotypes, which translates to several fermentation 

advantages when compared to traditional hosts, like Saccharomyces cerevisiae. The 

non-conventional yeasts Yarrowia lipolytica, Trichosporon oleaginosus, Kluyveromyces marxianus, 

Dekkera bruxellensis, Pichia kudriavzevii, Debaryomyces hansenii and Hansenula polymorpha, are 

considered desirable industrial hosts due to their natural characteristics, including tolerance to 

several by-products and inhibitors, thermotolerance, salt resistance or osmo- and xerotolerance. 

Therefore, they are a great alternative for the industrial production of bioethanol, fine chemicals, 

lipids and recombinant proteins, among others. In this review, we summarize the best natural 

characteristics of those seven non-conventional yeasts and their use in industrial biotechnology, as 

well as the molecular/synthetic biology tools available for their genetic modification. Moreover, 

possible limitations regarding their performance in industrial fermentations and a list of challenges to 

overcome in the future are also discussed. 
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1. Introduction 

Industrial biotechnology represents more than hundred billion market in the US, and is the 

fastest growing sector in the last decade [1]. Microbial chemical production has been covered by a 

http://dx.doi.org/10.3934/bioeng.2019.1.1
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reduced number of model organisms, such as Escherichia coli, Aspergillus genus or Pichia pastoris, 

but Saccharomyces cerevisiae is one of the most widely utilized. This is partly because S. cerevisiae 

is classified as Generally Regarded as Safe (GRAS) organism, but also because it grows very well in 

environmental conditions normally associated to standard biotechnological processes, e.g. glucose 

fermentation during ethanol production [2]. 

General examples of industrially produced chemicals by S. cerevisiae are bioethanol or a 

number of recombinant proteins, like human insulin [2,3]. Aspergillus is well known for enzymes 

and citric acid production [4,5], and E. coli for vitamins and fine chemicals manufacture [6,7]. On 

the other hand, there are still important challenges regarding the production processes, sometimes 

due to limitations in the host organism used. Examples of this are S. cerevisiae and E. coli, which 

cannot tolerate certain environmental stresses. They normally have a better growth in moderate 

temperatures, and require a substantial microbial engineering effort in order to grow relatively well 

in such stressful conditions for them (e.g. to increase the ability to utilize carbon sources different to 

glucose or become thermotolerant) [8,9]. Similarly, many problems are associated to the filamentous 

growth of Aspergillus in bioreactors or industrial tanks, making the process more fastidious and 

expensive. Furthermore, expensive feedstocks, high energy and water use, loss of productivity due to 

contamination and downstream separation costs can be added to the list of challenges to be  

addressed [10]. 

The use of non-conventional microorganisms (the term “non-conventional” referring to any 

other microbe different from the classical aforementioned production workhorses) could easily 

overcome some of the challenges already mentioned. In fact, some of those microbes are already 

known for presenting a significant advantage compared to the model organisms. Some 

non-conventional microbes are able to withstand extreme environmental conditions, such as high 

temperature and osmotic pressure, while others show tolerance to inhibitors produced during 

different bioprocesses [10,11]. Moreover, an increased availability of molecular tools and synthetic 

biology methods is being lately offered for their use in non-model organisms (Figure 1). 

 

Figure 1. A comparative overview of the strategies from lab-scale to industrial scale of 

production hosts, and the dedicated engineering efforts in each case, as well as the 

expected outcome, based on the initial microbial choice. ALE: adaptive laboratory 

evolution. 



291 

AIMS Bioengineering  Volume 7, Issue 4, 289–305. 

In this mini-review, we offer a fast and precise overview about the topic, which is already 

considered of great significance but will become more and more important in the coming years. We 

focus on yeasts as one of the most studied microbial group in nature and their consideration as a 

model for eukaryotic cell research. Therefore, in this manuscript, we present some of the most 

relevant non-conventional yeasts and their use as production platforms for sustainable fermentation 

based bio-manufacturing processes. Yarrowia lipolytica, Trichosporon oleaginosus, Kluyveromyces 

marxianus, Dekkera bruxellensis, Pichia kudriavzevii, Debaryomyces hansenii and Hansenula 

polymorpha, are reviewed for their use in biotechnology and/or their improved industrial potential 

for the near future. 

2. Genetic engineering methods for non-conventional yeasts 

Genetic and metabolic engineering is commonly more challenging in non-conventional yeasts 

than in other model organisms, especially due to a more limited knowledge about their metabolism 

and genomics. Even though non-conventional yeasts already present interesting native phenotypes 

for industrial production purposes, some metabolic engineering will be needed at some point to 

enhance those phenotypes and increase e.g. yields or production rates [12]. 

Gene expression methods are basically based on expression cassettes which can be expressed 

through episomal vectors or by integration in the host’s genome. Some limitations are associated to 

gene expression through episomal vectors, e.g. lack of stable plasmids, low gene copy number or 

variable expression in the host’s cells [13,14]. On the other hand, homogenous expression levels, 

increased stability of the expression cassette or lack of need for selection markers, are advantages 

while using genome integration methods. These methods can be divided into two different types, and 

are performed by the native DNA repair pathways in the host organism [15]: 

1) Random integration via non-homologous end joining (NHEJ) 

2) Targeted integration via homologous recombination (HR) 

Although random integration via NHEJ is the preferred method to be used in non-conventional 

yeasts (HR is considered inefficient in this case), it can cause unwanted disruptions in genomic key 

elements or lead to variable expression levels across transformant cells [16,17]. For that reason, it 

was of especial importance the development of clustered regularly interspaced short palindromic 

repeats (CRISPR) and CRISPR-associated 9 (CRISPR-Cas9) tools, for genome editing in 

non-conventional yeasts [18]. The use of these CRISPR tools allow to achieve a more efficient HR 

by the introduction of a genomic double strand break and a programmable endonuclease in the 

presence of a homologous repair template [12,19]. 

3. Non-conventional yeast platforms with important industrial applications 

Yeast is one of the most studied microbial group in nature, as it has been associated e.g. with the 

production of fermented beverages and food for human consumption over thousands of years. They 

have provided an extensive scientific knowledge on basic and applied microbiology, and became 

model organisms for eukaryotic cell research [20]. A broad number of yeast genomes have been 

sequenced and uncountable molecular biology tools were described and are available for their 

genetic modification (some of which are reviewed along this manuscript). Besides, non-conventional 

yeasts are of great interest due to their unique characteristics and metabolism, which make them 
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suitable for different biotechnological processes at an industrial level (Table 1), in comparison with 

traditional model organisms. 

Table 1. Overview of non-conventional yeast species, their industrially-relevant 

phenotypes/products and genetic tools availability. 

Non-conventional 

yeast 

Valuable phenotype Product Recombinant 

protein 

Genetic tools CRISPR system 

Y. lipolytica Oleaginous yeast, 

growth on organic 

acids, polyalcohols 

and paraffins [21,23] 

Lipids, citric acid, 

erythritol, 

α-ketoglutaric acid, 

lycopene, Omega-3 

eicosapentaenoic acid 

[116,117,118,119,120, 

121,122] 

Selenomethionyl 

lipase, erythritol 

dehydrogenase 

[24,25] 

Highly 

developed 

TEFintron 

promoter 

codon-optimized 

[31], 

UAS1B8-TEF 

promoter 

codon-optimized 

[32] 

T. oleaginosus Oleaginous yeast, 

metabolize 

recalcitrant 

feedstocks, tolerate 

by-products of 

lignocellulose 

pretreatments 

[33,36,37,38] 

Lipids, modified fatty 

acids [36,37,39,40] 

_ Need for 

improvement 

_ 

K. marxianus Thermotolerance, fast 

growth 

characteristics, 

utilization of sugar 

cane or molasses, 

growth on a range of 

sugars [44,45,46] 

HTF-ethanol, 

2-phenylethanol/2-phen

yl ethyl acetate, 

hexanoic acid 

[46,51,123] 

Inulinase, 

β-galactosidase, 

pectidases 

[47,48,124,125] 

Highly 

developed 

ScTEF1 promoter 

codon-optimized 

[61] 

D. bruxellensis Tolerance to ethanol 

and acetic acid, 

assimilation of nitrate, 

fermentation of 

cellobiose 

[63,64,66,70] 

Ethanol [61] _ Need for 

improvement 

_ 

Continued on next page 
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Non-conventional 

yeast 

Valuable phenotype Product Recombinant 

protein 

Genetic tools CRISPR system 

P. kudriavzevii Thermotolerance, 

growth at low pH, 

growth on complex 

substrates, acetic acid, 

vanillin and furan 

derivative tolerance 

[75,77,78,45,80,79] 

Ethanol, succinic 

acid [67,74,75] 

β-glucosidase [78] Need for 

improvement 

_ 

D. hansenii Halophilic and 

oleaginous yeast, 

osmotolerance, 

xerotolerance, 

resistance to inhibitory 

compounds, 

consumption of broad 

range of substrates 

[33,84,90,91] 

Xylitol, trehalose, 

flavonoids, fatty 

acids, killer toxins, 

essential fat-soluble 

vitamins [84,90] 

_ Need for 

improvement 

_ 

H. polymorpha Methylotrophic yeast, 

nitrate assimilation, 

thermotolerance 

[97,104,99] 

Ethanol [101,102] Hepatitis B 

surface antigen, 

insulin, hexose 

oxidase, phytase 

[108,109,107,106] 

Highly 

developed 

DH3 promoter 

human 

codon-optimized 

[115] 

3.1. Yarrowia lipolytica 

Y. lipolytica is an oleaginous non-conventional yeast and very attractive from the industrial 

point of view, due to its uncommon physiological characteristics [21]. It is classified as GRAS, 

obligate aerobe microbe and it can switch between hyphal and yeast morphology depending on the 

environmental conditions [22]. Moreover, it shows high secretory rates, low glycosylation rates and 

high cell densities during fermentation [21]. Especially interesting is its capacity to metabolize 

organic acids, polyalcohols and paraffins as sole carbon source [23]. Also biomass-derived sugars 

and industrial wastes, which makes the bioprocesses more cost effective and highly productive [11]. 

Y. lipolytica is actually a better candidate for recombinant protein expression compared to S. 

cerevisiae or Kluyveromyces lactis, for production of selenomethionyl lipase and erythritol 

dehydrogenase [24,25]. The best productivity level is obtained when Y. lipolytica is cultivated     

at 28–30 °C, pH 5.5–7.0 and dissolved oxygen levels at 20% of air saturation [22,26]. 

The genome of Y. lipolytica was sequenced and is available for researchers [27]. There are some 

examples of engineering methods already published for this yeast, being the ectopic integration of 

homology cassettes the preferred one [28–30]. Besides, CRISPR-Cas9 system has been successfully 

used [31,32]. On the other hand, homologous recombination is still a weakness that needs to be 

improved. 
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3.2. Trichosporon oleaginosus 

T. oleaginosus is an oleaginous yeast with a lipid accumulation capacity between 20–60% of its 

biomass [33]. The optimal growth conditions for T. oleaginosus are within the range of 28–30 °C and 

pH 5.4–5.8, and it is able to utilize a broad range of carbon and nitrogen sources, being glucose the 

preferred substrate [34,35]. Moreover, it can metabolize a wide variety of recalcitrant feedstocks [33] 

and tolerate several by-products of lignocellulose pretreatments, like acetic acid, furfural and 

ammonia [36–38]. Due to its natural ability for lipid accumulation, T. oleaginosus has been mainly 

studied for its lipid production capability under different dissolved oxygen concentration or diverse 

substrates utilization [36,37,39,40]. Furthermore, its ability to tolerate and metabolize lignin-derived 

aromatic compounds, while remaining oleaginous, has been well described [41]. 

There are a couple of studies about genetic modification in T. oleaginosus, which was also 

successfully transformed by genomic integration for the production of modified fatty acids, although 

transformation efficiencies are not reported [42,43]. Nevertheless, an increased knowledge and 

development on molecular biology tools and genetic engineering are still needed for this yeast. 

3.3. Kluyveromyces marxianus 

K. marxianus is a hemiascomycetous non-conventional yeast, isolated mostly from cheese and 

other dairy products and with a respirofermentative metabolism (Crabtree negative yeast). It is 

considered an extreme thermotolerant microbe that can grow in temperatures up to 52 °C. Moreover, 

it shows acid tolerance (pH 3.8). K. marxianus is an interesting option for industrial bioprocesses, 

also because it presents high growth rates and it is able to utilize a number of industrially relevant 

substrates, such as sugar cane or molasses [44,45]. Those characteristics make K. marxianus a very 

good candidate for its use in biotechnology, presenting some advantages when compared to S. 

cerevisiae. For instance, it utilizes a broad range of different carbon sources in contrast to the model 

yeast: xylose, xylitol, cellobiose, lactose and arabinose. Additionally, it shows similar ethanol yield 

and glucose consumption as S. cerevisiae at 30 °C, although K. marxianus can also achieve glucose 

fermentation between 30–45 °C [46]. 

Currently, K. marxianus is used in several industrial bioprocesses, e.g. to produce recombinant 

proteins and enzymes (inulinase and β-galactosidase) [47,48], to perform high-temperature 

fermentation of ethanol [49] or, due to its GRAS classification, to produce food-related compounds 

like aroma compounds and bioingredients [50,51]. 

As its genome was completely sequenced in 2012 [52], there are several tools already described 

for K. marxianus’ genetic manipulation including transformation with linear DNA and simultaneous 

multiple integration [46,53]. Besides, genomics and transcriptomics analysis have been performed 

for this yeast [54–56], as well as genome-scale metabolic models [57–59]. The CRISPR system has 

been successfully applied in K. marxianus and used to characterize e.g. functional genes in 

biosynthesis pathway of ethyl acetate [60–62]. 

3.4. Dekkera bruxellensis 

D. bruxellensis is a non-conventional yeast with an extremely complex genome, which cannot 

be defined as haploid or diploid, due to its genetic polymorphism. Similarly to S. cerevisiae, it has 
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been isolated from beer, wine (spoilage yeast) and cider, and classified as facultative anaerobic and 

Crabtree positive [45]. D. bruxellensis is able to produce and accumulate ethanol, being one of its 

main characteristic its tolerance to ethanol (10–16%) [63]. Similar ethanol yields to S. cerevisiae are 

obtained during glucose fermentation, although D. bruxellensis presents lower growth rates 

compared to the model yeast [64]. Positively, it can grow in acidic environments [65], produces low 

amount of glycerol [64], which leads to a more energy efficient process, and assimilates nitrate 

during industrial fermentation [66]. The yeast also shows a complex pattern of substrate consumption 

and metabolite production [67], and it is tolerant and able to accumulate acetic acid [64]. On the 

other hand, D. bruxellensis is thermosensitive already at 35 °C, being 30 °C its optimal growth 

temperature [68,69]. 

Its biotechnological potential mainly resides in its capability of fermenting cellobiose, which 

makes this yeast a good candidate for fermentation of lignocellulose to ethanol processes, and due to 

its utilization of nitrate as sole nitrogen source, for ethanol processes based on sugar cane [70]. 

As we mentioned before, D. bruxellensis has an important genome complexity that makes 

difficult its genetic modification even though its genome is fully sequenced [71,72]. Molecular 

tools are underdeveloped for this yeast and just one transformation method has been described so 

far, based on non-homologous DNA integration, and with an efficiency of                 

only 0.6–20 transformants/µg [73]. Together with basic identification/manipulation molecular tools, 

transcriptomic analysis has been more recently carried out in D. bruxellensis in glucose and 

oxygen-limited cultures [74]. 

3.5. Pichia kudriavzevii 

P. kudriavzevii has been isolated from several niches, including sourdough, cocoa bean 

fermentation, cereal-based beverages, sugar cane juice or rice straw. That gives an idea of its great 

ability to grow on complex substrates [45]. Carbon sources assimilated by P. kudriavzevii are glucose, 

sucrose, fructose, mannose and weakly galactose, but it is not able to utilize maltose, xylose, 

arabinose, cellobiose, raffinose and trehalose [75]. The yeast is classified as Crabtree negative [76], 

thermotolerant [75] and able to grow at low pH (lower than pH 2) [77,78]. 

P. kudriavzevii shows furan derivative tolerance, which makes this yeast very interesting in 

industrial bioprocesses. It tolerates up to 3 g/L of furfural, 5 g/L of 5-HMF, 8–10 g/L of acetic   

acid, 2 g/L of formic acid and 1.8–2 g/L of vanillin [75,79,80]. It is more efficient than S. cerevisiae 

in ethanol production at temperatures higher than 35 °C and can ferment at up to 45 °C. The same 

study also identified the salt and sugar tolerance of P. kudriavzevii, which can tolerate 5% (w/v) of 

NaCl (0.85 M) and 40% (w/v) of glucose [75]. 

The genome of P. kudriavzevii is also sequenced [81], but the molecular tools available for its 

genetic manipulation are still very limited. A first attempt to engineering the yeast was performed  

in 2010, in which study the authors successfully developed a β-glucosidase expression system for 

conversion of cellobiose to ethanol [78]. Besides, a metabolic engineered strain was generated for 

industrial scale production of succinic acid. While P. kudriavzevii is not a natural producer, its 

engineered version was able to produce and tolerate succinic acid [82,83]. 
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3.6. Debaryomyces hansenii 

D. hansenii is a halophilic, xerotolerant and oleaginous non-conventional yeast that was 

originally isolated from seawater and commonly found in high osmotic and saline environments, 

such as cured meats and cheeses. This yeast is able to grow in a broad range of        

temperatures (20–35 °C) and pHs (3–10), and up to 25% of NaCl (4M). Besides, it respires a broad 

number of carbon sources [33,84]. Several studies have demonstrated that sodium protects D. 

hansenii against oxidative stress and other abiotic stresses [85–87]. Moreover, glycerol is produced 

and accumulated as a compatible solute under osmotic pressure [88,89]. 

D. hansenii is used in biotechnology for production of fine chemicals, such as xylitol and 

flavonoids, killer toxins and others [84,90]. Furthermore, this yeast shows resistance to a variety of 

inhibitory compounds including chlorine dioxide, penconazole, benomyl, and cycloheximide [90,91]. 

Apart from its great biotechnological potential, which mostly resides in its improved performance 

under very harsh conditions (high salinity, osmotic pressure, media acidification or nutrient scarcity), 

the use of pure water sources will not be necessary when industrially growing D. hansenii. That 

could lead to a decrease in production costs whilst the production yields are increased. Furthermore, 

when growing in high salt concentration media, the risk of contamination is also highly reduced. 

The only limitation when working with D. hansenii, whose genome was sequenced in 2004 [27], 

is the lack of molecular tools for engineering this yeast. Although some methods for transformation 

and heterologous gene expression have been published, there is still low transformation efficiency 

and low reproducibility between labs [92–96]. 

3.7. Hansenula polymorpha 

H. polymorpha is a thermotolerant methylotrophic yeast used for production of traditional 

fermented wine in Asia [97]. It optimally grows at 37 °C, although it has been described as able to 

grow up to 48–50 °C [98,99]. H. polymorpha is capable to metabolize a range of different carbon 

sources such as glycerol, C5 and C6 sugar monomers and C12 disaccharides [100]. Moreover, it 

ferments glucose, xylose, cellobiose and other lignocellulose sugars to ethanol, at high   

temperature [101]. The yeast also shows resistance to several growth inhibitors and can utilize 

lignocellulosic as crude substrate streams [102]. 

H. polymorpha was first studied as model organism for peroxisome function and biosynthesis, 

as well as nitrate metabolism and assimilation [103,104]. Its ability to grow on methanol promotes 

peroxisome proliferation, which was used for penicillin production, partially located in this  

organelle [105]. From an industrial point of view, H. polymorpha is considered a powerful 

production platform for heterologous protein biosynthesis, based on a strong inducible expression 

system coupled with effective protein secretion and glycosylation. Actually, it is less prone to toxic 

hyperglycosylation (compared to S. cerevisiae), as it does not produce alpha-1,3-linked residues 

which triggers immunogenicity in humans [106]. Biopharmaceutical examples, industrially produced 

by H. polymorpha, are insulin [106,107] and proteins for hepatitis B vaccine [108,109]. 

The H. polymorpha genome was sequenced in 2003 [110]. Several engineering tools have been 

described for this yeast, being random integration and homologous recombination into telomeric 

regions the most successful ones. On the other hand, non-homologous end-joining mechanism makes 

it hard to disrupt genes in this yeast [12]. Expression cassettes used in H. polymorpha are commonly 
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constructed using inducible methanol oxidase promoter and terminator (pMOX, MOXt) [111,112], 

although other endogenous promoters has also been used [113]. H. polymorpha plasmids containing 

autonomously replicating sequence (ARS) elements have been isolated and demonstrated to have 

highly transformation efficiency and episomal replication [114]. CRISPR-Cas9 system has also been 

successfully used in H. polymorpha, obtaining gene disruption rates up to 71% [115]. 

4. Current challenges and future perspectives 

One of the biggest challenges in industrial biotechnology is coping with the host limitations 

normally found for a specific production process. Dealing with high osmotic stress, high salt or sugar 

concentrations, high temperature processes or product inhibition are the most common problems 

found among the sector [45]. As we mentioned before, model organisms such as S. cerevisiae     

or E. coli are very well-studied, both physiologically and genetically, and have been highly 

genetically modified for an improved performance under certain stress conditions. Still, they have 

their limitations regarding metabolic engineering to mitigate some of those detrimental effects. In 

that sense, non-conventional organisms (yeast) represent a better natural choice to overcome the 

problems related to stress tolerance during industrial bioprocesses. 

In this review, we have presented some of the best examples of non-conventional yeasts with a 

strong potential in biotechnology, and able to naturally deal with the biggest problems mentioned 

above. E.g. T. oleaginosus tolerates several by-products like acetic acid, furfural and ammonia, K. 

marxianus is thermotolerant, D. bruxellensis tolerates up to 16% of ethanol, P. kudriavzevii shows 

furan derivative and vanillin tolerance, D. hansenii is a halophilic yeast, and H. polymorpha is a 

methylotrophic yeast. Besides, their genomes are sequenced and several genetic tools are already 

available to the scientific community. Nevertheless, there is still room for improvement when 

industrially using these microbes or any other non-conventional yeast in general, especially related to 

the development of new molecular biology methods and the investigation of the molecular 

mechanisms underlying their tolerance, which can lead to their maximum fermentative capacity 

and/or best optimal behavior. 

In this respect, some of the biggest challenges that need to be addressed in the future are the 

following: 

1) Development, and improvement, of new genetic tools for non-conventional microorganisms. 

2) Investigation of the molecular mechanisms underlying their natural tolerance. 

3) Implementation of CRISPR-Cas systems for highly efficient genome editing, which allows 

getting the most desired phenotypes for industrial bioprocesses. 

4) Improvement of random integration engineering of non-conventional yeast for stable genetic 

modifications by disrupting/repressing competing DNA repair through non-homologous end-joining 

(NHEJ). 

5) Design of Genome Scale Models (GSMs) based on experimental data-sets relevant to 

metabolic engineering and synthetic biology, and specifically developed during industrial 

performances. 

6) Development of metabolic models based on genomic and transcriptomic information, which 

allows designing genomes for improved productivity. 
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5. Concluding remarks 

Industrial biotechnology is a field in exponential expansion, and fermentation-based 

manufacturing of bio-based chemicals has attracted a considerable attention within the last decade. 

Given the current global situation, there is an increasing need of novel green technologies to mitigate 

CO2 emissions, exploring sustainable ways of production that favor a competitive shift from 

oil-based technologies towards biosustainable alternatives. The concept of circular economy and the 

waste revalorization into high-value products strategy, demand better large-scale production 

strategies. A new generation of microbial production hosts may tackle the challenge and replace the 

classical production workhorses, as they lack of the capacity of withstanding large-scale production 

setups and require substantial engineering efforts. 

In this review we suggest a series of alternative yeast hosts, that could serve as a better starting 

point for bio-based production processes of chemicals or other molecules of interest (industrial 

enzymes, peptide based biotherapeutics, food ingredients, etc). Because of i) their inherent and 

evolutionary acquired higher tolerance in hostile environments, ii) their higher tolerance to 

fermentation inhibitors normally produced as by-products from biomass hydrolysates, or iii) their 

ability to consume a wide range of different carbon sources, they certainly show in all aspects greater 

advantages than the current available options. 

With the recent advances in microbial engineering technologies, such as the implementation of 

CRISPR-based technologies, and the fast (and cheaper than ever) capacity of genome sequencing 

and annotation of novel microbial isolates, it has become easier to engineer these microbes for 

increasing production yields instead of modifying the classical hosts to increase their tolerance. 

Overall, using one of these non-conventional microbes from the start will significantly decrease the 

initial engineering efforts, therefore speeding up the initial design and test process and the transition 

from lab to industrial scale of novel production hosts. 
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