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Abstract: In this paper, nonlinear fractional order Ebola virus mathematical model is discussed for
the complex transmission of the epidemic problems. We developed the fractional order Ebola virus
transmission model for the treatment and control to reduce its effect on a population which play an
important role for public health. Qualitative analysis has been made to verify the the steady state and
uniqueness of the system is also developed for reliable results. Caputo fractional derivative operator
φi ∈ (0, 1] works to achieve the fractional differential equations. Laplace with Adomian Decomposition
Method successfully solved the fractional differential equations. Ultimately, numerical simulations
are also developed to evaluate the effects of the device parameter on spread of disease and effect of
fractional parameter φi on obtained solution which can also be assessed by tabulated results.
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1. Introduction

In 2014, an outbreak of Ebola virus (Ebola) decimated many people in Western Africa. With more
than 16,000 clinically confirmed cases and approximately 70% mortality cases, this was the more
deadly outbreak compared to 20 Ebola threats that occurred since 1976 [1]. In Africa, and particularly
in the regions that were affected by Ebola outbreaks, people live close to the rain-forests, hunt bats and
monkeys and harvest forest fruits for food [2, 3].

In [4] develop a SIR type model which, incorporates both the direct and indirect transmissions in
such a manner that there is a provision of Ebola viruses with stability and numerical analysis is
discussed. A number of mathematical models have been developed to understand the transmission
dynamics of Ebola and other infectious diseases outbreak from various aspects [5, 6]. A commonly
used model for characterising epidemics of diseases including Ebola is the
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susceptible-exposed-infectious-recovered (SEIR) model [7], and extensions to this basic model
include explicit incorporation of transmission from Ebola deceased hosts [1, 8] or accounting for
mismatches between symptoms and infectiousness [9, 10].

Many researchers and mathematicians have shown that fractional extensions of mathematical
integer-order models are a very systematic representation of natural reality [11, 12, 13]. Recently, a
non-integer-order idea is given by Caputo and Fabrizio [14]. The primary goal of this article is to use
a fresh non-integer order derivative to study the model of diabetes and to present information about
the diabetes model solution’s uniqueness and existence using a fixed point theorem [15]. Atangana
and Baleanu [16] then proposed another non-singular derivative version using the Mittag Leffler
kernel function. In many apps in the actual globe, these operators have been successful [17, 18, 19].
The few existing works [4, 8, 9, 20] on the mathematical modeling tells transmission of the virus and
spread of Ebola virus on the population of human. The classical settings of mathematical studies tells
about spread of EVD, such as SI model, SIR model, SEIR model [4], SEIRD model, or SEIRHD
model. World medical association invented medicines for Ebola virus. Quantitative approaches and
obtaining an analysis of the reproduction number of Ebola outbreak were important modeling for
EVD epidemics. Demographic data on Ebola risk factors and on the transmission of virus were
studied through the household structured epidemic model [4, 21]. Predications, different valuable
insights, personal and genomic data for EVD was reported and discovered through mathematical
models [22, 23]. In [24], the authors observed spread that follows a fading memory process and also
shows crossover behaviour for the EVD. They captured this kind of spread using differential operators
that posses crossover properties and fading memory using the SIRDP model in [4]. They also
analyzed the Ebola disease dynamic by considering the Caputo, Caputo-Fabrizio, and
Atangana-Baleanu differential operators.

In this paper, we developed fractional order Ebola virus model by using the Caputo method of
complex nonlinear differential equations. Caputo fractional derivative operator β ∈ (0, 1] works to
achieve the fractional differential equations. Laplace with Adomian Decomposition
Method successfully solved the fractional differential equations. Ultimately, numerical simulations
are also developed to evaluate the effects of the device parameter on spread of disease and effect of
fractional parameter β on obtained solution which are also assessed by tabulated results.

2. Materials and method

2.1. Fractional order Ebola virus model

The classical model for Ebola virus model is given in [4], we developed the fractional order Ebola
virus model in the followings equations

Dφ1S (t) = Π − (β1I + β2D + λP)S − µS

Dφ2 I(t) = (β1I + β2D + λP)S − (µ + δ + γ)I
Dφ3R(t) = γI − µR (2.1)

Dφ4 D(t) = (µ + δ)I − bD

Dφ5 P(t) = σ + ξI + αD − ηP

AIMS Bioengineering Volume 7, Issue 4, 194–207.



196

with initial conditions

S (0) = N1, I(0) = N2,R(0) = N3,D(0) = N4, P(0) = N5 (2.2)

Where S (t) represent the susceptible individuals, I(t) the individuals infected, R(t) the individuals
recovered from the EVD, D(t) the individual that died with the Ebola virus and P(t) in the virus
concentration in the environment. The susceptible human population is replenished by a constant
recruitment at rate Pi. susceptible individuals S may acquire infection after effective contacts β1 with
infectious and β2 is effective contact rate of deceased human individuals. They can also catch the
infection through contact with a contaminated environment at rate λ. Infectious individuals I
experience an additional death due to the disease at rate δ and they are recovered at rate γ. Deceased
human individuals can be buried directly during funerals at rate b. Susceptible, infectious and
recovered individuals die naturally at rate µ. η, ξ, α, represent the decay rate, shedding rate of
infected, and shedding rate of deceased, respectively. The recruitment rate of the Ebola virus in the
environment expressed as σ.

2.2. Equilibrium point and stability

Here system (2.1) is analyzed qualitatively analyzed for feasibility and numerical solution at disease
free and endemic equilibrium point. For this purpose, we used

Dφ1S (t) = Dφ2 I(t) = Dφ3R(t) = Dφ4 D(t) = Dφ5 P(t) = 0 (2.3)

in system (1). For disease free equilibrium, we have E = (π/µ, 0, 0, 0, 0) and endemic equilibrium is

E∗ = (S ∗, I∗,R∗,D∗, P∗),

where
S ∗ =

π

µR0
; I∗ =

π(R0 − 1)
(µ + δ + γ)R0

; R∗ =
πγ(R0 − 1)

µ(µ + δ + γ)R0
; D∗ =

π(µ + δ)(R0 − 1)
b(µ + δ + γ)R0

P∗ =
π(bξ + αδ + αµ)(R0 − 1)

bη(µ + δ + γ)R0

is endemic equilibria of the system (1). Where reproductive number is

R0 =
ηπ(bβ1 + β2(µ + δ)) + λπ(bξ + αδ + αµ)

bηµ(µ + δ + γ)
Theorem. 1 There is a unique solution for the initial value problem given in system (2.1), and the
solution remains in R5, x ≥ 0.
Proof: We need to show that the domain R5, x ≥ 0 is positively invariant. Since

Dφ1S (t)|S =0 = Π ≥ 0
Dφ2 I(t)|I=0 = (β1I + β2D + λP)S ≥ 0

Dφ3R(t)|R=0 = γI ≥ 0
Dφ4 D(t)|D=0 = (µ + δ)I ≥ 0

Dφ5 P(t)|P=0 = σ + ξI + αD ≥ 0

Hence the solution lies in feasible domain, so the uniqueness and solution of the system exists.
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2.3. Numerical analysis of the model

Consider the fractional-order Ebola virus model (2.1), by using Caputo definition with Laplace
transform, we have

L{Dφ1S (t)} = ΠL{1} − β1L{IS } − β2L{DS } − λL{PS } − µL{S }

L{Dφ2 I(t)} = β1L{IS } + β2L{DS } + λL{PS } − (µ + δ + γ)L{I}
L{Dφ3R(t)} = γL{I} − µL{R} (2.4)

L{Dφ4 D(t)} = (µ + δ)L{I} − bL{D}

L{Dφ5 P(t)} = σL{1} + ξL{I} + αL{D} − ηL{P}

S φ1L{S (t)} − S φ1−1S (0) = ΠL{1} − β1L{IS } − β2L{DS } − λL{PS } − µL{S }

S φ2L{I(t)} − S φ2−1I(0) = β1L{IS } + β2L{DS } + λL{PS } − (µ + δ + γ)L{I}
S φ3L{R(t)} − S φ3−1R(0) = γL{I} − µL{R} (2.5)

S φ4L{D(t)} − S φ4−1D(0) = (µ + δ)L{I} − bL{D}

S φ5L{P(t)} − S φ5−1P(0) = σL{1} + ξL{I} + αL{D} − ηL{P}

by using the initial conditions (2.2), we get

L{S (t)} =
N1

S
+

Π

S φ1+1 −
β1

S φ1
L{IS } −

β2

S φ1
L{DS } −

λ

S φ1
L{PS } −

µ

S φ1
L{S }

L{I(t)} =
N2

S
+
β1

S φ2
L{IS } +

β2

S φ2
L{DS } +

λ

S φ2
L{PS } −

µ + δ + γ

S φ2
L{I}

L{R(t)} =
N3

S
+

γ

S φ3
L{I} −

µ

S φ3
L{R} (2.6)

L{D(t)} =
N4

S
+
µ + δ

S φ4
L{I} −

b
S φ4
L{D}

L{P(t)} =
N5

S
+

σ

S φ5+1 +
ξ

S φ5
L{I} +

α

S φ5
L{D} −

η

S φ5
L{P}

We have followings infinite series solution

S =

∞∑
k=0

S k, I =

∞∑
k=0

Ik, R =

∞∑
k=0

Rk, D =

∞∑
k=0

Dk, P =

∞∑
k=0

Pk (2.7)

The nonlinearity IS , DS and PS can be written as

IS =

∞∑
k=0

Ak, DS =

∞∑
k=0

Bk, PS =

∞∑
k=0

Ck (2.8)
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where Ak, Bk and Ck is called the Adomian polynomials. We have the followings results

L{S 0} =
N1

S
+

Π

S φ1+1 , L{I0} =
N2

S
, L{R0} =

N3

S
, L{D0} =

N4

S
, L{P0} =

N5

S
+

σ

S φ5+1 (2.9)

Similarly, we have

L{S 1} = −
β1

S φ1
L{A0} −

β2

S φ1
L{B0} −

λ

S φ1
L{C0} −

µ

S φ1
L{S 0}, ...

L{S k+1} = −
β1

S φ1
L{Ak} −

β2

S φ1
L{Bk} −

λ

S φ1
L{Ck} −

µ

S φ1
L{S k} (2.10)

L{I1} =
β1

S φ2
L{A0} +

β2

S φ2
L{B0} +

λ

S φ2
L{C0} −

µ + δ + γ

S φ2
L{I0}, ...

L{Ik+1} =
β1

S φ2
L{Ak} +

β2

S φ2
L{Bk} +

λ

S φ2
L{Ck} −

µ + δ + γ

S φ2
L{Ik} (2.11)

L{R1} =
γ

S φ3
L{I0} −

µ

S φ3
L{R0}, ...

L{Rk+1} =
γ

S φ3
L{Ik} −

µ

S φ3
L{Rk} (2.12)

L{D1} =
µ + δ

S φ4
L{I0} −

b
S φ4
L{D0}, ...

L{Dk+1} =
µ + δ

S φ4
L{Ik} −

b
S φ4
L{Dk} (2.13)

L{P1} =
ξ

S φ5
L{I0} +

α

S φ5
L{D0} −

η

S φ5
L{P0}, ...

L{Pk+1} =
ξ

S φ5
L{Ik} +

α

S φ5
L{Dk} −

η

S φ5
L{Pk} (2.14)

We get the followings generalized form for analysis and numerical solution.

L{S k+1} = −
β1

S φ1
L{Ak} −

β2

S φ1
L{Bk} −

λ

S φ1
L{Ck} −

µ

S φ1
L{S k} (2.15)

L{Ik+1} =
β1

S φ2
L{Ak} +

β2

S φ2
L{Bk} +

λ

S φ2
L{Ck} −

µ + δ + γ

S φ2
L{Ik} (2.16)

L{Rk+1} =
γ

S φ3
L{Ik} −

µ

S φ3
L{Rk} (2.17)

L{Dk+1} =
µ + δ

S φ4
L{Ik} −

b
S φ4
L{Dk} (2.18)

L{Pk+1} =
ξ

S φ5
L{Ik} +

α

S φ5
L{Dk} −

η

S φ5
L{Pk} (2.19)
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3. Results

The results of fractional order model (2.1) is represented in followings tables and graphs.

Table 1. Numerical solution of S (t) with at different fractional values φ.

t φ = 1 φ = 0.9 φ = 0.8 φ = 0.5
1 39.6912 39.5848 39.51 39.4383
1.5 39.3299 39.1117 39.0235 39.1181
3 37.2519 36.2268 36.264 37.5584
4.5 32.0652 29.2568 30.0105 34.514
6 19.0984 14.0068 17.2162 29.3074

Table 2. Numerical solution of I(t) with at different fractional values φ.

t φ = 1 φ = 0.9 φ = 0.8 φ = 0.7
1 10.4879 10.6026 10.6542 10.7698
2 12.052 11.9378 11.8579 11.5689
4 13.2768 12.5387 12.2499 11.8581
6 8.7256 9.97166 10.5704 12.7973
8 5.0464 11.4457 13.7013 19.4353

Table 3. Numerical solution of R(t) with at different fractional values φ.

t φ = 1 φ = 0.9 φ = 0.8 φ = 0.7
2 20.504 20.5195 20.5331 20.5414
4 21.952 21.8288 21.6815 21.509
6 25.448 24.6081 23.8154 23.076
8 32.096 29.4003 27.1489 25.2921
10 43 36.6889 31.8489 28.1877

Table 4. Numerical solution of D(t) with at different fractional values φ.

t φ = 1 φ = 0.9 φ = 0.8 φ = 0.7
0.5 10.5931 10.6768 10.7803 10.9131
1 11.3486 11.5116 11.7127 11.9551
1.5 12.531 12.8083 13.1141 13.4308
2 14.4048 14.7773 15.124 15.4064
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Table 5. Numerical solution of P(t) with at different fractional values φ.

t φ = 1 φ = 0.95 φ = 0.9 φ = 0.85
1 5.67835 5.6959 5.68235 5.7302
2 6.4746 6.46707 6.45834 6.44629
4 8.788 8.62982 8.47227 8.30553
6 12.6746 12.1038 11.562 11.0225
8 18.8688 17.417 16.0958 14.8435
10 28.105 25.0658 22.3972 19.9683
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Figure 1. Simulation of S(t) at different fractional values in time t.
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Figure 3. Simulation of R(t) at different fractional values in time t.
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Figure 5. Simulation of P(t) at different fractional values in time t.
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Figure 7. Simulation of I(t) at different fractional values in time t.
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Figure 9. Simulation of D(t) at different fractional values in time t.
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Figure 10. Simulation of P(t) at different fractional values in time t.

4. Discussion

The objective of our work is to develop a scheme of epidemic fractional Ebola virus model with
Caputo fractional derivative also numerical solutions have been obtained by using the Laplace with
the Adomian Decomposition Method. The results of fractional order Ebola virus model is presented
and convergence results of fractional-order model are also presented to demonstrate the efficacy of the
process. The analytical solution of the fractional-order Ebola virus model consisting of the non-linear
system of the fractional differential equation has been presented by using the Caputo derivative. To
observe the effects of the fractional parameter on the dynamics of the fractional-order model (2.1), we
conclude several numerical simulations varying the values of parameter given in [4]. These
simulations reveal that a change in the value affects the dynamics of the model. The numerical
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solutions at classical as well as different fractional values by using Caputo fractional derivative can be
seen in Figures 1–5 for disease free equilibrium. The rate of susceptible individuals and pathogens
decreases by reducing the fractional values to acquire the desired value, whereas the other
compartment starts decreasing by increasing the fractional values. The fractional-order model shows
the convergence with theoretical contribution and numerical results. The fractional-order parameter
values show the impact of increasing or decreasing the disease. Also, we can fix the parameter values
where the rate of infection is decrease and the recover rate will increase for some values which are
representing in figures and tables. These results can be used for disease outbreak treatment and
analysis without defining the control parameters in the model based on fractional values. In general,
approaches to fractional-order modeling in situations with large refined data sets and good numerical
algorithms may be worth it. The simulation and numerical solutions at classical as well as different
fractional values by using Caputo fractional derivative can be seen in Figures 6–10 for endemic
equilibrium as well as in Tables 1–5. Results in both cases are reliable at fractional values to
overcome the outbreak of this epidemic and meet our desired accuracy. Results discuss in [1, 5] for
classical model, but our results are on fractional order model, fractional parameters easily use to
adjust the control strategy without defining others parameters in the model. Another important feature
that plays a critical role in the 2014 EVD outbreaks is traditional/cultural belief systems and customs.
For instance, while some individuals in the three Ebola-stricken nations believe that there is no Ebola,
control the population or harvest human organs. We conclude that depending on the specific data set,
the fractional order model either converges to the ordinary differential equation model and fits data
similarly, or fits the data better and outperforms the ODE model.

5. Conclusion

We develop a scheme of epidemic fractional Ebola virus model with Caputo fractional derivative
for numerical solutions that have been obtained by using the Laplace with the Adomian
Decomposition Method. In [24] the use of three different fractional operators on the Ebola disease
model suggests that the fractional-order parameter greatly affects disease elimination for the
non-integer case when decreasing α. We constructed a numerical solution for the Ebola virus model
to show a good agreement to control the bad impact of the Ebola virus for the different period for
diseases free and endemic equilibrium point as well. However, in this work, we introduced the
qualitative properties for solutions as well as the non-negative unique solution for a fractional-order
nonlinear system. It is important to note that the Laplace Adomian Decomposition Method is used for
the Ebola virus fractional-order model differential equation framework is a more efficient approach to
computing convergent solutions that are represented through figures and tables for endemic and
disease-free equilibrium point. Convergence results of the fractional-order model are also presented to
demonstrate the efficacy of the process. The techniques developed to provide good results which are
useful for understanding the Zika Virus outbreak in our community. It is worthy to observe that
fractional derivative shows significant changes and memory effects as compare to ordinary
derivatives. This model will assist the public health planar in framing an Ebola virus disease control
policy. Also, we will expand the model incorporating determinist and stochastic model comparisons
with fractional technique, as well as using optimal control theory for new outcomes.
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