
AIMS Agriculture and Food, 7(1): 61–72. 

DOI: 10.3934/agrfood.2022004 

Received: 08 September 2021 

Revised: 01 December 2021 

Accepted: 27 December 2021 

Published: 24 January 2022 

http://www.aimspress.com/journal/agriculture 

 

Research article 

Antioxidant activity and inhibition of α-amylase and α-glucosidase in 

fermented black rice bran-based analog rice 

Santi Noviasari
1,2,

*, Feri Kusnandar
2
, Agus Setiyono

3
 and Slamet Budijanto

2
 

1  
Department of Agricultural Product Technology, Faculty of Agriculture, Universitas Syiah Kuala, 

Banda Aceh, 23111, Indonesia 
2 

Department of Food Science and Technology, Faculty of Agricultural Engineering and 

Technology, IPB University, Bogor, West Java, 16680, Indonesia 
3
  Department of Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB 

University, Bogor, West Java, 16680, Indonesia 

* Correspondence: Email: santinoviasari@unsyiah.ac.id; Tel: +628126929102. 

Abstract: Analog rice is an alternative food that can also be a functional food. Analog rice has the 

same shape as rice grains, can be made from non-rice flour, and can be consumed like white rice. 

The purpose of this study is to determine the effect as an antidiabetic of the addition of fermented 

black rice bran (FBB) and non-fermented black rice bran (NFBB) on analog rice based on in vitro 

assays. This research was conducted in three stages: analog rice was made from the raw materials of 

sorghum, yellow soybean, black soybean, FBB and NFBB; analysis of the phytochemical 

characteristics of analog rice; evaluation of DPPH-radical scavenging; and analysis of the inhibitory 

effects of agents α-amylase and α-glucosidase. Increased phenol, flavonoid, and anthocyanin content 

were found in analog rice with the addition of FBB. In addition, analog rice with the addition of FBB 

also had antioxidant activity and higher inhibition of α-amylase and α-glucosidase activity with a 

range of 54.50–65.52%, 63.16–65.51% and 60.27–62.09% respectively compared to analog rice with 

the addition of NFBB. The results of this study indicate that analog rice with the raw materials of 

sorghum, beans and the addition of FBB has potential as an antidiabetic food. 
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1. Introduction 

Diabetes is a disease chronic caused by non-infectious metabolic disorder, characterized by 

hyperglycemic conditions or high blood glucose levels [1]. The most common diabetes is type 2 

diabetes (T2D) which is caused by lifestyle factors and diet that causes obesity [2]. Postprandial 

hyperglycemia can be reduced by modulating the absorption of glucose in the body as it reduces the 

hydrolysis of carbohydrates. Pancreatic α-amylase is an enzyme in the initial stages of starch 

hydrolysis, and α-glucosidase subsequently hydrolyzes di- and oligosaccharides into glucose in the 

intestine [3]. Some bioactive components act as inhibitors that can inhibit the activity of the enzymes 

α-amylase and α-glucosidase, which can reduce the absorption rate of glucose and postprandial 

hyperglycemia. Digestive enzyme inhibitors are generally found in functional foods that contain 

many bioactive components such as polyphenols [4]. The condition of hyperglycemia will also 

encourage the formation of free radicals that trigger a state of oxidative stress in the body. Oxidative 

stress will reduce insulin secretion and inhibit glucose uptake in muscle cells and adipose [5], 

because oxidative stress can trigger different expressions of some genes involved [6]. Therefore the 

body needs antioxidant-rich foods to prevent oxidative stress. Testing the activity of antioxidants and 

inhibitors of α-amylase and α-glucosidase enzymes can be used as an approach to evaluate the 

antidiabetic potential of a functional food. 

Analog rice is an artificial rice which has the shape of white rice granules. It can be made from 

non-rice flour, cooked and consumed as white rice, and has high functional properties [7]. Therefore, 

analog rice can be consumed as a functional food and as an alternative staple food. Analog rice 

made from a mixture of corn, sago, yellow soybeans, and rice bran contains phenols, flavonoids, 

resistant starches, high food fiber and has a low IG value [8–11]. Analog rice from sorghum, red 

palm oil, yellow soybeans, and rice bran has been reported to have properties that inhibits colon 

cancer [12].  

In this study, analog rice was made using the raw materials of sorghum, yellow soybeans, 

black soybeans, and rice bran which are still underutilized. The selection of raw materials was 

based on the results of previous studies that show that sorghum [13], yellow soybeans [14], black 

soybeans [15], and rice bran [16] have antioxidant activity, are able to inhibit α-amylase and α-

glucosidase enzymes, reduce blood glucose levels, increase insulin levels and regenerate β-

pancreatic cells. Rice bran, which is a byproduct of hulling rice, still contains many bioactive 

components, food fiber and phytochemicals, so it can be used as a raw material for food products 

such as bakery products, drinks, and meatballs [17]. Adding rice bran to food products can also 

prevent chronic diseases such as cancer and cardiovascular disease [18]. Fermentation by the solid 

state fermentation (SSF) method can increase the amount of phenolic and antioxidant activity of rice 

bran which has been widely reported by several researchers [17,19,20]. Bran fermented for 4 days 

can increase phenolic compounds, flavonoids, γ-orizanol, α-tocopherol, and have antioxidant activity 

and inhibition of α-amylase [21]. There have been several studies on diabetes that have focused on 

bioactive components in functional foods. However, there have been no studies on antidiabetic 

activity of analog rice. Therefore this study was conducted to determine the effect of adding 

fermented black rice bran (FBB) and non-fermented black rice bran (NFBB) to analog rice on its 

potential as an antidiabetic. The results of this study are expected to provide scientific 

information about the potential of analog rice derived from local Indonesian raw materials as an 

antidiabetic. 
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2. Materials and methods 

2.1. Analog rice preparation 

The materials used in this study are Numbu cultivar sorghum from a local farmer in Gadog, 

Indonesia, Grobogan cultivar yellow soybean from BB Biogen, Indonesia, Detam 1 cultivar black 

soybeans from Balitkabi in Malang, Indonesia, and Cempo Ireng cultivar black rice bran  prepared 

from a paddy which was bought from local farmers in Yogyakarta, Indonesia. The skin of the black 

rice was polished by rice mill processing (Satake Grain Testing Mill, Japan). The FBB was 

fermented by the SSF method using Rhizopus oligosporus [21]. 

2.2. Analog rice  

Analog rice production was carried out following [7] with modifications to the temperature of 

extrusion. The analog rice was made in three stages: (1) mixing the raw material (flour) for 10 

minutes with a dry mixer, (2) extruding process using the twin screw extruder (Berto BEX-DS-2256) 

at 100 ℃, (3) the final product of analog rice granules was dried at 60 ℃ for 3 hours. Four analog 

rice formulas were made (the formulas are subject to a patent application): AR1 analog rice from a 

mixture of sorghum, yellow soybean, and NFBB; AR2 analog rice from a mixture of sorghum, black 

soybean, and NFBB; AR3 analog rice from a mixture of sorghum, yellow soybean, and FBB; and 

AR4 analog rice from a mixture of sorghum, black soybean, and FBB.  

2.3. Sample extraction 

Analog rice was ground in a blender (Maspion, Indonesia), and passed through an 80 mesh 

sieve. A sample extraction was prepared [22] with slight modifications. Analog rice and 70% ethanol 

(1:10) were mixed for 24 hours, and then filtered with number 41 filter pads. The residue was re-

extracted with 70% ethanol. All supernatants were collected and centrifuged at 1207 xg for 20 

minutes. The ethanolic extract was evaporated using a rotary vacuum evaporator at 50 ℃ for 1 hour, 

and then exhaled with N2 gas until all the solvents were removed and stored at −18 ℃ until use. The 

extract was used for all analysis. All experiments were done in triplicate. 

2.4. Analysis of phytochemical composition 

The total phenolic content was determined using the Folin-Ciocalteu reagent [19]. Absorbance 

was measured at 765 nm using a UV spectrophotometer. Gallic acid was used as a standard. Results 

were expressed as milligrams equivalent of gallic acid per 100 grams of sample (mgGAE/100g 

sample). 

The total flavonoid content was measured using Quercetin as a standard [23]. The absorbance 

was measured using a UV-VIS spectrophotometer at 432 nm. The results obtained were expressed in 

milligrams equivalent of quercetin per 100 grams sample (mgQE/100g sample).  

Total anthocyanin content was measured based on the pH difference method [24]. The 

absorbance was measured at 510 and 700 nm. The absorbance value was calculated as A = [(A510 − 

A700) at pH 1 − (A510 − A700) at pH 4.5]. The total anthocyanin was expressed as milligrams of 
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cyanidin-3-glucoside (C3G) per gram of sample using a molar coefficient of 26.900 and a molecular 

weight of (BM) 449. 

Analysis of γ-oryzanol was performed using high performance liquid chromatography (HPLC, 

Agilent Technologies 1200 series) [25]. As much as 20 μL of the standard and extract samples were 

injected into a C-18 column (Zorbax Eclipse XDB C-18 column 4.6 x 150 nm) with a flow rate 

of 1 mL/minute. A mixture of methanol and acetonitrile (35:65) was used during the mobile phase 

using the HPLC UV-VIS detector at a wavelength of 325 nm. Results were expressed as milligrams 

per grams of dried sample (mg/g db). 

-tocopherol was analyzed following the method 971.30 [26]. 20μL of extract was injected into 

HPLC (Agilent Technologies 1200 series) at 280 nm wavelength, then into a C-18 column (Zorbax 

Eclipse XDB C-18 column 4.6 x 150 nm), and a UV-VIS detector, methanol:isopropanol (98:2) as 

mobile phase, with a flow rate of 1 mL/minute. Results were expressed as milligrams per grams of 

dried sample (mg/g db). 

2.5. DPPH radical-scavenging method 

The DPPH-radical scavenging method was used to measure antioxidant activity [27]. The 

absorbance of the solution was measured at a wavelength of 517 nm using a UV-VIS 

spectrophotometer. DPPH-radical scavenging was expressed as a percentage calculated as [1-(abs of 

sample/blank abs)] x 100. 

2.6. α-Amylase inhibition assay 

Inhibition of the α-amylase was measured according to the method of Thalapaneni et al.  [28]. 

Briefly, the extract sample was reacted with the amylase enzyme solution, then incubated at 37 ℃ 

for 10 minutes. 1% starch solution was added and re-incubated at 37 ℃ for 10 minutes. The 3,5-

dinitrosalicylate (DNS) reagent was added, incubated for 5 minutes in boiling water, then as much as 

5 mL of distilled water was added and the absorbance was measured using a UV-VIS detector 

spectrophotometer at 540 nm. The α-amylase inhibition was calculated as [(abs control - abs 

sample)/abs control] x 100. 

2.7. α-Glucosidase inhibition assay 

The α-glucosidase assay was carried out based on the method of Sancheti et al. [29]. A 

phosphate buffer solution 0.1 M (pH 7), 4-nitrophenyl α-Dglucopyranoside 0.5 mM, 10 µL extract 

sample and 25 µL α-glucosidase enzyme solution (1 mg/mL in 0.01 M phosphate buffer, pH 7) were 

reacted, and then incubated at 37 ℃ for 30 minutes. The reaction was stopped by adding sodium 

carbonate 100 µL (0.2 M). The inhibition of α-glucosidase was measured using a microplate reader at a 

wavelength of 410 nm. The percent inhibition was calculated as [1- (abs sample / abs control)] x 100. 

2.8. Statistical analysis 

Data were analyzed using one way analysis of variance (ANOVA) and post hoc Duncan's 

multiple range test (p < 0.05). Data values were expressed as mean ± standard deviation (Mean ± SD). 
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3. Results and discussion 

3.1. Total phenols, flavonoids and anthocyanins 

Phenolic content in analog rice ranged from 429.31–758.61 mg GAE/100g (Table 1) and was 

significantly different (p < 0.05). Analog rice with the addition of FBB has a higher phenolic content 

compared to rice with the addition of NFBB in the same type of soybeans; AR4 > AR2 and AR3 > 

AR1. This result shows that the added FBB can increase the phenolic content of analog rice products. 

This is in accordance with the results of previous studies which showed that the phenolic content in 

FBB increased by 57.39% due to the fermentation process [21]. In this study it was found that analog 

rice using black soybeans with the addition of FBB and NFBB had a higher phenolic content, 

compared to yellow soybeans. This can be attributed to the higher phenolic content of black 

soybeans compared to yellow soybeans (258.02 mg GAE/100g versus 155.15 mg GAE/100g, data 

were not shown). This means that the phenolic content of analog rice is also strongly influenced by 

the raw materials used. This result was also supported by previous research [9] which stated that 

analog rice using raw materials of sorghum had a total phenolic content of 18 mgGAE/100g, while 

analog rice from composit sorghum and yellow soybeans had 24 mgGAE/100g. 

The flavonoid content of analog rice ranged from 235.03–374.62 mgQE/100g and was 

significantly different (p < 0.05). The highest content was found in AR4 followed by AR2, AR3 and 

AR1. As with phenols, the flavonoid content of analog rice in the same type of soybeans with the 

addition of FBB is higher than with the addition of NFBB. Black soybeans in the AR4 and AR2 have 

a higher flavonoid content when compared to analog rice using yellow soybeans in AR3 and AR1. 

This is presumably because black soybeans have a higher flavonoid content. According to [30], the 

flavonoid content in black soybeans is 6 times higher (2.57 mg/g) than yellow soybeans (0.41 mg/g). 

Anthocyanin content of analog rice is found to be higher with the addition of FBB than 

NFBB. The highest amount of anthocyanin obtained in this study was 78.88 mg/g (AR4) 

followed by AR3 (72.26 mg/g), then AR2 (70.89 mg/g) and AR1 (42.51 mg/g). The addition of FBB 

which has an anthocyanin content of 96.38 mg/g [21] contributed to the increase in anthocyanin levels 

of analog rice products. Black soybeans are also reported to contain 1.044 mg/g of anthocyanis [31], so 

AR2 using black soybeans and NFBB has high levels of anthocyanins as well (Table 1). 

The addition of FBB to analog rice can increase total phenolic, flavonoid and anthocyanin 

content. The SSF technique is an alternative to increase the free  phenolic compounds and 

antioxidant activity in food products [32]. Koji prepared from raw beans uses the SSF technique with 

Rhizopus sp., which has high antioxidant activity and is associated with increased total phenolic and 

anthocyanin content [33]. During the SSF process, hydrolysis of the glycosidic bonds into free 

aglycones occurred, which contributed to the high value of antioxidant activity [34].  

3.2. The γ-oryzanol and α-tocopherol compound 

The γ-oryzanol compound ranges from 2.84–3.36 mg/g (Table 1), not significantly different 

among the four analog rice formulas. The total amount of α-tocopherol obtained was significantly 

different for all four analog rice formulas. The highest amount of α-tocopherol was 126.16 µg/g in 

AR4 followed by AR3 which had 86.18 µg/g with added FBB, and the lowest content was found in 

AR2 (24.75 µg/g) and AR1 (14.11 µg/g) which contained added NFBB. The amount of γ-oryzanol 
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and α-tocopherol compounds obtained in analog rice are higher when compared to the content of γ-

orizanol (0.041 mg/g) and α-tocopherol (3 µg/g) in white rice [35]. This is presumably due to the 

addition of black rice bran which contains a lot of γ-oryzanol 1.85–4.21 mg/g [36] and α-tocopherol 

43.57–150 µg/g [37]. According to [36] the addition of FBB to analog rice contributes to the increase 

of γ -oryzanol and α-tocopherol. Enzyme activity during the fermentation process is also capable of 

releasing bound forms of γ-orizanol and α-tocopherol into free forms and have high bioavailability [39].  

Table 1. Chemical composition of analog rice* (db). 

Content AR1 AR2 AR3 AR4 

Total Phenol (mgAGE/100g) 429.31 ± 0.72a 636.56 ± 0.82c 513.41 ± 1.06b 758.61 ± 0.93d 

Total Flavonoid (mgQE/100g) 235.03 ± 0.96a 354.97 ± 0.0.44c 318.72 ± 1.24b 374.62 ± 0.87d 

Total Anthochyanin 

(mgC3G/g) 
42.51 ± 0.44a 70.89 ± 0.10b 72.26 ± 0.24c 78.88 ± 0.18d 

γ-Oryzanol (mg/g) 2.84 ± 0.42a 2.77 ± 0.36a 3.37 ± 0.37a 3.36 ± 0.39a 

α-Tocopherol (µg/g) 14.11 ± 0.29a 24.75 ± 3.16b 86.18 ± 0.25c 126.16 ± 0.75d 

*AR1: sorghum, yellow soybeans, and NFBB; AR2: sorghum, black soybeans and NFBB; AR3: sorghum, yellow 

soybeans and FBB; AR4: sorghum, black soybeans and FBB. Means ± standard deviasi with the same letter on the same 

row differ no significantly at the test level of 5%. 

γ -oryzanol and α-tocopherol are antioxidant components, making up 38.7–41.1% and 1.2% of 

the total antioxidant components (respectively) found in bran. The γ-oryzanol is the main antioxidant, 

and α-tocopherol is found in smaller amounts. The α-tocopherol can prevent oxidation of the body by 

donating hydrogen atoms from its hydroxyl groups to free radicals that often occur in diabetics [40].  

3.3. Scavenging ability of DPPH radicals 

Antioxidant activity in the analog rice was determined using the DPPH-radical scavenging 

method. The results showed that the scavenging ability of DPPH radicals ranged from 40.92–65.52% 

(Figure 1). The lowest antioxidant activity was found in AR1 and the highest was found in AR4. 

Antioxidants are naturally present in food, and can be increased by fermentation techniques [41]. Soy 

products fermented using the SSF technique have high antioxidant activity compared to non-

fermented products [42]. This study also found that analog rice with the addition of FBB has high 

antioxidant activity. The phenolic aglycone obtained from fermentation has the highest antioxidant 

activity compared to the glycoside form [43]. It is also thought to be related to the number of free 

hydroxyl groups phenolic compounds and flavonoids obtained during SSF. The hydroxyl group can 

be a hydrogen donor for DPPH free radicals so antioxidant activity increases [44]. 

Paiva et al. [45] stated that antioxidant activity has a positive correlation with phenolic 

components. This study also found a positive correlation between phenolic components and 

antioxidant activity, namely r = 0.90. DPPH free radical scavenging activity is also associated with 

high anthocyanin content in analog rice. This is in accordance with research by Laokuldilok et al. [40] 

which stated that pigmented rice bran showed high free radical scavenging activity–6 times that of 

white rice bran. In addition, it is also supported by a positive correlation value (r = 0.92) between 

anthocyanins and antioxidant activity. 
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Figure 1. Antioxidant activity of analog rice (100 µg/mL). Different letters indicate a 

significantly difference by Duncan’s Multiple Range Test (p < 0.05). Description of 

analog rice refers to Table 1. 

 

Figure 2. Inhibitory α-amylase (A) and α-glucosidase (B) in analog rice. Different letters 

indicate a significantly difference by Duncan’s Multiple Range Test (p < 0.05). 

Description of analog rice refers to Table 1. 
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3.4. Inhibitory effects of analog rice againts α-amylase and α-glucosidase 

α-Amylase and α-glucosidase are enzymes that catalyze the degradation of starch into glucose 

for absorption by the body. Inhibition of these enzymes is useful for controlling excessive blood 

glucose and regulating hyperglycemia that causes diabetes [46]. Previous studies have reported that 

inhibition of the α-glucosidase enzyme by inhibitors can be one of the most effective ways to control 

type 2 diabetes [47].  

The anti-amylase activity of analog rice is presented in Figure 2A. The percentage of inhibition 

of analog rice to α-amylase ranges from 53.03 ± 1.18 %–65.51 ± 0.51 %. Analog rice with the 

addition of FBB significantly (p < 0.05) had higher anti-amylase activity ranging from 63.16–

65.51%, compared to analog rice with NFBB only 53.03–55.20%. The inhibitory activity of analog 

rice to α-glukosidase ranged from 58.29–62.09% (Figure 2B). The highest inhibitory activity was 

obtained in AR4, which was made from black soybeans and FBB (62.09%), and it was significantly 

different (p < 0.05) from other analog rice.  

The inhibitory activity of analog rice to α-amylase and α-glucosidase enzymes is thought to be 

related to the phenolic content in analog rice. Analog rice with the addition of FBB has higher total 

phenolic content due to the fermentation process being carried out. According to Sompong et al. [48] 

pigmented rice bran such as black rice bran is a rich source of phenolic components. The polyphenol 

and flavonoid content found in several foods is very effective at inhibiting α-amylase and α-

glucosidase activity [49]. Phenolic compounds are able to inhibit α-amylase enzyme activity by 

binding to the α-amylase reactive side and changing its catalytic effect [50]. The polyhydroxyl group 

plays an important role in α-glukosidase inhibition [51]. In addition, polyphenols and flavonoids can 

mimic the pyranosil portion of  α-glukosidase [52]. This study also found a positive correlation 

between total phenols and α-amylase and α-glucosidase inhibition (r = 0.60 and r = 0.87). Previous 

studies also reported that there was a positive correlation between total phenols and anti-amylase 

activity (r =0.68) [53], and with α-glucosidase inhibitory activity [54]. The opposite has been 

reported by [11]; carrots, pumpkin, and radishes where phenolic content was not found, showed low 

inhibitory activity against α-amylase (<8.5%) and α-glucosidase (<2.5%). 

4. Conclusions 

The results of this study indicate that analog rice with the raw materials sorghum, black 

soybeans, and fermented black rice bran (AR4) has the highest amount of total phenols, flavonoids, 

anthochyanins, γ -oryzanol and α-tocopherol compared to the others. The analog rice also had the 

highest inhibitory activity against DPPH free radicals, α-amylase and α-glucosidase enzymes. The 

findings of this study show that analog rice made from fermented rice bran has potential as an anti-

diabetes functional food. 
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