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Abstract: Maize (Zea mays L.) breeders in the West and Central Africa have developed and
commercialized extra-early and early-maturing maize hybrids, which combine high yield potentials
with tolerance/resistance to drought, low soil-N and Striga infestation. Hybrids of both maturity
groups have not been investigated for tolerance to high plant density and N application and are new
to the farmers; thus, the urgent need to recommend appropriate agronomic practices for these hybrids.
We investigated the responses of four hybrids, belonging to the extra-early and early-maturity groups,
to three plant densities and three N rates in five locations of different agroecologies. The
early-maturing hybrids consistently out-yielded the extra-early maturing hybrids in all the five
agroecologies. The hybrids showed no response to N-fertilizer application above 90 kg ha*. All
interactions involving N had no significant effect on grain yield and other measured agronomic traits
except in few cases. The extra-early and early-maturing hybrids had similar response to plant density;
their grain yield decreased as density increased. Contrarily, flowering was delayed and expression of
some other agronomic traits such as plant and ear aspects were negatively impacted by increased density.
Optimal yield for hybrids of both maturity groups was obtained at approximately 90 kg N ha* and
66,666 plants ha *. Most of the measured traits indicated high repeatability estimates across the N
levels, densities and environments. Evidently, the hybrids were intolerant of elevated density. It therefore,
becomes necessary to improve maize germplasms for high plant density tolerance in the region.
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1. Introduction

Maize (Zea mays L.), a cereal crop adapted to a wide range of ecological conditions, is
cultivated in all agroecologies of West and Central Africa (WCA) but primarily produced in the
savannas. The savannas of WCA offer the highest productive environment for maize because of
relatively high incidence of solar radiation, low night temperature and reduced occurrence of pests
and diseases during the cropping season [1]. In 2018, the global maize production was 1.15 billion
tonnes, 78.9 million tonnes came from Africa and 10.2 million tonnes from Nigeria [2]. The area
under maize production in the savannas of WCA has increased at the expense of other traditionally
cultivated cereal crops such as sorghum (Sorghum bicolor L.) and millet (Pennisetum glaucum L.) [3].
The acceptability of maize by farmers and its potential to combat food security challenges posed by
population increase in WCA have greatly improved due to its high yield potential, wider adaptability
to different environments, and relative ease of cultivation, processing, storage, and transportation [4,5].
However, maize production in most agroecological zones of WCA is constrained by three stresses:
drought, low soil nitrogen (low N), and Striga infestation [3,6-8]. Presently, the extra-early (85-90
days to maturity) and early (90-95 days to maturity) maize hybrids, that combined high yield
potentials with resistance/tolerance to the three stresses are available in sub-Saharan Africa (SSA) [3].
These maize hybrids have been adopted by the farmers in the region, although, grain yield in farmers
fields has averaged only 1 to 2 t/ha in contrast to the potential yields of about 5 to 7 t/ha reported for
experimental stations [9]. Clearly, the heterotic advantage of the hybrids was not fully exploited.
These hybrids are new to the farmers, and the existing agronomic recommendations such as N
fertilizer rate, intra- and inter-row spacings, may not be appropriate to enable the full expression of
grain yield potential of the hybrids.

Maize grain yield (GYLD) is largely influenced by the interaction between the genetic and
management factors. Successful maize production depends on the adequate use of production inputs
that will sustain the environment as well as agricultural production [10]. An adequate amount of N,
phosphorus, and potassium must be supplied to maize crop for good development, growth and high
yield [11]. Nitrogen performs an important role in crop life and is one of the most essential nutrients
needed by maize plants in large quantities. Kamara et al. [12] reported severe yield losses in maize in
Nigerian savannas when no mineral fertilizer was applied. Soils of SSA are characterized by low
fertility due to continuous cultivation and heavy rainfall associated with the region. The quantity of
fertilizer use in the region accounts for only 3% of global fertilizer use, an amount which has not
improved over two decades [13]. Maize has potential for high yield and responds considerably to N
fertilizer application. Generally, N-fertilizer application increases GYLD and yield components of
maize. In many areas of Africa, improved maize cultivars are often grown with zero or inadequate
rates of fertilizer. This may be one of the reasons for lower grain yield frequently obtained by the
farmers in SSA. Correct application of N fertilizer and optimal use of plant density can maximally
exploit the full grain yield potential of modern maize hybrids.

For improved maize production, optimal rate of plant density (PD) is an important factor. Low
PD results in reduced GYLD, while high density leads to stress on the plants [14,15]. Plant density is
dependent on both row width and intra- row spacing. In WCA, the intra-row spacing used by local
farmers for open-pollinated maize varieties (OPVs) has been the same used for extra-early and early
maturing maize hybrids (E-EH and EH) [16,17]. This also, could be associated with the low GYLD
of the improved maize hybrids on the farmers’ field. Furthermore, the use of high density under
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drought condition may heighten plant stress and reduce GYLD severely, specifically, if the drought
coincides with the flowering and grain filling period [18]. Therefore, drought stress especially when
combined with high PD can cause complete loss of grain production, if stress occurs during the
tasselling and silking stages of production [19,20].

The use of hybrids that combine tolerance to drought and high density may be a promising
production practice for the improvement of GYLD, particularly in drought-prone environments. The
International Institute of Tropical Agriculture (I1'TA) and collaborators have developed and released
E-EH and EH, that combine high yield potentials with combined tolerance to low soil-N and drought
at flowering and grain filling periods, and have been adopted by the farmers in the sub-region.
However, the tolerance of these hybrids to high density and N application has not been investigated.
Such information can guide future breeding of new cultivars and cropping technique innovation. This
study was conducted to: (i) investigate the response of GYLD and other agronomic traits to PD and
N rates of recently released four hybrids, belonging to extra-early and early-maturing groups, and the
performance of each maturity group in different agroecologies of Nigeria, and (ii) partition the total
variation in GYLD to its various components.

2. Materials and methods
2.1. Experimental sites

This study was conducted during the growing season of 2015 at five locations, one location in
each of five agroclimatic zones in Nigeria: lle-Ife (Marginal rainforest—MRF: 0728 N, 04<34E),
Ikenne (Rainforest—RF: 06 53N, 0342 E), Mokwa (Southern Guinea Savanna—SGS: 09<18°N,
0540°E), Zaria (Northern Guinea Savanna—NGS: 12990N, 0822E) and Kadawa (Sudan
Savanna—SS: 129V1°N, 0819 E). The agroecologies of the experimental sites are the major maize
growing zones in Nigeria. The characteristics of the experimental sites are described in
supplementary Table S1. The climatic conditions that prevailed at each experimental site were
variable but normal for all the agroecologies, although, there were more rainfall than usual during the
evaluation period at Kadawa (SS) (Table S1). The SS agroecology is characterized as terminal
drought-prone environment, but drought did not actually occur at the agroecology during the field
evaluation period.

2.2. Germplasm and experimental design

Four maize hybrids (two each of extra-early and early maturity) recently released in Nigeria,
Mali, and Ghana were evaluated. For each of the maturity group, one single-cross (SC) and one
top-cross (TC) hybrids were evaluated. The hybrids are tolerant/resistant to low soil-N, drought and
resistant to Striga with high yield potentials [21,22]. The detailed descriptions of the hybrids are
presented in supplementary Table S2. Each experiment in each location was grown in a
randomized complete block with a split-split-plot arrangement and three replications. The main plots
were the urea fertilizer rates (90, 120 and 150 kg N/ha), PDs (66,666; 88,888 and 133,333 plants/ha)
were subplots, and the four hybrids were sub-subplots. The inter-row spacing of 0.75 m and three
intra-row spacings of 0.4 m, 0.3 m and 0.2 m were used to obtain the three density levels. Each
sub-subplot comprised four rows, 5 m long each. Three seeds were manually planted per hill and
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thinned to two plants/stand two weeks after emergence. The urea fertilizer was applied by side
placement in two equal split applications at two and five weeks after planting. For each rate of the
urea fertilizer, the initial soil N status (Table S1) of each experimental site was considered in
determining the amount of N to be applied to ensure equal N level across the sites.

2.3. Data collection

Observations were made on the two central rows within each experimental plot. Data obtained
included anthesis (ANTH) and silking (DYSLK) which, respectively were the number of days from
planting to the date when 50% of the plants in a sub-subplot had shed pollen and emerged silks.
Anthesis-silking interval (ASI) was computed as the difference between DYSLK and ANTH.
Plant-height (PLHT) and ear-height (EHT) were measured as the distance from the base of the plant
to the height of the first-tassel branch and to the node bearing the upper ear, respectively.
Root-lodging (RL) was determined as the number of plants leaning about 45<or more from the
upright position. The number of ears per plant (EPP) was determined by dividing the total number of
ears per plot by the number of plants harvested. Plant aspect (PASP) was based on the overall plant
appeal (visual), considering factors such as relative plant and ear heights, lodging, uniformity,
reaction to diseases and insects and was scored on a scale of 1 to 9, where 1 = excellent plant type
and 9 = poor plant type. Ear aspect (EASP) was based on freedom from disease and insect damage,
ear size, uniformity of ears, and grain filling and was scored on a scale of 1 to 9, where 1 = clean,
uniform, large, and well-filled ears and 9 = ears with undesirable features. Field weight was recorded
as the weight in kg of all de-husked ears (cobs) in the sub-subplot. To determine grain moisture
content, five representative cobs were selected and grains removed from their cobs. The moisture
content of the grains was measured with grain moisture tester (Model PM-450, Kett Electric
Laboratory). Grain vyield in kg ha™ was determined on field weight basis at 15% moisture content,
and 80% shelling percentage was assumed for estimating the grain yield.

2.4. Statistical analysis

Analysis of variance (ANOVA), combined across trial environments was performed on plot
means for the individual traits with PROC GLM in SAS using a RANDOM statement with the TEST
option [23]. In the combined ANOVA, environment (E), and replication nested within E was
considered as random effect for each trait, while N, PD, and genotype (G), and their interactions
were considered as fixed effects, and interactions involving E were considered as independent effect.
Comparison between and within maturity group was achieved by partitioning the G sum of squares
into orthogonal contrasts. Linear regression was fitted to quantify the GYLD and other traits
responses to PD. The proportion of total variation in GYLD accounted for by the different sources of
variation in the combined ANOVA was manually computed by dividing the individual sum of square
of each source of variation by the total sum of square, estimated in percentage. The estimates of
broad-sense heritability (H?) for GYLD were computed for each environment. All the environments
included in the present study revealed an H? value of > 0.30 (Table S1). The H? of GYLD was
estimated as follows:
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H? =

(1)
cé+§
where 092 is the variance attributable to genotypic effects, o’ is experimental error variance.and r =
the number of replicates within each environment [24]. Repeatability (R) estimates of GYLD and
other agronomic traits across environments were calculated on a hybrid-mean basis as follows

according to Falconer and Mackay [25]:
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where cgez is the variance attributable to genotype x environment effects, and e is the number of

environments; o, 6%, and r as defined above.
3. Results
3.1. Field performance of extra-early and early hybrids and repeatability of traits

The combined ANOVA showed highly significant genotype (G), environment (E) and G x E
interaction mean squares for grain yield and all other measured traits (Table 1). The contrast analysis
for the two maturity groups (extra-early vs early maturing hybrids) showed highly significant mean
squares for all the traits (Table 1). The between-group comparison for grain yield accounted for 56%
of the variation among genotypes. The early maturing hybrids consistently out-yielded the extra-
early maturing hybrids in all the agroclimatic zones with an average of 428 kg ha™* (16%) across
environments (Table 2). Furthermore, mean squares of the orthogonal comparison of single-cross (SC)
extra-early versus top-cross (TC) extra-early, and SC early versus TC early (comparison within each
maturity group), were highly significant for grain yield and most traits (Table 1). For each maturity
group, the SC hybrid consistently out-yielded the TC hybrid in all the agroclimatic zones. Across
agroclimatic zones, the SC out-yielded TC by 420, 343 and 381 kg ha* for the extra-early, early
maturing groups and across the maturity groups, respectively.

For plant and ear heights, the extra-early hybrids were consistently taller and had higher ear
placement than the early maturing hybrids in all the agroclimatic zones, except in the MRF zone
where the early hybrids were taller. The TC extra-early hybrid (TZEE-Y Pop DT SRT C5 x
TZEEI 58) was consistently taller and had higher ear placement than the SC extra-early hybrid (TZEEI
29 x TZEEI 21) in all the agroclimatic zones, except in the MRF zone where SC had taller plants and
higher ear placement (Table 2). Conversely, the SC early hybrid (TZEI 124 x TZEI 25) consistently
had taller plants with lower ear placement when compared with the TC early hybrid (TZE-W Pop DT
STR C4 x TZEI 7) in all the agroclimatic zones (Table 2). Also, root lodging was higher for the
extra-early than for the early maturing hybrids, although, the lodging was more pronounced at the
forest than the savanna locations (Table 2). In each maturity group, root lodging was higher for TC
than for SC hybrids (Table 2).
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Table 1. Mean squares from the combined ANOVA and repeatability estimates of GYLD and other traits of extra-early and early maturing
hybrids under varying plant densities and fertility levels at five locations in 2015.

Source of variation DF GYLD EPP PASP EASP ASI DYSK ANTH PLHT EHT RL
Environment (E) 4 13501563.85**  0.324**  137.49** 39.98**  65.53**  733.74**  457.31**  25389.99** = 13200.35**  14464.34**
Rep(Environment) 10  1510848.11** 0.003 0.77 1.88** 1.19 3.75 2.98 279.87* 235.51** 138.65**
Nitrogen (N) 280416.3 0.001 1.61 1.72* 1.10 2.70 1.99 173.47 3191 51.97
Environment x Nitrogen 438288.5 0.018 0.61 0.41 0.24 1.91 2.14 143.89 115.5 28.83
Error a 20  280108.21 0.01 0.81 0.42 0.90 2.61 1.28 89.56 58.21 46.06
Plant density (PD) 1543455.86** 1.239**  76.08** 63.58**  8.05** 15.43** 1.47 63.81 209.73 3665.27**
E xPD 573188.88** 0.075*%*  7.05** 0.85 1.00 3.04 1.97 214.2 104.06 1344.23**
N x PD 124712.16 0.009 0.76 0.12 1.49 2.53 1.46 161.68 34.94 491

E xNxPD 16  88637.08 0.008 0.42 0.27 0.59 0.41 0.6 97.94 39.23 28.3

Error b 60  182528.40 0.01 0.44 0.46 0.61 1.52 1.29 112.47 70.34 25.44
Genotype (G) 3 14851949.75**  0.119**  11.18** 7.63** 37.35%*  204.10** 113.60**  4999.35** 1553.40** 7336.84**
Extra-early vs Early hybrids 1 24725078.86**  0.09** 16.02** 1.78* 39.47*%*  578.67**  260.42**  6734.54** 1703.11** 3634.82**
SC extra-early vs TC extra-early 1 11883076.97**  0.26** 7.50*%* 20.28**  14.70** 4.28 77.87** 4526.41** 580.80** 18335.65**
SC early vs TC early 1 7947693.43** 0.01 10.01** 0.83 57.87**  29.34** 2.50 3737.11** 2376.30** 40.05
GxE 12 1223804.12** 0.011 1.37** 3.37** 3.51** 7.05%* 6.64** 791.13** 321.52** 2238.21**
GxN 79424.77 0.008 0.53 0.81 0.47 0.27 0.56 177.26 180.51* 108.87*

G xPD 261305.19 0.018* 1.12 1.78** 1.37 1.91 1.17 92.02 46.58 316.51**
GXxExN 24 204975.68 0.004 0.5 0.49 0.81 2.86* 1.27 12.5 57.79 74.97*
GxExPD 24 135430.29 0.007 0.87* 0.38 0.97 1.18 0.93 57.89 77.15 81.63**
GxNxPD 12 110498.68 0.004 0.28 0.25 0.39 1.29 0.97 103.26 78.47 41.02
GXExNxPD 48  91815.05 0.007 0.41 0.36 0.69 1.06 1.15 86.86 62.24 29.8

Error c 270 203948.9 0.01 0.53 0.39 0.69 1.75 1.35 133.35 76.09 40.83

R? 0.760 0.785 0.866 0.817 0.767 0.900 0.880 0.811 0.800 0.926

cVv 16.78 9.2 16.73 12.00 65.38 2.49 2.25 6.18 9.51 72.17
Repeatability estimate 0.83 0.54 0.64 0.40 0.79 0.90 0.86 0.69 0.57 0.67

Note: *, ** Significantly different at 0.05 and 0.01 level of probability respectively; DF = Degree of Freedom; GYLD = Grain yield (kg ha™); EPP = Ears per plant; PASP = Plant aspect; EASP = Ear aspect; ASI
= Anthesis-silking interval; DYSLK = Days to silk formation; ANTH = Days to pollen shed; PLHT = Plant height (cm); EHT = Ear height (cm); RL = Root lodging; SC = Single-cross; TC =Top-cross.
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Table 2. Mean performance of grain yield and other agronomic traits of extra-early and

early hybrids evaluated at five locations of five agroclimatic zones of Nigeria in 2015.

Agroclimatic zone/location Genotype GYLD PASP EASP PLHT EHT RL
Rainforest: IKENNE Extra-early maturing hybrids:
TZEEI 29 X TZEEI 21 2446.9 5 1931 944 5
TZEE-Y Pop STR C5 X TZEEI
2082.0 6 206.3 982 24
58
Mean 2264.5 6 199.7 96.3 29
Early-maturing hybrids:
TZE-W Pop DY STR C4 X
2491.3 5 1842 924 8
TZEI 7
TZEI 124 X TZEI 25 2656.4 1927 835 7
Mean 2573.8 1885 880 8
Marginal rainforest: IFE Extra-early maturing hybrids:
TZEEI 29 X TZEEI 21 2654.9 5 208.9 1041 10
TZEE-Y Pop STR C5 X TZEEI
2072.2 6 205.0 989 61
58
Mean 2363.6 6 207.0 1015 36
Early-maturing hybrids:
TZE-W Pop DY STR C4 X
2653.9 6 206.5 105.1 22
TZEI 7
TZEI 124 X TZEI 25 2758.9 218.0 979 20
Mean 2706.4 2123 1015 21
Southern Guinea Savanna: Extra-early maturing hybrids:
MOKWA
TZEEI 29 X TZEEI 21 2808.6 5 1805 776 1
TZEE-Y Pop STR C5 X TZEEI
2403.9 6 190.7 850 7
58
Mean 2606.3 6 1856 813 4
Early-maturing hybrids:
TZE-W Pop DY STR C4 X
3362.6 5 1727 837 2
TZEI 7
TZEI 124 X TZEI 25 3791.2 181.0 7438
Mean 3576.9 176.9 79.3
Northern Guinea Savanna: ZARIA  Extra-early maturing hybrids:
TZEEI 29 X TZEEI 21 3213.3 4 1786 819 O
TZEE-Y Pop STR C5 X TZEEI
2573.4 4 1922 868 6
58
Mean 2893.4 4 1854 844 3

Early-maturing hybrids:

AIMS Agriculture and Food
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Agroclimatic zone/location Genotype GYLD PASP EASP PLHT EHT RL
TZE-W Pop DY STR C4 X
29479 3 4 169.6 808 1
TZEI7
TZEI 124 X TZEI 25 34722 3 4 1724  74.3
Mean 3210.1 3 4 1710 776 1
Sudan Savanna: KADAWA Extra-early maturing hybrids:
TZEEI 29 X TZEEI 21 2310.2 3 5 169.8 1022 0
TZEE-Y Pop STR C5 X TZEEI
cg 22045 3 5 177.6 1059 0
Mean 22574 3 5 173.7 1041 O

Early-maturing hybrids:
TZE-W Pop DY STR C4 X

2211.2 3 5 164.4 1026 O
TZEI 7
TZEI 124 X TZEI 25 2704.0 2 4 170.6 1044 O
Mean 24576 3 5 1675 1035 O

Note: GYLD = Grain yield (Kg ha *); PASP = Plant aspect; EASP = Ear aspect; PLHT = Plant height (cm); EHT = Ear height (cm);
RL = Root lodging.

It is striking to note that both maturity groups received good scores (in the range of 3 and 5) for
plant aspect (PASP) in all the agroclimatic zones, except for extra-early hybrids that received a poor
score (6) in the marginal rainforest (MRF) zone. For ear aspect (EASP), both maturity groups
received poor scores (6) at the two forest locations, and good scores (4 and 5) at the savanna
locations (Table 2). The repeatability estimate of grain yield was 0.83 (Table 1). The repeatability
estimates of other agronomic traits varied from 0.40 for EASP to 0.90 for silking (DYSK) (Table 1).
Most of the measured traits of the hybrids indicated high repeatability estimates (i.e., > 60) across the
three N levels, three plant densities (PDs) and five environments (Table 1).

3.2. Response of grain yield and agronomic traits to plant density

Plant density (PD) mean squares were highly significant for all traits except anthesis (ANTH),
plant height (PLHT), and ear height (EHT). The environment x plant density (E x PD) interaction
had a highly significant effect on grain yield (GYLD), ears per plant (EPP), PASP, and root
lodging (RL). However, plant density x genotype (PD Xx G) interaction and other interactions
involving PD had no significant effect on grain yield and most traits (Table 1).

Across locations, GYLD decreased significantly as PD increased although; the decrease
was only about 6% from the lowest (66,666 plants ha™*) to the highest (133,333 plants ha ™)
density (Table 3). The trend in PD response across genotypes and N rates was different within
locations for grain yield. For each of the two forest locations, grain yields at 66,666 and 88,888
plants ha™* were not significantly different but were significantly higher than grain yield at 133,333
plants ha™*. In contrast, grain yields at the three densities were about the same in each of the three
savanna locations (Tables 3 and 4), suggesting that yield reductions associated with increased PD
were lower in the savannas than in the forest locations. On average across densities, however, the
savanna locations were 357 kg ha™ (about 14.4%) higher yielding than the forest locations.
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The overall grain yield of the hybrids of each maturity group across N rates and locations,
showed a negative linear response to plant density (Figure 1). The predicted maximum grain yield
from the negative linear response to PD was obtained at approximately 66,666 plants ha™ for the
range of plant densities used in this study (Figure 1). Extra-early and early hybrids had similar linear
trends for PD, although, the regression parameters were higher for the early than extra-early
hybrids (Figure 1). Rates of decrease in grain yield related to increased PD were roughly the same
for all hybrids except for the SC extra-early hybrid, TZEEI 29 x TZEEI 21, which had a lower rate
relative to others (Table 4). The R? value (0.0616) for the linear response of TZEEI 29 x TZEEI 21 to
PD was far lower than those obtained from the linear responses of other hybrids (Table 4).

The response of EPP to PD was similar to that of grain yield; that is, it decreased with increased
PD (Table 3). On average across PD, the number of EPP produced in the savanna locations were
about 9% higher than those produced in the two forest locations. The trait (EPP) exhibited a negative
linear response to PD (Table 4). In contrast, the mean values of PASP and RL increased significantly
with increased density, although the mean values were much lower in the savanna than in the forest
locations (Table 3). The respective linear trends in the PD response (averaged across the four hybrids,
three N rates, and five locations) for PASP, EASP, anthesis-silking interval (ASI), and RL were all
positive (Table 4).

The coefficients of determination, R? of the traits ranged from 89.29% for PASP and EASP to
100% for RL (Table 4), indicating high reliability of the linear regression models for the traits.

Table 3. Means of grain yield and some agronomic traits of extra-early and early hybrids
evaluated under varying plant densities in five agroclimatic zones of Nigeria in 2015.

Agroclimatic zone Plant density GYLD EPP PASP RL
Rainforest: IKENNE
66,666 Plants ha™* 2477a 0.96a  5b 5¢
88,888 Plants ha™* 2594a 0.88b  5b 11b
133,333 Plants ha* 2186b 0.72c  6a 17a
LSD at 5% 138 0.04 0.25 2.99
Marginal rainforest: IFE
66,666 Plants ha* 2734a 093  4c 16¢
88,888 Plants ha* 2595a 0.85b  5b 23b
133,333 Plants ha* 2277b 0.70c  7a 44a
LSD at 5% 176 0.03 0.25 5.77
Southern Guinea Savanna: MOKWA
66,666 Plants ha* 3162a 0.96a  4c 2b
88,888 Plants ha * 3098a 0.92a 5b 3ab
133,333 Plants ha* 3015a 0.84b  6a 4a
LSD at 5% 236 0.05 0.35 1.16
Northern Guinea Savanna: ZARIA
66,666 Plants ha* 3032a 0.96a 3a 1b
88,888 Plants ha* 3029a 0.91a 3a 2b
133,333 Plants ha* 3095a 0.77b  3a 4a
LSD at 5% 311 0.05 0.43 1.43

Continued on next page
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Agroclimatic zone Plant density GYLD EPP PASP RL
Sudan Savanna: KADAWA
66,666 Plants ha* 2381a 0.99a 3a Oa
88,888 Plants ha * 2337a 0.96a 3a 0.1a
133,333 Plants ha * 2354a 0.96a 3a Oa
LSD at 5% 160 0.03 0.43 0.09
Plant density combined
66,666 Plants ha ™ 2757a 0.96a 4b 5¢c
88,888 Plants ha * 2731a 0.90a 4b 8b
133,333 Plants ha * 2585h 0.80b 5a 14a
LSD at 5% 104 0.08 0.16 1.23

Note: GYLD = Grain yield (Kg ha™); EPP = Ears per plant; PASP = Plant aspect; RL = Root lodging.

Table 4. Contrast analysis of plant density effect on combined grain yield of four hybrids
in and across five agroclimatic zones, and regression parameters showing the effect of
plant density on the grain yield and agronomic traits of extra-early and early maturing
maize hybrids evaluated in five environments.

Agroclimatic zone DF P1 vs P3 P1 vs P2
Hybrid combined (Grain yield)
Rainforest 1 1532188.0520** 245875.5520
Marginal rainforest 1 3762960.4050** 348578.6640
Southern Guinea Savanna 1 391148.7354 74569.6669
Northern Guinea Savanna 1 71511.3910 132.4894
Sudan Savanna 1 13023.5032 36113.8697
Across agroecologies 1 2664170.4330** 64027.7780
Regression parameters for effect of plant density on grain yield and agronomic traits

Intercept (a-value) b-value £S.E. R?
For each hybrid (Grain yield)
TZEEI 29 x TZEEI 21 2734.5 —0.0005 +0.0019 0.0616
TZEE-Y Pop DT SRT C5 x TZEEI 58 2759.1 —0.005 £0.0001 0.9996
TZE-W Pop DT SRT C4 x TZEI 7 2920.3 —0.002 £0.0006 0.9191
TZEI 124 x TZEI 25 3382.0 —0.003 £0.0008 0.9409
Agronomic traits
EPP 1.1157 —2.4E-06 £1.11E-07 0.9978
PASP 2.7857 1.61E-05 +5.57E-06 0.8929
EASP 3.7857 1.61E-06 +5.57E-06 0.8929
ASI 0.6822 6.14E—06 +1.61E-06 0.9353
RL —3.9998 1.35E-04 +7.52E-10 1.0000

Note: P1 = 66,666 plants ha * P2 = 88,888 plants ha* & P3 = 133,333 plants ha .
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Figure 1. Grain yield response of extra-early and early maturing hybrids to plant density.
Plotted points are observed yields average across hybrids within each group, N rates, and
locations.

Interestingly, EASP and PASP had the same R’ value (89.29%) and the rate of increase in score
value (2E—05) associated with increased PD, but the intercepts were quite different about 3.8 and 2.8
for EASP and PASP, respectively (Table 4).

3.3. Response of grain yield and agronomic traits to N rates

The combined ANOVA showed no statistical significance among the three rates of applied N on
grain yield and all other measured traits (Table 1). The effect of the three N rates for grain yield across
the three plant densities and five environments was the same for all the genotypes (Table 1). Although,
across the four genotypes, three plant densities and five environments, the highest grain (2734.34 kg
ha ') was obtained at 120 kg N ha™*, but was not different statistically with grain yield (2681.43 kg
ha ) obtained at 90 kg N ha* (data not shown). Thus, the hybrids showed no response to N-fertilizer
application rates above 90 kg N ha™. N x PD interaction, as well as all other interactions involving N,
had no significant effect on all the studied traits except in a few cases such as RL (Table 1).

3.4. Partitioning of the total variation in grain yield into its various components

The E, G, and G x E interaction mean squares in that order, were the most important
contributors determining grain yield. Environment, the largest contributor, accounted for 23.5%. The
variance accounted for by the G and G x E interaction sum of squares were 19.4% and 6.4%,
respectively (Table 5). Partitioning of the variance contribution of the genotype sum of square
revealed that orthogonal contrast between maturity groups (extra-early vs early hybrids) accounted
for 55.5%, and within each maturity group accounted for 26.7% (SC vs TC extra-early hybrids) and
17.8% (SC vs TC early hybrids). The N and PD sum of squares accounted for 0.2 and 1.3%,
respectively (Table 5). Thus, the PD sum of square contribution to the total variance in grain yield
was more important relative to that of N. The variance magnitude accounted for by the remaining
components ranged from 0.2% for N x PD and G x N interaction to 6.6% for Rep(Environment) sum
of squares. The summation of the variance accounted for by the three Error terms (i.e., Error a +
Error b + Error c) and replications gave approximately 38%. This proportion of the total Error
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variance was high, particularly, the magnitude of the residual, Error ¢ (24%) (Table 5).

Table 5. Proportion of total variation (%) in grain yield accounted for by the different
sources of variation in a study involving three N rates, three plant densities and four
maize hybrids evaluated in five agroclimatic zones of Nigeria.

Source of variation DF Sum of squares Proportion of variation (%)
Environment (E) 4 54006255.39 23.5
Rep (Environment) 10 15108481.10 6.6
Nitrogen (N) 2 560832.60 0.2
Environment x Nitrogen 8 3506308.02 15
Error a 20 5602164.28 2.4
Plant density (PD) 2 3086911.72 1.3
E xPD 8 4585511.00 2.0
N x PD 4 498848.64 0.2
E xNxPD 16 1418193.29 0.6
Error b 60 10951703.71 4.8
Genotype (G) 3 44555849.25 19.4
Extra-early vs Early hybrids 1 24725078.86 55.5
SC extra-early vs TC extra-early 1 11883076.97 26.7
SC early vs TC early 1 7947693.43 17.8
GxE 12 14685649.47 6.4
GxN 6 476548.62 0.2
G xPD 6 1567831.15 0.7
GXxExN 24 4919416.22 2.1
GxExPD 24 3250327.01 1.4
GxNxPD 12 1325984.19 0.6
GXxExNxPD 48 4407122.31 1.9
Error ¢ 270 55066211.70 24.0
Total 539 229580149.70 100

4. Discussion

In an effort to combat the major stresses (drought, low soil N, and Striga infestation)
constraining maize production in WCA, breeders have developed and commercialized extra-early
and early-maturing maize hybrids that combine high yield potentials with tolerance/resistance to the
stresses and are being adopted by the farmers in the sub-region. Hybrids of both maturity groups are
new to the farmers; therefore, there is a rather urgent need to recommend appropriate agronomic
practices for such hybrids in the whole of WCA. In this study, the lowest density level used (66,666
plant ha™*) and N fertilizer rate applied (90 kg N ha™*) were those presently recommended for the two
maturity groups. The recommendations were based on open-pollinated varieties (OPVs) in the two
maturity groups developed and evaluated in the NGS zones many years ago. It was desirable to
increase the rates for hybrids of these maturity groups to take advantage of the heterosis to increase
production. The results showed that the hybrids were intolerant of high plant densities and could not
take advantage of higher N rates to increase production. The results of this rather preliminary study
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partly confirm and refute existing knowledge, and partly open new areas for further research on the
agronomy of early and extra-early maize in the different agroclimatic zones of WCA. Our study
confirmed the presence of significant differences in the performance of the hybrids both between and
within maturity groups for grain yield and most other traits, as earlier reported by several researchers
who worked in some of the agroecologies used in the present study [26,27 inter alia]. In another
study, Oluwaranti et al., [28] found no significant differences among varieties within maturity groups
for grain yield, vegetative and flowering traits. That study, which involved only OPVs, was
conducted in the two seasons of the MRF agroecology used in the present study. The inconsistency
of their findings with those obtained in the present study could be attributed to the difference in
genetic materials and experimental design or methodology employ.

The significant G x E interaction effect observed for grain yield and other agronomic traits is
another confirmation of existing common global knowledge of maize evaluation trials [21,29-31]. In
this study, the significant G x E interaction mean squares for grain yield was magnitudinal rather
than directional; that is, the differential grain yield performance of the genotypes in all the studied
environments was only in magnitude (differences in the grain yield means) and not in ranking. The
early hybrids were consistently higher yielding than the extra-early hybrids in all of the agroclimatic
zones, even in the Sudan savanna location, a terminal drought-prone environment, where the
extra-early hybrids would be expected to produce higher yield than the early hybrids, which are later
maturing and could have been a victim of the terminal drought. This result was not surprising
because terminal drought did not actually occur during the field evaluation at this location, as shown
by the rainfall data for the location (Table S1).

Partitioning the existing G x E interaction into its components is desirable when efforts are
directed to releasing varieties into the ecologies of their best adaptation. Results of this study clearly
indicated that extra-early hybrids are not better adapted to the Sudan savanna agroecology,
particularly, when drought does not actually occur during the growing seasons at the ecology. In
general, early hybrids are only higher yielding in all agroecologies, including those which have
longer rainy seasons, they are not necessarily better adapted to the ecologies than the extra-early
hybrids. Early maturing hybrids take a longer period to complete necessary physiological processes
and grain filling before physiological maturity than extra-early maturing hybrids. The results of this
study confirmed the existing knowledge of the environmental physiology of maize that extra-early
varieties, including hybrids, are not necessarily more suitable than the early varieties for the
Sudan savanna and, by inference, other terminal drought-prone environments and short rainy
season, such as the late season in the marginal forest agroecology of WCA, unless terminal drought
really occurs [32-34].

Furthermore, the results of this study also, revealed that the yield performance of SC hybrids
was superior to that of TC hybrids irrespective of the maturity group. The grain yield advantage of
SC hybrids over the TC hybrids may be related to the variation in their genetic background and
perhaps in the level of expression of heterosis. This is because SC hybrids give the maximum degree
of heterosis. The higher grain yield performance of the SC hybrids may also be related to the
consistent lower ear placement and reduced root lodging reported in this study (Table 2). Many
researchers have reported that higher ear position could increase the susceptibility to root lodging,
particularly in the extra-early, and consequently, a significant reduction in grain yield [35,36].
Therefore, the relatively lower grain yield of the TC hybrids in the present study may be linked with
the higher ear placement, as well as higher root lodging consistently obtained for these hybrids in all
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the studied environments. Differential performance of the two hybrid types also contributed to the
significant G x E that occurred in the present study. Whereas SC hybrids were about 21% higher
yielding than the TC hybrids at Zaria in the Northern Guinea Savanna (NGS), they were about 17%
higher yielding in the MRF and only about 13-14% better in all other agroecologies (Table 2).

Enhanced adaptation to high PD is key to maize grain yield improvement [29]. Optimization of
plant density and fertilizer levels result in increased grain yield per unit land area. Investigating the
PD and N fertilizer response of commercial hybrids offers invaluable information that can guide
breeders in breeding new cultivars, and or in modelling innovative cropping techniques for grain
yield improvement. In the present study, grain yield and other studied traits showed no significant
response to N application. This result is at variance with the findings of other researchers such as
Ahmad et al. [37], who reported significant differences among eight N rates (0, 30, 60, 90, 120, 150,
180 and 210 kg N ha™'). Al-Naggar et al. [38], also obtained significant differences among three N
rates (0, 285 and 570 kg N ha™); and in another study by Qian et al. [39], significant differences
were similarly obtained among four N rates (0, 150, 300 and 450 kg N ha™). It was particularly
striking that early and extra-early hybrids evaluated in our study did not respond to N fertilizer above
90 kg ha™, whereas those evaluated in earlier studies, especially the more recent studies [37-41],
responded to 150 kg ha™* and higher rates. Because farmers in SSA, on average, apply less than 10
kg N ha* to maize [6,21], IITA and International Maize and Wheat Improvement Centre (CIMMYT)
researchers, along with their national program collaborators are now developing low-N (about 30 kg
N) tolerant maize germplasm. Recent studies by Badu-Apraku et al. [3,21,42], showed that, in
addition to being low-N tolerant, the resulting germplasm had the value addition of being high
yielding at a high level of N, usually 90 kg ha *. The present study was the first attempt at evaluating
such material at N rates higher than 90 kg ha™*. Perhaps the N response in the present study would
have been more informative and adequate, if low N rates such as 0, 30 and 60 kg ha ' had been
included in the study. Seemingly, the greater challenge to maize breeders in SSA now is to develop
hybrids that would respond to high N rates for increased grain yield in commercial farms that can
afford high input levels. By implication, this challenge also extends to density response, along with
the non-significant N x PD interaction mean square for grain yield both of which made it impossible
to determine the response surface combinations of N and PD in our study.

Lack of significant G x PD interaction effect in this study indicated that the hybrids had similar
response of reduced performance in grain yield and other traits as PD increased, a confirmation of
results of earlier studies on the subject-matter [10,39,41]. Generally, the extra-early and early
maturing hybrids were intolerant of high density. Therefore, selection and development of hybrids or
lines under high plant population density may be a promising strategy to improve the tolerance and
adaptation of hybrid maize to higher PD. In contrast to the hybrids, PD response within locations for
grain yield, yield components, and few other agronomic traits varied significantly and this was
indicated by highly significant PD x E mean squares for the traits; a valid justification for extensive
evaluation of density response in multiple environments in order to draw conclusion and before
recommendation could be made.

Across PD, grain yield performance in the savanna locations was about 14.4% higher than in
the forest locations, thereby supporting Badu-Apraku et al. [1] that the savanna agroecologies are the
most favorable environments for maize production in WCA. PASP and EASP score values increased
with increased PD. This suggests that the general plant and ear phenotypic appeal becomes poorer
with increased PD, implying that the owverall plant and ear traits such as uniformity of stand,
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uniformity of plant and ear heights, lodging, resistance or reaction to diseases and pest, general
growth and development of plant and ear, uniformity of ears, and flowering were all influenced by
PD. This appears to be a general response by the plant during the growth and reproductive stages due
to a reduction in photosynthate formed during these stages resulting from intense interplant
competition for growth resources. Similarly, ASI value increased significantly with increased PD.
Results from other researchers have consistently shown that increased ASI is associated with
increased PD due to the increased number of days to silking after anthesis [43-45]. The increased
ASI values associated with increased PD may be related to the stress imposed on the maize plant due
to intense interplant competition for light, water, and nutrients resulting from increased plant
population. Kamara et al. [46] reported that increased ASI is a useful indicator of density stress in
maize and that, by implication, could be an effective trait to use for selecting density-tolerant varieties.

The savanna locations produced a higher number of ears per plant (EPP) than the forest
locations, indicating that barrenness was more pronounced in the forest than in the savanna locations.
This is probably one reason: higher grain yield was obtained in the savanna than forest locations in
this study. Fakorede et al. [47], in yield trials conducted for four years, found that the yield
advantage of the savanna over forest locations was due primarily to ear number. In the present study,
EPP reduced and, by implication, barrenness increased with increased PD. Conversely, root lodging
increased with increased PD. The increased root lodging obtained as PD increased may be attributed
to stress resulting from interspecific competition for growth resources imposed by the increased plant
population density. More so, the magnitude of root lodging was larger in the forest locations than in
the savanna locations, implying that lodging is also largely dependent on the environment. The high
repeatability estimates obtained for grain yield and most agronomic traits across the agroclimatic
zones implied that the expression of the traits would be consistent under the levels of N fertilizer and
plant densities.

Partitioning the total variance of multi-environment trial data into its various components
among experimental factors and their interaction effects offers researchers the convenience to
separate and compare the relative importance of the different variance components. In this study, E
had the largest share of the total variance in grain yield but was only about 4% higher variation than
the G. This is not surprising because the genotypes evaluated were improved cultivars and by
implication optimization of the growing condition of the hybrids may result in a significant
improvement of their grain yield. Also, the variance estimate of G was 13% higher than that of the G
x E interaction. This trend of components of total variance; E > G > G x E has been consistently
observed in earlier studies in WCA [8,42,48,49]. The closeness of G to E in this study is encouraging,
an indication that proper management of the E as done in this study will reduce its masking effect on
the performance of the genotypes. However, the unexpectedly large estimate of the total error
variance obtained in this study suggested that more attention is still needed to minimize
unexplainable sources of error in agronomic trials conducted in WCA. It is a common and routine
practice of agronomists and breeders to conduct yield trials in multi-environments (locations and
years) so as to identify high yielding and stable genotypes. It is, however, challenging that the effects
of various management (M) practices on cultivar adaptation have not been given keen attention.
Improved M practices are essential for improving grain yield particularly when the crop is managed
under high plant population density. High PD generally results in increased inter-plant competition
for growth resources. Such conditions can be improved with best M that involves effective control of
pests, diseases, and weeds, uniformity of plant stands, and consequently, effective utilization of solar
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radiation soil water and nutrients by the maize crop. Breeding and agronomic decisions have
primarily been based on G x E interaction but maize scientists seem to have neglected the
significance of G X E x M.

5. Conclusions

In summary, the DT extra-early and early-maturing maize hybrids were genetically distinct,
with the early maturing hybrids producing higher grain yield than extra-early hybrids in all the
studied environments. Irrespective of the maturity group, the single-cross hybrids expressed greater
yield performance relative to the top-cross hybrids primarily due to the variability in their genetic
background, as well as the lower ear placement and reduced root and stalk lodging associated with
single-cross hybrids. Grain yield advantage of the savanna locations relative to the forest locations
was attributed to the number of ears per plant. The E, G, and G x E were the most important factors
determining variation in grain yield. No significant difference was found for grain yield and other
traits among N rates of 90 to 150 kg N ha™. Plant density, however, was found to affect grain yield
and most of the studied agronomic traits significantly; grain yield and EPP exhibited negative linear
responses, whereas ASI, PASP, EASP, and RL showed positive linear responses to plant density.
The results of our investigation indicated that the genotypes were intolerant of high plant density. We
suggested that breeding programs for the improvement of early and extra-early maize germplasm for
high plant density tolerance should be initiated in the sub-region. The results of this study, however,
showed that 90 kg N/ha and 66,666 plants/ha were optimal for the production of extra-early and
early-maturing maize hybrids across the agroclimatic zones of Nigeria.
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Supplementary Tables

Table S1. Description of trial locations during 2015 growing season and broad sense
heritability (H?) estimates for grain yield.

Location
Parameter Ikenne Ife Mokwa Zaria Kadawa
Soil physical characteristics
Sand (%) 77 81 85 79 73
Silt (%) 14 11 7 8 10
Clay (%) 9 8 8 13 17
Texture Sandy loam  Loamysand Loamysand Sandyloam  Sandy loam
Soil chemical characteristics
Soil pH (water) 5.58 5.23 5.13 5.27 6.18
Organic carbon (%) 0.45 0.68 0.42 0.85 1.33
Total N (%) 0.36 0.14 0.15 1.16 0.63
Auvailable phosphorous (ppm) 17.13 49 44.95 27.88 15
Exch. acidity (cmol/kg) 0.61 0.6 0.68 1.34 0.99
K* (cmol/kg) 0.03 0.04 0.04 0.26 0.32
Na* (cmol/kg) 0.02 0.02 0.02 0.2 0.2
Mg®* (cmol/kg) 0.04 0.05 0.05 0.51 1.13
Ca** (cmol/kg) 0.2 0.21 0.2 1.25 2.14
ECEC (cmol/kg) 0.9 0.91 0.98 3.57 4.78
Climatic characteristics of experimental sites during the 2015 growing season
Annual rainfall (mm) 1489 1286 637 998 635
Total rainfall during field evaluation (mm) 680 608 498 654 608
Average solar radiation (MJ/mZday) 17 17 19 21 21
Average min. temperature (°C) 23 22 23 19 19
Average max. temperature (°C) 29 29 34 32 35
H? 0.66 0.67 0.81 0.48 0.57
Note: ECEC = Effective cation exchange capacity.
Table S2. Description of the hybrids used for this study.
Release Pedigree Year of Country of  Owner Hybrid  Maturity Traits
Name Release Release Type Range
Ifehybrid5 TZEEI 29 x 2013 Nigeria IAR&T/ sSC Extra-early ~ High grain yield,
TZEEI 21 ITA LNT, DT, STR
Sosani TZEE-Y Pop DT 2014 Mali IER/IITA TC Extra-early  High grain yield,
SRT C5 x TZEEI 58 DT, STR
Sammaz TZEI 124 x TZEI 2014 Nigeria IAR/IITA SC Early High grain yield,
41 25 LNT, DT, STR
Suhudoo TZE-W Pop DT 2015 Ghana SARI/CRI/  TC Early High grain yield,
STRCAXTZEI7 IHTA LNT, DT, STR

Note: SC = Single-cross; TC = Top-cross; LNT = Low-N tolerance; DT = Drought tolerance; STR = Striga resistance.
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