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Abstract: The effect of salinity on rice (Oryza sativa L.) cropping systems has been extensively 

studied in controlled experiments, but little is known about the performance of rice varieties to salt 

stress under field conditions. The study's purpose was to examine the effect of salinity on agronomic, 

physiological, and grain quality traits of indica and japonica rice varieties with different sensitivity to 

salt stress in a three-year (2010–2012) field study under Mediterranean conditions. Treatments 

consisted of two salinity levels, i.e., high salinity level (HSL, EC between 3.8 to 6.4 dS m
−1

) and low 

salinity level (LSL, EC between 0.9 and 1.3 dS m
−1

), and eight rice varieties arranged in a 

randomized complete block design in a split-plot arrangement. Rice growth showed an 

inconsistent response across varieties and years, demonstrating the importance of genotype and 

environment on rice response to salinity. The detrimental effect of salinity to rice growth was 

more evident when the weather conditions were favourable for rice production and salt stress 

was the main limiting factor for plant growth. Averaged across varieties, HSL prolonged the time 

to heading by 7 to 14 days compared to the LSL treatment. A considerable decrease of dry matter 

accumulation was observed in salt-sensitive varieties. In addition, salinity stress reduced the 

number of fertile tillers per plant up to 27% and the grain yield up to 50%. The contribution of 

pre-anthsesis assimilates to grain yield was increased due to salinity in two of the three years of 

the experimentation. In tolerant varieties, no differences among salinity levels in grain weight 

were observed. Salinity had less effect on grain quality. Grain length was similar across salinity 

treatments, while there was no consistent correlation between salinity level and grain vitreosity. 

Findings provide suggestive salinity tolerance traits of the studied rice varieties under field 
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conditions that could be exploited for optimizing the performance of rice cropping systems in 

saline soils. 

Keywords: dry matter; grain yield; growth; Indica; Japonica; rice cultivars 

 

Abbreviations: HSL: high salinity level; LSL: low salinity level; EC: electrical conductivity; GY: 

grain yield; DMT: dry matter translocation; DMA: total aboveground dry matter at anthesis; 

DMMv: dry matter of vegetative parts at maturity; DMTE: dry matter translocation efficiency; 

CDMTG: contribution of the dry matter translocation to the grain yield. 

1. Introduction 

Crops are often exposed to various stresses that limit their growth, causing considerable 

reduction in the agricultural production around the world [1]. Soil salinity is one of the most 

common environmental stresses influencing plant growth [2]. Prevalence of soil salinity has serious 

implications for plant growth, ranging from reduced yields worldwide to total crop failure in most 

affected areas [3]. It has been estimated that 20% of the irrigated land (i.e., about 45 million ha), 

producing 33% of the food globally, is affected by salt stress [4]. In the European Union, soil salinity 

influences of around 10 million ha and is considered among the primary reasons for land 

desertification [5]. In Greece, almost 33% of about 0.5 Mha of irrigated land is affected by salinity, 

which has already diminished agricultural potential in affected areas, while in Spain the 

corresponding percentage is 3% [6,7]. 

Several factors, including human activities, are responsible for the salinization of the soil. In 

particular, the over-pumping of ground water to meet current needs of increased water resources 

usually results in seawater flow into the subsoil and the surrounding regions. In addition, soil 

drainage or quality of irrigation water may contribute to salt accumulations in the field [8]. To obtain 

sustainable yield from salt-affected soils, various management practices controlling salinity need to 

be adopted [9]. In the case of rice, the practice of flooding paddy fields reduces soil salinity, as the 

water layer on the soil surface prevents saline water ions from rising [10]. However, the success of 

rice cultivation during the drainage of soils with salinity problems is restricted by the salt sensitivity 

of plants until a sufficient salt concentration reduction has been achieved [11]. 

Crop tolerance to salinity is determined by the level of salinity in the soil surrounding roots 

causing yield losses. Decreased plant development occurs when salt concentration exceeds a critical 

value (the tolerance limit is usually indicated by electrical conductivity, EC), which is derived from 

the saturation extract of the soil at a temperature of 25 ℃ or from the exchangeable sodium content 

of the soil [12]. Rice is the primary crop in coasts and river deltas and is moderately tolerant to soil 

salinity, with NaCl being an essential salt causing the problem of salinity [13]. However, like most 

grain crops, rice is a glycophyte species, showing signs of pressure and decreased grain yield (GY) 

even at EC values less than 3.5 dS m
−1

 [14]. In fact, a salinity value of 3.0 dS m
−1

 is considered 

critical for rice, with a decrease in GY of 12% for each dS m
−1

 beyond this point [15]. 

Although the effect of salinity on rice depends on the stage of plant growth [16], the 

development of rice plants may be affected by salt at any stage of their biological cycle. In particular, 

rice grains may fail or delay to germinate [17] and the crop establishment, the leaf area development, 
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as well as the seed set may be reduced because of soil salinity [18]. Increased soil salinity has been 

reported to reduce plant height [19] and increase kernel sterility [20]. In addition, biomass production 

is closely related to soil salinity [21], most likely because of the impact of salts on the rate of 

photosynthesis and leaf tissues development [22]. 

Grain yield is the result of several components that are seriously affected by soil salinity [23]. 

Water or soil salinity influences the number of panicles per surface unit, the grain weight, the grains 

per panicle and the harvest index (HI) [24,25]. Grain yield losses may occur as a result of decreased 

growth of the vegetative parts and/or as a result of abnormalities in the reproductive process [26]. 

The effect of salinity was reported to be more pronounced during the reproductive period than during 

the vegetative period, and the response of rice plants may be more related to the osmotic part of the 

salt stress [27]. Nevertheless, the degree of the response depends on stress severity and climatic 

conditions, as well as on the degree of genotype tolerance [28,29]. Soil salinity usually occurs in 

field patches causing low and irregular plant density, and delayed plant development [30]. Since 

salinization of the soil is a dynamic process, the measurements of ions, which change over time, vary 

in the soil profile both horizontally and vertically [31], making it difficult to screen plant genotypes 

for salt tolerance under field conditions. Moreover, little is known about varietal differences that can 

be exploited to improve salinity tolerance, especially in rice cropping systems. Thus, additional 

knowledge on this topic may be instrumental in further understanding of salt tolerance mechanisms 

and can facilitate the selection of varieties with improved tolerance to salinity. 

The objectives of this research were to examine the influence of salinity stress on various 

agronomic (e.g., plant height, tiller number, panicle length, GY, and kernel weight), physiological 

(e.g., assimilate translocation to grain) and grain quality (e.g., grain dimensions, total milling yield 

and grain vitreosity) characteristics of different rice varieties under Mediterranean conditions. This 

information is important to improve the management of rice cropping systems and to optimize their 

performance in saline soils. 

2. Materials and methods 

Field trials were conducted at the Experimental Station of the Plant Breeding and Genetics 

Resources Institute in Kalochori (40°33’ N, 23°00’ E, altitude 0 m), Thessaloniki, Greece during 

three growing seasons (2010, 2011, and 2012). The climate in the area is Mediterranean. The 

main weather characteristics (i.e., rainfall and temperature) during each growing season are 

given in Figure 1. The soil is classified as an Aquic Xerofluvents (silty loam) with a slightly 

alkaline pH (7.50) and low organic matter content (1.6%). Eight rice varieties, namely IR28, 

Alexandros (Indica type), Capataz, Chipka, Dimitra, Koral, Kulon, and Selenio (Japonica type), with 

different susceptibility to salinity were used. According to preliminary screening tests, the varieties 

IR28, Alexandros, Dimitra, and Selenio had been classified as susceptible and the varieties Koral, 

Kulon, Chipka, and Capataz had been classified as tolerant to salinity. 

Seeds were sown in pots on 17 May 2010, 13 May 2011, and 17 May 2012. When seedlings 

reached the 5
th

 to 6
th

 leaf stage, they were transplanted by hand at their final positions in flooded 

fields on 28 June 2010, 24 June 2011, and 26 June 2012. After transplanting of seedlings, water 

height in the field remained uniform at about 5 to 10 cm until physiological maturity. The 

experimental area received annually 150 kg Nitrogen (N) ha
−1

 (applied in three increments), 75 kg 

P2O5 ha
−1

 and 75 kg K2O ha
−1

. The first increment of N (55 kg ha
−1

) and all of the P and K were 
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applied prior to transplanting. The second N increment (60 kg ha
−1

) was applied when plants were at 

the tillering stage and the final N increment (35 kg ha
−1

) before the panicle initiation stage. Plants 

were grown under two salinity levels (i.e., low and high). In the low salinity level (LSL) treatment, 

common water management practices, including periodical water renewing for washing the salts 

from the field, were applied [32], while in the high salinity level (HSL) treatment no salts 

washing was performed. The EC in the paddies was measured every week and ranged between 

0.9 and 1.3 dS m
−1

 in the LSL treatment and between 3.8 to 6.4 dS m
−1

 in the HSL treatment (Figure 2). 

Treatments were arranged using the randomized complete block design in a split-plot 

arrangement, with three replications. The salinity levels were considered as the main-plots and the 

varieties as the sub-plots. Each plot composed of three rows of 2 m in length, with a distance 

between rows of 25 cm and between plants on the row of 10 cm. The time required for reaching the 

main phenological stages (i.e., heading and maturity) were recorded. In each plot, plant samples (cut 

at ground level) from an internal row of 1 m in length were collected at anthesis and maturity. Plant 

samples were divided into panicle and vegetative parts (i.e., leaf + stem) at anthesis, while panicles 

were further divided into grain and rachis at maturity. All plant samples were dried in an oven at a 

temperature of 70 ℃ until constant weight and then weighed. Grain yield (adjusted to 14% moisture) 

was determined on the basis of all the central rows of each plot that were hand-harvested and 

threshed with a machine (F. Walter-H. Wintersteiger, KG, Austria). 
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Figure 1. Minimum and maximum mean monthly temperature (℃) and monthly 

precipitation (mm) recorded during the growing seasons in 2010, 2011 and 2012. 

The plant height and the number of productive tillers per plant were measured at maturity on a 

sample of 10 plants per plot. The individual grain weight was also determined at maturity using three 

samples of 100 grains per plot. Grains per panicle was determined on the basis of a sample consisted 

of 10 random plants from an internal row in each plot. Grain number per plant was calculated as the 

ratio of GY and the individual grain weight. The quality characteristics of rice grains, i.e., grain 
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length, the ratio of grain length/width, grain vitreosity, and total milling yield, were determined with 

the digital imaging system SeedCount
TM

 SC4 (Seed Count Australasia, Condell Park, Australia). 
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Figure 2. Electrical conductivity (EC) of paddies in low (LSL) and high (HSL) salinity 

levels during the growing period in 2010, 2011 and 2012. 

The following variables associated with the translocation of dry matter from leaves and stems to 

grain were determined following Ntanos and Koutroubas [33]: 

1. DMT = DMA − DMMv 

2. DMTE = (DMA/DMT) × 100 

3. CDMTG = (DMT/GY) × 100, 

where DMT is dry matter translocation, DMA is total aboveground dry matter at anthesis, 

DMMv is the dry matter of vegetative parts at maturity, DMTE is dry matter translocation 

efficiency, CDMTG is the contribution of the dry matter translocation to the grain yield, and GY is 

grain yield. 

Grain yield was expressed as a function of several yield components (i.e., number of tillers per 

plant, number of grains per panicle and individual grain weight), as well as a function of the final dry 

matter yield and the HI. In these expressions, the net contribution of each yield component to the 

variation among treatments in GY was determined using path analysis according to Moll et al. [34]. 

The statistical analysis of the data was done according to Steel and Torrie [35]. After testing the 

homogeneity of variances, an over years analysis of variance (ANOVA) was performed on data 

using the MSTAT-C (Michigan State University, East Lansing, USA) computer software. Since 

there were several year × treatment interactions, the data were eventually analyzed and reported 

separately for each year. The least significant difference (LSD) test was utilized for comparing 

treatment means. Linear correlation analysis was used to detect the relationships between 

variables. 
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3. Results 

3.1. Meteorological data and crop phenology 

The mean minimum and maximum monthly temperatures and the total precipitation recorded 

during each growing season are presented in Figure 1. There were differences in weather parameters 

among the three years. Despite the yearly differences in rainfall were smoothed out by the presence 

of a permanent water level in the field, the rainfall events during the growing season influenced the 

air temperature. In fact, the weather conditions were generally optimum for the rice development in 

2011 (total seasonal rainfall 282.6 mm and mean seasonal maximum temperature 28.1 ℃). On the 

other hand, the rainfall events during the experimentation in 2010 resulted in more fluctuating 

temperatures, while in 2012 higher temperatures were recorded, particularly during the anthesis stage 

and the grain filling period. Averaged across years, the emergence of seedlings occurred three to 

seven days after sowing, with no differences among varieties. The time from sowing to 50% heading 

was delayed in the HSL treatment in comparison to the LSL treatment. The over years mean time to 

50% heading in the HSL treatment was delayed by 7 days (Koral, Dimitra, Chipka) to 14 days (IR28) 

compared with that observed in the LSL treatment (Figure 3). 
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Figure 3. Time after sowing (days) for the 50% heading of rice grown under low (LSL) 

and high (HSL) salinity levels. Values are means of three years of experimentation and 

three replications (n = 9). Vertical bars represent the standard errors of the means. Within 

each variety, bars with the same letter are not significantly different (P < 0.05) according 

to LSD test. 
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Table 1. Agronomic and grain quality traits of rice as affected by the salinity treatment (LSL, low salinity level; HSL, high salinity level) 

and the variety in 2010. 

Salinity 

treatment 

Variety Grain 

yield 

(g 

plant−1) 

Number 

of tillers 

plant−1 

1000 

grain 

weight 

(g) 

Number 

of grains 

panicle−1 

Total dry 

matter at 

anthesis (g 

plant−1) 

Total dry 

matter at 

maturity (g 

plant−1) 

Harvest 

index 

Plant 

height 

(cm) 

Panicle 

length 

(cm) 

Grain 

length 

(mm) 

Length/width 

ratio 

Total 

milling 

yield (%) 

Grain 

vitreosity 

(%) 

LSL IR28 15.5 6.6 25.4 92.0 17.2 23.0 0.673 82.5 20.4 6.65 2.87 77.3 91.9 

 Koral 9.3 4.7 29.7 65.3 20.7 23.3 0.400 107.4 18.3 6.62 2.40 77.2 92.9 

 Kulon 9.9 4.9 29.9 66.3 16.2 18.3 0.540 75.8 13.7 6.81 2.46 78.9 88.1 

 Alexandros 9.9 6.2 24.3 66.3 18.4 21.0 0.473 76.3 18.4 6.88 3.22 76.5 95.1 

 Dimitra 11.4 7.2 27.7 58.7 18.0 23.0 0.497 85.5 15.5 6.60 2.47 76.9 96.2 

 Chipka 6.8 4.9 22.4 62.7 16.3 16.6 0.410 92.1 15.3 5.73 1.75 71.6 45.1 

 Selenio 8.8 6.1 24.9 58.7 18.4 19.1 0.463 82.3 18.0 5.31 1.83 77.6 99.7 

 Capataz 8.9 8.7 33.0 30.7 21.3 24.5 0.363 92.6 16.7 6.35 2.01 81.3 35.3 

 Mean 10.1 6.2 27.2 62.6 18.3 21.1 0.478 86.8 17.0 6.37 2.38 77.2 80.5 

               

HSL IR28 11.4 8.3 22.4 61.7 18.8 23.2 0.500 81.2 19.7 6.77 3.06 76.3 87.0 

 Koral 6.9 5.1 28.8 46.0 18.9 19.7 0.347 103.1 18.2 6.82 2.59 72.3 98.7 

 Kulon 8.5 5.5 29.7 51.7 16.3 17.2 0.487 75.2 14.3 6.83 2.43 70.1 95.5 

 Alexandros 8.9 6.3 24.3 58.7 18.7 19.5 0.450 76.9 19.6 7.10 3.22 78.4 87.1 

 Dimitra 7.2 6.0 27.0 44.0 19.1 17.4 0.413 80.8 15.4 6.79 2.59 78.2 94.2 

 Chipka 5.2 4.9 29.9 35.7 14.8 13.4 0.390 87.3 14.9 6.01 1.89 77.5 20.2 

 Selenio 6.1 6.5 18.4 50.7 15.5 15.7 0.390 79.8 17.2 5.46 1.90 72.0 98.5 

 Capataz 6.6 7.9 26.7 31.0 16.7 18.7 0.350 85.8 15.8 6.45 2.16 68.4 65.4 

 Mean 7.6 6.3 25.9 47.4 17.3 18.1 0.416 83.8 16.9 6.53 2.48 74.2 80.8 

 LSD0.05† 2.4 0.6 0.1 14.1 1.0 0.2 0.104 3.5 1.6 0.17 0.06 0.7 0.7 

 LSD0.05‡ 3.1 1.5 0.3 14.0 2.3 5.8 0.059 5.2 1.7 0.12 0.06 3.7 1.9 

 LSD0.05§ 3.6 1.4 0.3 18.1 2.3 5.5 0.108 5.7 2.1 0.19 0.08 3.5 1.8 

Source of variation              

Salinity Level (S) * NS ** * NS ** NS NS NS NS * ** NS 

Variety (V)  ** ** ** ** ** ** ** ** ** ** ** NS ** 

S × V  NS NS ** NS ** NS ** NS NS NS ** ** ** 

CV (%)  21.1 14.0 0.6 15.3 7.8 17.8 7.9 3.6 6.0 1.1 1.4 3.0 5.8 

Note: † Least significance difference for comparing salinity treatment means averaged across varieties; ‡ Least significance difference for comparing variety means in the same salinity treatment; § Least 

significance difference for comparing two variety means in different salinity treatment; *, ** Significant at 0.05 and 0.01 probability level, respectively; NS, Non-significant; CV, coefficient of variation. 
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Table 2. Agronomic and grain quality traits of rice as affected by the salinity treatment (LSL, low salinity level; HSL, high salinity level) 

and the variety in 2011. 

Salinity 

treatment 

Variety Grain 

yield  

(g plant−1) 

Number 

of tillers 

plant−1 

1000 

grain 

weight 

(g) 

Number 

of grains 

panicle−1 

Total dry 

matter at 

anthesis (g 

plant−1) 

Total dry 

matter at 

maturity (g 

plant−1) 

Harvest 

index 

Plant 

height 

(cm) 

Panicle 

length 

(cm) 

Grain 

length 

(mm) 

Length/ 

width 

ratio 

Total 

milling 

yield 

(%) 

Grain 

vitreosity 

(%) 

LSL IR28 26.6 11.4 25.8 91.3 17.6 38.0 0.700 75.1 20.4 6.63 2.84 80.7 96.6 

 Koral 19.7 7.3 33.0 84.0 20.1 34.5 0.570 89.8 17.3 6.50 2.34 88.4 96.9 

 Kulon 18.6 6.3 30.2 97.7 17.7 26.6 0.697 68.8 13.8 6.83 2.40 88.9 88.9 

 Alexandros 18.8 7.5 27.3 93.0 16.4 28.0 0.670 68.3 18.8 7.28 3.20 84.8 96.3 

 Dimitra 20.0 6.8 31.2 95.7 16.5 30.4 0.660 72.9 14.8 6.56 2.43 87.2 96.2 

 Chipka 20.6 7.0 32.9 90.7 17.4 33.8 0.610 73.2 14.6 5.74 1.74 87.3 47.2 

 Selenio 16.0 6.9 25.3 95.3 17.4 25.1 0.633 69.7 15.9 5.33 1.79 86.7 99.6 

 Capataz 29.3 12.5 35.2 66.7 20.5 47.1 0.623 77.4 16.7 6.20 1.92 87.7 38.6 

 Mean 21.2 8.2 30.1 89.3 17.9 33.0 0.645 74.4 16.5 6.38 2.33 86.5 82.6 

               

HSL IR28 17.9 11.9 23.2 68.7 18.1 28.8 0.623 76.6 19.7 6.57 2.95 77.3 99.5 

 Koral 8.6 5.5 29.3 58.7 20.5 16.9 0.510 88.7 16.7 6.88 2.55 80.1 98.6 

 Kulon 9.8 5.7 27.8 64.3 16.5 16.3 0.607 66.7 13.9 6.84 2.47 86.5 99.4 

 Alexandros 12.2 5.8 25.4 81.7 18.1 18.7 0.640 74.2 18.7 7.06 3.24 80.0 77.6 

 Dimitra 7.4 7.0 27.9 40.0 18.4 13.5 0.553 72.1 14.8 6.77 2.58 80.6 92.3 

 Chipka 9.4 6.3 23.4 67.0 14.5 15.7 0.607 63.9 18.3 5.99 1.82 83.6 19.4 

 Selenio 8.9 6.3 21.8 67.3 16.3 13.1 0.683 72.0 16.3 5.41 1.83 84.3 97.9 

 Capataz 10.7 9.5 29.2 38.7 16.4 22.9 0.470 79.4 14.4 6.49 2.07 84.6 43.2 

 Mean 10.6 7.2 26.0 60.8 17.4 18.2 0.587 74.2 16.6 6.50 2.44 82.1 78.5 

 LSD0.05† 1.0 1.3 1.6 3.5 2.7 5.7 0.111 2.5 0.3 0.12 0.07 2.5 3.0 

 LSD0.05‡ 3.8 2.7 2.6 30.8 1.9 5.1 0.094 6.2 1.9 0.18 0.08 2.4 4.0 

 LSD0.05§ 3.7 2.8 2.8 29.0 3.0 7.0 0.131 6.2 1.8 0.20 0.10 3.1 4.5 

Source of variation              

Salinity Level (S) ** NS§ ** ** NS ** NS NS NS NS * * * 

Variety(V)  ** NS ** NS ** ** ** ** ** ** ** ** ** 

S × V  ** ** ** NS ** ** NS NS ** ** NS ** ** 

CV (%)   14.4 21.0 5.6 24.6 6.5 12.0 9.2 5.0 6.8 1.7 2.1 1.7 12.1 

Note: † Least significance difference for comparing salinity treatment means averaged across varieties; ‡ Least significance difference for comparing variety means in the same salinity treatment; § Least 

significance difference for comparing two variety means in different salinity treatment; *, ** Significant at 0.05 and 0.01 probability level, respectively; NS, Non-significant; CV, coefficient of variation. 
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Table 3. Agronomic and grain quality traits of rice as affected by the salinity treatment (LSL, low salinity level; HSL, high salinity level) 

and the variety in 2012. 

Salinity 

treatment 

Variety Grain 

yield  

(g 

plant−1) 

Number 

of tillers 

plant−1 

1000 

grain 

weight 

(g) 

Number 

of grains 

panicle−1 

Total dry 

matter at 

anthesis  

(g plant−1) 

Total dry 

matter at 

maturity  

(g plant−1) 

Harvest 

index 

Plant 

height 

(cm) 

Panicle 

length 

(cm) 

Grain 

length 

(mm) 

Length/ 

width 

ratio 

Total 

milling 

yield 

(%) 

Grain 

vitreosity 

(%) 

LSL IR28 11.7 9.2 23.9 53.3 17.5 21.7 0.540 93.8 20.5 6.63 2.91 77.0 87.3 

 Koral 9.2 4.9 30.0 63.0 17.7 19.2 0.477 103.2 16.9 6.68 2.42 81.9 88.8 

 Kulon 13.3 7.8 30.4 56.7 17.7 23.6 0.563 80.4 14.6 6.81 2.43 80.7 87.4 

 Alexandros 9.6 7.0 22.4 62.0 16.1 17.2 0.553 72.7 15.4 6.88 3.22 78.6 93.9 

 Dimitra 11.0 8.1 27.3 49.7 17.3 19.1 0.577 85.2 12.6 6.64 2.51 80.5 96.2 

 Chipka 8.7 4.5 28.6 67.0 16.6 16.7 0.523 105.5 15.1 5.74 1.77 83.2 43.1 

 Selenio 8.4 7.5 22.1 50.0 18.1 14.8 0.560 84.0 14.4 5.30 1.84 81.1 99.7 

 Capataz 9.1 9.5 33.6 28.3 20.4 19.4 0.467 89.3 11.4 6.37 2.01 82.3 32.1 

 Mean 10.1 7.3 27.3 53.8 17.7 19.0 0.533 89.3 15.1 6.38 2.39 80.7 78.6 

               

HSL IR28 9.8 8.6 23.5 48.3 18.5 19.7 0.497 82.9 18.1 6.98 3.04 76.7 86.1 

 Koral 8.2 3.6 30.2 75.0 19.0 15.6 0.517 102.3 15.0 7.00 2.55 81.2 98.5 

 Kulon 9.5 4.7 28.2 71.3 16.1 15.7 0.603 71.5 11.3 6.89 2.42 82.4 90.1 

 Alexandros 8.7 6.2 24.3 57.7 19.0 17.3 0.507 72.4 15.8 7.18 3.19 78.6 91.7 

 Dimitra 9.8 5.2 28.0 68.3 16.9 17.7 0.567 84.2 12.6 6.89 2.59 79.2 91.7 

 Chipka 8.0 3.4 30.9 75.0 14.3 16.0 0.510 98.7 16.5 5.97 1.84 82.8 19.4 

 Selenio 6.3 4.2 24.2 61.7 14.9 13.1 0.500 77.5 13.4 5.46 1.84 81.4 99.8 

 Capataz 5.7 6.5 31.4 28.3 16.7 14.1 0.407 86.3 12.9 6.42 2.19 79.7 83.8 

 Mean 8.2 5.3 27.6 60.7 16.9 16.2 0.513 84.5 14.5 6.60 2.46 80.3 82.7 

 LSD0.05† 1.4 0.3 0.5 10.1 0.2 5.3 0.169 7.5 1.9 0.05 0.06 3.1 3.7 

 LSD0.05‡ 2.6 1.1 1.6 16.0 2.1 4.3 0.072 6.1 2.8 0.13 0.07 2.5 4.8 

 LSD0.05§ 2.7 1.1 1.5 17.3 1.9 6.2 0.171 8.8 3.1 0.13 0.09 3.6 5.5 

Source of variation              

Salinity Level (S) * ** NS NS ** NS NS NS NS ** * NS * 

Variety(V)  ** ** ** ** ** ** ** ** ** ** ** ** ** 

S × V  NS§ ** ** NS ** NS NS NS NS * ** NS ** 

CV (%)  16.7 10.6 3.4 16.7 7.1 14.6 8.2 4.2 11.4 1.2 1.7 1.9 14.8 

Note: † Least significance difference for comparing salinity treatment means averaged across varieties; ‡ Least significance difference for comparing variety means in the same salinity treatment; § Least 

significance difference for comparing two variety means in different salinity treatment; *, ** Significant at 0.05 and 0.01 probability level, respectively; NS, Non-significant; CV, coefficient of variation. 
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3.2. Dry matter accumulation, partitioning and translocation 

Total aboveground dry matter at anthesis stage was, on average, comparable across the three 

years. The corresponding value at maturity was higher in 2011 than in the other two years. Averaged 

across varieties, the HSL tended to decrease dry matter at anthesis and maturity stages compared 

with the LSL treatment; however, the differences among treatments were significant at maturity in 

2010 and 2011 (P < 0.01, Tables 1 and 2) and only at anthesis in 2012 (P < 0.01, Table 3). In 

particular, total dry matter at anthesis in 2012 was lower for the stressed plants, resulting in an 

average reduction of 4.5% across varieties relative to that achieved in the non-stressed plants. An 

exception to this trend was observed for the variety Alexandros, which accumulated 15.3% more dry 

matter in the HSL treatment than in the LSL treatment. Moreover, plants under salinity stress tended 

to have lower plant height than those grown under no salinity stress, with the differences being 

significant (P < 0.05) for the varieties Capataz (in 2010), Chipka (in 2011) as well as for IR28 and 

Kulon (in 2012) (Tables 1–3). 
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Figure 4. Response of (a) dry matter accumulation at maturity (DMA), (b) dry matter 

translocation (DMT), (c), dry matter translocation efficiency (DMTE), and (d) 

contribution of pre-anthesis assimilates to grain yield (CDMTG) of rice as affected by 

the salinity (LSL, low salinity level; HSL, high salinity level) and the year of the 

experimentation. Each bar represents a mean value derived from eight varieties and three 

replications (n = 24). Vertical bars represent the standard errors of the means. Within 

each year, bars with the same letter are not significantly different (P < 0.05) according to 

LSD test. 

Plants in the HSL treatment had, on average, higher DMT than those in the LSL treatment in 

2011 and 2012, while a reverse trend was observed in 2010 (Figure 4). Regarding the DMTE, the 

trend was similar to that of DMT, but the differences between treatments were not significant in any 

year. By contrast, the CDMTG had higher values under salinity stress in all years. The HI ranged 

from 0.45 (in 2010) to 0.62 (in 2011) and was not affected by the salinity level (Tables 1–3). The 
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contribution of HI to the variation among treatments in GY was low (12.5%) compared with that of 

biomass production (87.5%) in 2011 (Table 4). The corresponding values were closer in 2010 

(51.9% vs. 48.1%) and in 2012 (31.7% vs. 68.3%). 

Table 4. Contribution of the component trait to the resulting trait for rice grown in low 

salinity level (LSL) and high salinity level (HSL). 

Resulting trait Component trait Σxiyi (Σyi
2
)

 −1
 

  LSL HSL 

Y1 log grain yield (g plant
−1

) X1 log tillers plant
−1

 0.761 0.460 

 X2 log grains panicle
−1

 0.108 0.681 

 X3 log grain weight (g) 0.131 −0.142 

Y2 log grain yield (g plant
−1

) X4 log biomass (g plant
−1

) 0.698 0.667 

 X5 log HI (g g
−1

) 0.302 0.333 

3.3. Grain yield and yield components 

Salinity reduced GY and the degree of the reduction depended both on the variety and the year. 

Averaged across varieties, the reduction of GY due to salinity was 25% in 2010 (Table 1), 50% in 

2011 (Table 2) and 19% in 2012 (Table 3). When the HSL and the LSL treatments were compared, 

the percentage of yield reduction due to salinity stress was lower for the varieties Alexandros (10%) 

and Kulon (14%) in 2010, IR28 (33%) and Alexandros (35%) in 2011, and Chipka (8%) and 

Alexandros (9%) in 2012. 

The number of the reproductive tillers per plant was reduced significantly by salinity only in 

2012 (Table 3); the magnitude of the reduction was 44% in Selenio, 40% in Kulon, 36% in Dimitra, 

32% in Capataz, 27% in Koral and 24% in Chipka. In both salinity levels, the number of tillers per 

plant was positively correlated with GY (r = 0.77, P < 0.01 in LSL and r = 0.69, P < 0.01 in HSL) 

and with final dry matter yield (r = 0.74, P < 0.01 in LSL and r = 0.84, P < 0.01 in HSL).  

The number of grains per panicle was significantly affected by salinity in 2010 (Table 1) and in 

2011 (Table 2). The percentage of reduction was, on average, 24% and 32%, respectively. The 

response of grains per panicle to salinity was not similar across varieties. The variety Alexandros had 

the lowest reduction due to salinity stress (11% in 2010 and 12% in 2011), while the highest 

reductions were observed in varieties IR28 (33%), Koral (30%) and Chipka (43%) in 2010 and in 

varieties Kulon (34%), Dimitra (58%), Selenio (29%) and Capataz (42%) in 2011. 

Salinity resulted in lower grain yield in 2010 (Table 1) and in 2011 (Table 2) compared with the 

non-stressed plants, while in 2012 the grain weight was similar across treatments (Table 3). The over 

varieties mean reduction of grain weight because of salinity was 5% in 2010 and 14% in 2011. The 

varieties Alexandros and Kulon in both years and the variety IR28 in 2011 had no significant 

differences between the salinity levels, while the variety Chipka in 2010 had higher grain weight 

under salinity stress than under non-stressed conditions. 

In the absence of salinity, GY was correlated with the number of tillers per plant (r = 0.59, P < 

0.01), the number of grains panicle
−1

 (r = 0.66, P < 0.01), the grain weight (r = 0.39, P < 0.01), the 

HI (r = 0.74, P < 0.01), and the final dry matter yield (r = 0.94, P < 0.01). In addition, under salinity 

stress GY was significantly correlated with the number of tillers per plant (r = 0.55, P < 0.01), the 
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grain weight (r = 0.61, P < 0.01), the final dry matter yield (r = 0.79, P < 0.01), and the HI (r = 0.55, 

P < 0.01). 

Ιn the HSL treatment, the variation in GY among varieties was primarily due to the variability 

of the number of grains per panicle rather than to that of the number of tillers per plant (Table 4). On 

the contrary, in the LSL treatment the contribution of the tiller number per plant to the GY variation 

among varieties was much higher compared with that of the grains number per panicle. Moreover, 

most of the variation among varieties in GY was due to the differences in total dry matter yield 

(69.8% in LSL and 66.7% in HSL) rather than to the differences in HI (30.2% in LSL and 33.3% in 

HSL) (Table 4). 

3.4. Grain quality traits 

Grain length, a component of the appearance quality of rice, was significantly affected by 

variety in 2010 (Table 1), by variety and variety × salinity interaction in 2011 (Table 2), and by 

variety, salinity level, and their interaction in 2012 (Table 3). In all years and levels of salinity, grain 

length was the longest in variety Alexandros and the shortest in Selenio. Compared with plants 

grown under LSL, HSL treatment resulted in longer grains in 2012. Except for the varieties Kulon 

and Capataz, the grain length was increased significantly when the salinity level increased. The ratio 

of grain length and width tended to increase in plants under salinity stress compared with that 

obtained in the non-stressed plants. However, the response of grain length-to-width to the salinity 

level was not consisted across varieties. No differences between salinity levels in grain length-to-

width were observed for the varieties Kulon, Alexandros and Selenio in all years, for Chipka in 2011 

and 2012, and for Dimitra in 2012 (Tables 1–3). 

The over varieties mean total milling yield in the HSL treatment was lower than that obtained in 

the LSL treatment in 2010 (Table 1) and 2011 (Table 2), while was not affected by the salinity level 

in 2012 (Table 3). The response of varieties regarding the total milling yield to salinity level was not 

consistent across years. In 2010, the total milling yield of the varieties IR28, Alexandros and Dimitra 

were not affected by salinity level. However, salinity stress reduced the total milling yield of the 

varieties Koral, Kulon, Selenio and Capataz and increased total milling yield of the variety Chipka. 

On the contrary, in 2011 the salinity level did not affect the total milling yield of the varieties Kulon, 

Selenio and Capataz, while the HSL treatment reduced the total milling yield of the other varieties. 

No differences between the salinity treatments were observed for the over varieties mean grain 

vitreosity in 2010. Grain vitreosity of plants grown in the HSL treatment was reduced in 2011 and 

increased in 2012 compared with those grown in the LSL treatment, while no differences between 

treatments were observed in 2010. The response of individual varieties to salinity was not consistent 

across years of the experimentation (Tables 2 and 3). 

4. Discussion 

Salinity is an important abiotic stress which limits crop production. Several studies, the majority 

of which have been conducted under controlled environmental conditions, have shown the negative 

effects of salinity on rice crop [27,36,37]. The present three-year field study revealed considerable 

influence of salinity stress on the agronomic performance, as well as on several physiological and 
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grain quality traits of rice. However, the response of plants was not consistent across varieties and/or 

years, demonstrating the considerable effect of genotype and environment on rice response to salinity.  

Salinity stress had a remarkable effect on phenological development of rice. In fact, the HSL 

treatment prolonged the time to heading by 7 to 14 days compared with the LSL treatment. Similarly, 

Fraga et al. [38] found that the use of salt water for irrigation purposes prolonged the life cycle of 

rice by 17 days. Furthermore, Castillo et al. [27] reported that the higher the EC, the greater the 

elongation of the biological cycle of the plant. On the contrary, in cereal crops other than rice, such 

as wheat, the duration of spikelet primordium initiation was shortened due to salinity [39]. 

The effect of salinity on plant growth, as it was assessed by the DMA, was also evident in the 

present study. Plants grown under salinity stress generally tended to accumulate lower dry matter in 

the aboveground parts at both samplings (i.e., anthesis and maturity) compared with the non-stressed 

plants. A different response was observed for the variety Alexandros, which showed similar DMA 

across salinity treatments. This is probably since Alexandros is a local variety, well adapted in 

conditions in which the experiments were conducted. Thus, despite that Alexandros was found to be 

susceptible in the preliminary tests, it showed salinity tolerance traits under field conditions, such as 

increased early DMA [40]. Besides, it is well known that moderately tolerant genotypes may show 

susceptibility in greenhouse test [41]. In addition, the response of rice to salinity in the present study 

was also affected by the environmental conditions and was more evident when the air temperature 

was favorable for rice production (e.g., in 2011), and therefore salt stress was the major limiting 

factor for plant growth. 

Grain yield is a complex characteristic resulting from a series of physiological and biochemical 

processes that occur during the crop cycle [42]. It may be expressed in terms of several yield 

components, such as the number of fertile tillers, the number of grains per panicle and the individual 

grain weight. In some cases, the HSL treatment induced a reduction up to 27% in the number of 

fertile tillers per plant. Similarly, several studies have shown high rates of decrease in the number of 

tillers due to salinity, ranging from 34.9% to 51.4%, compared with plants grown in a non-saline 

environment [43,44]. However, the variety Alexandros exhibited again a salinity tolerance performance, 

with no significant reduction in the number of tillers across salinity levels in either year (Tables 1–3). 

One explanation for this response may be that high tillering ability is considered a plant adaptation 

mechanism [19], since the salts are allocated to higher shoot dry weight and, hence, their toxic effect 

is decreased [24]. Overall, the losses in rice GY due to salinity in the present study (19 to 50%) were 

comparable to those reported in other studies [45,46]. 

Several physiological characteristics, such as biomass production and partitioning of 

assimilates within plants, have been identified as critical determinants of seed yield in different 

crop species [47,48]. In the present study, the variation in GY among varieties was mainly explained 

by the differences in rice biomass at maturity. Moreover, different yield components were identified 

as decisive for the formation of GY in each salinity treatment. Indeed, in plants grown under 

salinity stress the differences in number of grains per panicle accounted for most of the variation in 

GY (68.1%). On the contrary, in non-stressed plants the variation in GY (76.1%) was primarily due 

to the differences in number of tillers per plant. However, the negative correlation detected between 

the number of grains per panicle and the number of fertile tillers suggests a compensatory 

relationship between these two traits in accordance with previous reports [49]. 

The HSL treatment tended to enhance the DMT to grains, probably due to the suppression of 

plant photosynthesis during the later growth stages compared with the LSL treatment. These results 
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agree with previous studies, which have reported that the DMT increased in rice plants grown under 

abiotic stresses [50,51]. Concerning biotic stresses, Koutroubas et al. [47] revealed that rice plants 

grown under high disease intensity caused by the blast fungus (Magnaporthe grisea (Hebert) Barr, 

anamorph: Pyricularia oryzae Cavara) translocated less pre-anthesis assimilates to the grains than 

plants grown under low disease intensity. In the present study, the high DMT was followed by 

increased DMTE, indicating that the ability of rice plants to translocate assimilates to grain (i.e., 

translocation efficiency) was an important factor determining the net amount of DMT. The DMT 

contributed up to 72% to the GY of the non-stressed plants and even more in plants under salinity 

stress, indicating the importance of pre-anthesis redistribution within plants for GY formation of rice 

under Mediterranean conditions. This value is considerable higher than the value of 42% reported for 

rice in the same area [33]. The discrepancy between these studies may be due to the different 

varieties used or the different weather conditions prevailed during the experimentation.  

Overall, in the varieties less affected by salinity, both the tillering ability and the early dry 

matter accumulation were maintained almost unchanged across salinity levels. This adaptation 

supported the translocation of assimilates from the vegetative parts to the grain during the filling 

period, thus reducing the loss of grain yield due to the presence of salt. These findings provide 

suggestive tolerance traits that can be used to improve the efficiency of rice growing systems in 

saline soils. 

Rice quality is very important for all those involved in the process of production, processing, 

handling and consumption of rice, as it affects not only the nutritional, but also the commercial value 

of the seeds [52]. In the present study, the traits of grain quality were less influenced by the salinity 

level, in contrary to what was observed for the agronomic traits. Furthermore, the effect of salinity 

on grain quality was not consistent throughout the years of the experimentation. Except for 2012, 

grain length was similar across treatments and remained constant, even when the salinity level was 

increased. This was probably an adaptive response of rice to salt stress for compensating the 

reduction of GY. Enhanced caryopsis dimensions under salt stress have been reported by 

Thitisaksakul et al. [53]. On the contrary, Denis et al. [54] reported a reduction of grain size when 

rice plants were grown in high salt concentration. 

The enhanced grain transparency, which is expressed by the percentage of vitreosity of the 

white grain, is one of the desirable traits of rice grain [55]. No constant association between salinity 

stress and grain vitreosity was observed in the present study. In addition, grain vitreosity varied 

greatly among years of the experimentation, demonstrating the decisive influence of the 

environmental conditions in the presence of pearl in the grain. Indeed, it is well known that grain 

vitreosity is genetically regulated, but it is also influenced by the fluctuations of the night air 

temperature during grain filling [56]. Grain vitreosity has been reported to be negatively correlated 

with the length and length-to-width ratio of the grains, and positively with their width [52]. No 

constant associations between grain vitreosity and grain dimensions were found in the present study. 

5. Conclusions 

The present study confirmed the importance of varietal choice as one of the most essential 

practices to limit the effect of salinity on rice. The influence of salinity was more pronounced on 

agronomic traits, such as heading time and grain yield, than on grain quality traits. Salinity stress 

prolonged the time to heading and reduced the grain yield mainly by reducing the number of grains 
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per panicle. Under salinity stress, an increased translocation of pre-anthesis assimilates to the grains 

was observed. In terms of grain quality, grain length was generally similar across salinity treatments, 

while grain vitreosity was primarily determined by the environment. Findings provide additional 

knowledge on rice response to salinity under field conditions that could lead to better exploitation of 

saline soils for the production of this crop, minimizing economic losses for rice growers. This is 

particularly important for the Mediterranean region, where flooded rice is commonly cultivated in 

river deltas and coastal areas with a status of elevated soil salinity. 
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