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Abstract: Lactic acid bacteria (LAB) inocula play a key role in the preservation and fermentation 

of forage crops within inoculated silages. LAB is a significant group of the bacterial community as 

they successfully reduce pH, inhibit the survival of undesirable microorganisms and control 

nutrient loss in fermented silage. Ensiled plants and metabolites such as simple plant carbohydrates 

have been utilized by LAB (homo-fermentative and hetero-fermentative LAB) to initiate the 

production of organic acids including lactic and acetic acids. LAB as a biological silage additive 

provides stable feed value and secondary metabolic products during rapid anaerobic primary silage 

fermentation. They are able to ferment a large number of forage crops and also to reduce pH levels 

in fermented forages, which helps to suppress the growth of spoilage microorganisms. Furthermore, 

silage inoculants can enhance silage quality, nutritional recovery and shelf life of the inoculated 

product. When ingested silage, Lactobacilli in the rumen may degrade secondary plant metabolites 

as part of the rumen microbiota, along with endogenous enzymes. Also, the forages harvesting 

time are key factors in the development of essential metabolites particularly carbohydrates and 

proteins which is essential nutrition for LAB survival and production of organic acids. The higher 

population of LAB could reduce the pH faster and control of deleterious microbial growth in silage. 

This review presents LAB function in silage production and the potential impacts of its 
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fermentative activity. In addition, the advantage of LAB additives in silage production is discussed, 

with a focus on recent literature. 
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1. Introduction 

Recent research on lactic acid bacteria (LAB) has enhanced our understanding of their many 

advantageous properties; they can be used as biopreservatives, feed grade enzymes, veterinary 

medicines, health care products and, especially, food and beverage additives [1–4]. Lactobacilli are a 

fermentative, facultative anaerobe that is one of the first-evolving groups of bacteria to have 

beneficial effects for both humans and animals. LAB have been used as bio-additives in ensiling 

forage to improve fermentation and preserve nutritional content. Silage results from fermentation of 

a green chopped forage crop and storage of the product with removal of O2 in a silo (ensiling). 

Ensiled forages contribute 40–60% of all nutrients for livestock animals. The process involves a 

wide range of factors, including plant cultivation, harvesting and storage practices [5,6]. Lactobacilli 

play a critical role in preservation of silage nutrient quality through production of organic acids and 

inhibition of deleterious spoilage from the remaining microbial community. Also, LAB effectively 

controls secondary fermentation within inoculated forages [7]. In silage, secondary fermentation is 

an undesirable acidification that is carried out mainly by Enterobacteria, Clostridia (butyric acid 

producer), and yeasts (ethanol producer). 

LAB utilize water-soluble carbohydrates (WSC) and convert them into mixtures of organic 

acids. The use of LAB in starter cultures can enhance feed quality while minimizing the loss of 

nutrients (such as carbohydrates, crude proteins, volatile free fatty acids and minerals). The use of 

selected LAB additives enhances the fermentation process, leading to control of dry matter (DM) 

loss and pathogenic activity [8]. In silage production, homofermentative LAB are used most broadly 

due to the high amounts of lactic acid production that occur during fermentation (by e.g: 

Lactobacillus, Pediococcus, Streptococcus spp., and Enterococcus). Currently, many researchers are 

using heterofermentative LAB (e.g: Leuconostoc spp. and some Lactobacillus strains) as silage 

additives with a view towards production of acetic acid and butanol for fuel production [9–11]. 

Silage microflora can be categorized into two main groups, desirable and undesirable organisms. 

LAB are desirable microbes, while undesirable microorganisms (Enterococcus, yeast and molds) can 

cause anaerobic or aerobic spoilage during silage fermentation. These undesirable epiphytic 

microorganisms can decrease the nutritional quality of the silage and also affect animal health and/or 

milk production [12,13]. Silage additives can be classified into six main groups: homofermentative 

LAB (hoLAB), heterofermentative LAB (heLAB), customized inoculants (such as hoLAB + heLAB), 

chemicals, and enzymes. The hoLAB quickly decrease pH and increase lactic acid production in corn, 

sorghum, and sugarcane silages [14]. Also, the LAB suppresses the growth of undesirable 

microorganisms and thus reduce proteolysis and DM loss in early fermentation [15]. Blajman et al. [16] 

reported that LAB inoculation reduces undesirable yeast and mold growth in treated silage, and 

improves aerobic stability and LAB count in corn silage. However, the effect is highly dependent on 

the types of inoculants (hoLAB or heLAB) used during silage fermentation. Also, Oliveira et al. [17] 
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explored meta- analysis using silage, LAB species, and silo scale (laboratory or farm-scale) as 

important factors that determine silage quality. 

In recent decades, silage research has driven novel innovations by private companies, which have 

experimented with silage inoculums, forage harvesters and plastic films for making in silos [5,18]. In 

addition, recent silage research has addressed the different parameters of the process, including 

biochemical, microbiological, agronomical and nutritional aspects. The purpose of silage production 

is to preserve the nutritional value and original energy content of the forage. Energy loss may occur 

as a result of many factors, such as field loss, harvesting-related loss, secondary metabolism during 

fermentation of ensilage material, aerobic spoilage and oxidation when the silage is unwrapped to 

serve to ruminants [19]. Aerobic spoilage is mainly associated with penetration of O2 into the silage 

during the storage or feeding period. The nutritional composition and feed value of the silage is 

dependent on the effectiveness of the silage inoculums in the fermentation process. Proper 

production and management of silage is very important since contaminated or poorly prepared silage 

can host undesirable organisms, such as Listeria monocytogenes, Bacillus spp., Clostridium spp., 

Salmonella, Lactococcus and molds [5]. Growth of pathogenic organisms in silage may reduce the 

safety and quality of the feed and decrease dairy cattle performance, in particular milk and meat 

production [20,21]. Some concepts necessary to consider when inoculating a silage ball/pack with 

LAB are exclusion of air, availability of adequate water-soluble carbohydrates, suitable moisture 

content and the initiation of an early and prompt fermentation [22]. Under appropriate conditions, 

silage fermentation should preserve over 90% of the harvested energy, sugar, crude protein and 

metabolites over long storage periods [5]. In this review, we summarize recent information about the 

functions of LAB strains in silage fermentation as well as their primary fermented products and 

methods of improving the quality of silage and its shelf life. 

2. Biological properties of LAB 

LAB is gram-positive, microaerophilic, non-spore forming, cocci- or rod-shaped bacteria. They 

consist of different genera, such as Lactobacillus, Leuconostoc, Pediococcus, Streptococcus, Enterococcus 

and Lactococcus [23]. Classification of LAB into different genera is largely dependent on morphology, 

action of fermentable carbohydrates, growth at different temperatures, ability to survive under acid 

or alkaline conditions and production of various organic acids. Though the majority of silage LAB 

can grow under mesophilic conditions, including different temperatures (20–50 ℃), the optimum 

temperature for growth is between 25 and 40 ℃. LAB strains are naturally present in various resources, 

including fermented foods (yogurt, kimchi, meat), forage crops (Italian rye grass, alfalfa, rye, sorghum, 

corn and triticale), animal manure, dairy products, rumen juice and infant feces [24–26]. Some LAB 

are facultative aerobes, but some have a preference for anaerobic conditions. LAB are able to reduce 

silage pH to between 3–5 depending on the selected strains and the type of forage crop [27]. The 

main function of LAB is to ferment WSC to organic substances as their major end product. LAB 

generally belong to the genera Lactobacillus and Bifidobacterium, which are most widely recognized 

and used as probiotics in feed development, including dairy foods and beverages. Also, the 

consumption of probiotics is associated with a wide range of health benefits in humans and livestock 

animals [28]. 
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3. LAB as silage additives in livestock feed 

In order to improve the quality of silage fermentation, different silage additives have been 

developed. Recently, biological additives (inoculants) are becoming more widely used as silage 

preservatives; these can be added to forage in order to increase organic acid production and rapidly 

decrease silage pH from 6.5 to 3.5. The most important inoculants consist of preferred strains of 

hoLAB, for example, Lactobacillus spp. (L. plantarum, L. acidophilus, L. lactis, L. bulgaricus), 

Enterococcus faecium and Pediococcus spp. (P. pentosaceus, P. acidilactici, P. cellicola); these can 

produce precise quantities of lactic acid in a short fermentation period and so stabilize the silage with 

minimal nutritional and DM losses [29,30]. Various factors reduce DM and quality loss during the 

ensiling steps, including the field and pre-ensiling conditions, temperature, fermentation patterns, 

moisture content during ensiling, methods and materials used to pack the silage and aerobic 

deterioration during the feed out phases [31]. 

In recent years, customized bacterial inoculants have been introduced to enhance organic acid 

production in silage [32,33]. The primary purpose of these customized inoculants, which include 

hoLAB strains, is to encourage early fermentation in order to increase the efficiency of fermentation 

and quickly reduce silage pH. Driehuis et al. [34] LAB inoculated perennial ryegrass with three 

treatments, L. buch neri alone; L. buchneri with L. plantarum, and P. pentosaceus and non-

inoculated silage served as control. The combination inoculants exhibited similar fermentation to the 

homofermentative L. plantarum and P. pentosaceus treatment over the first 14 days. However, the 

combination of inoculants and L. buchneri alone resulted in reduced yeast colony counts and 

improved aerobic stability of treated silage compared with the untreated control during a 90-day 

fermentation period. Aerobic stability is defined as the length of storage time the silage remains as 

well‐preserved dry matter content with the lowest amount of yeast and mold spores, even after it is 

exposed to air. Reports of the use of combination inoculants in various types of silage have been 

published, with successful outcomes [35]. 

The production of organic acids by LAB depends on the amount of WSC present in the fresh 

crop and the precise nature of the bacterial strains used [30,36]. The carbohydrates in the fresh crop 

are catabolized to produce organic acids and other substances. Table 1 illustrates the effect of LAB 

inoculation on organic acid production in silage fermentation. Different types of fermentation may 

take place in the silo environment, mainly depending on the concentration of WSC, volatile free fatty 

acids, crude proteins, minerals, and moisture in the forage crop and the microbial community present 

during the ensiling period [17,31]. 
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Table 1. Organic acid production by LAB during silage fermentation. 

Species  Type of silages Fermentation products Functions Cited 

Lactobacillus plantarum, 

Lactococcus 

lactis, and Lactobacillus 

buchneri 

Lollium perenne  Lactic acid and other 

organic acids 

Productivity of 

Holstein 

Friesian dairy 

cattle 

[37] 

Lactobacillus plantarum 

and Pediococcus 

pentosaceus 

Soybean  Enhance the lactic acid, 

and 

crude protein content 

Inhibit the 

growth of 

undesirable 

microbes  

[38] 

Lactobacillus plantarum Rice straw Improve lactic acid/ 

acetic acid ratios 

Hemicellulose 

degradation and 

inhibition of 

clostridia 

fermentation  

[39] 

Lactobacillus plantarum, 

Lactobacillus 

buchneri, and 

Lactobacillus rhamnosus 

Maize and 

Amaranthus 

Production of 

lactic acid and a specific 

methane yield 

Organic juice 

into biogas 

production 

[40] 

Lactobacillus plantarum Alfalfa Enhance LA content and 

LA/AA 

Non-irradiated 

or irradiated 

alfalfa forage 

[41] 

Lactobacillus buchneri Sugarcane  Improve the WSC, lactic 

acid, acetic acid and 

ethanol concentration 

Improvement 

on aerobic 

stability  

 

[39] 

L. plantarum Rice straw 

silage 

Enhance its fermentation 

quality, nutritive 

characteristics and in 

vitro digestibility 

In vitro gas 

production of 

rice straw silage 

[32] 

Bacillus megaterium, 

Pediococcus 

acidilactici and 

Lactobacillus plantarum 

Medicago 

sativa  

Improve the of γ -

aminobutyric acid, and 4-

hyroxy benzoic acid and 

phenyl lactic acid 

production. 

Regulating the 

organic acid and 

toxin contents 

[42] 

Lactobacillus amylovorus, 

Lactobacillus mucosae 

Cattle feed Improve the lactic acid 

production 

Inhibition of 

Salmonella spp. 

[43] 

L. parafarraginis, 

Lactobacillus brevis 

Corn stover Improve the lactic acid 

and acetic acid contents 

Improving the 

corn stover 

silage quality 

[44]  

L. buchneri, Leuconostoc 

mesenteroides 

Corn silage Production of organic 

acids 

Control the 

E.coli growth 

[45] 
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3.1. Carbohydrate metabolism in silage production 

Silage microflora ferment carbohydrates to obtain energy for growth and survival and produce 

organic acids and other metabolites as end products. In general, silage fermentation utilizes hexoses 

as the primary substrate. Hexoses are degraded by a different class of silage bacteria and produce 

organic acids as metabolic end products [46–48]. The concentrations of these carbohydrates may 

vary depending on the type of forage, the time of harvest and environmental conditions [49]. The 

main pathway used by LAB is glycolysis (Embden-Meyerhoff), in which glucose-containing 

substrates are catabolized to pyruvate, and acetyl coA is formed as an intermediate product of the 

Krebs cycle [50,51]. During the ensiling process, both homofermentative and heterofermentative 

LAB partially hydrolyze hemicellulose to yield pentoses, such as xylose and arabinose, which are 

fermented into organic acids by the phosphoketolase pathway [52]. 

There are three main metabolic pathways found in LAB, the homofermentation, heterofermentation 

and bifidum pathways. Homofermentation converts glucose to lactic acid at a rate that exceeds 80% of 

the theoretical efficiency. The most abundant organic acid produced by homofermentation is lactic acid. 

Many LAB strains, such as Lactobacillus, Lactococcus and some Streptococci, carry out homolactic acid 

fermentation. Very small quantities of formic acid, acetic acid, propionic acid and tartaric acid are also 

produced as fermentation products (Figure 1). The concentration of other organic acids formed is 

lower, and negligible for our purposes [53]. LAB uses the EMP (glycolysis) pathway to oxidize one 

glucose molecule into 2 pyruvate molecules, along with 2 ATP and 2 NADH. Both pyruvates are 

reduced to lactate by the oxidation of NADH to NAD+ [54,55]. Some LAB strains (e.g: 

Lactobacillus and Bifidobacterium) utilize the heterolactic acid pathway, in which a phosphoketolase 

enzyme breaks down a pentose sugar molecule into a 3-carbon phosphate and a 2-carbon phosphate 

molecule [56–58]. As a heterolactic acid fermentation pathway, is mainly initiated by the heLAB, 

which include Lactobacillus and Leuconostoc sp. The hetero lactic fermentation major end product is 

ethanol and CO2 in addition to lactic acid. The precursor glucose molecules are first metabolized to 

pyruvate, acetic acid and CO2 by Pentose phosphate pathway.  In addition, heLAB and yeasts use the 

EMP pathway to synthesize ethanol and CO2, and also to produce diverse gases, fatty acids and 

alcohols. In LAB, the primary form of reduced coenzymes nicotinamide adenine dinucleotide 

(NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) greatly affect decomposition 

of carbon sources and trends of metabolic synthesis, respectively. NADPH is required to provide the 

reducing power and to promote  synthesize cellular components such as amino acids, nucleotides and 

lipids, among others, which have glucose intermediates, thereby providing the raw materials for 

further production of lactic acid [54]. 
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Figure 1. Schematic representation of organic acid metabolic pathways during silage 

fermentation [54] (C6: 6-carbon molecule; ATP: adenosine triphosphate; ADP: 

adenosine diphosphate; NAD+: Nicotinamide adenine dinucleotide; NADH: 

Nicotinamide adenine dinucleotide (reduced form); HCO3: bicarbonate; CO2: Carbon 

dioxide). 

3.2. Organic acid production using LAB in silage 

Normally, ensiled forage crops contain different organic acids, with the quantity and variety of 

these acids varying depending on LAB species [22,59]. Jones and Barnes [60] compared several 

forage varieties and found mostly organic acids, such as malic, citric, and succinic acids, with minor 

concentrations of fumaric and shikimic acids. Figure 1 schematically illustrates the metabolism of 

organic acids by LAB during silage fermentation. On the other hand, undesirable microbial 

fermentation in the silo can produce various end products that alter the nutritive value of the forage. 

LAB produce high-quality silage and control the formation of undesirable compounds from 

secondary fermentation which can negatively affect animal performance, the environment, and net 

farm income [61]. 

4. Biological activity of Lactobacillus in silage production 

The scientific community has recently been focused on finding novel drugs to inhibit the 

colonization of multidrug-resistant pathogenic organisms. Some LAB strains can be used as 

probiotics for ruminants, not only because of the production of lactic acid, but also because they 

synthesize bacteriocins, bacteriocin-like substances (BLS) and exo-polysaccharides, all of which 

improve the health of livestock [62–64]. Generally, LAB produce different types of antimicrobial 

compounds that they are safe substances for animal and human. These metabolites which are 

synthesized from bacterial ribosomes and inactivated by digestive proteases [65,66]. The most 

common pathogenic microorganisms found in silage are E. coli, Salmonella spp., L. monocytogenes, 

Clostridium spp. and Bacillus spp. [20]. LAB inoculation of silage rapidly reduces the pH to below 4 
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and has also been shown to prevent E.coli multiplication in fermented silage [67]. Similarly, Pedroso 

et al. [68] reported the effectiveness of three combined LAB commercial inoculants at controlling E. 

coli O157: H7 in corn silages. LAB silage inoculation suppressed pathogen activity within 3 d of 

ensiling, when the pH dropped below 4.0. The growth inhibition of pathogens in silage was considered 

to be due to lower pH, and presence of antimicrobial compounds such as organic acids, bacteriocin and 

BLS in the preserved silages. These metabolites may eliminate the activity of unwanted food-borne 

pathogens [69]. Similarly, the production of microbial secondary metabolites at lower pH level may 

also directly reduce the growth of pathogens. Furthermore, pure cultures of L. buchneri and L. 

plantarum have shown pH-independent antibacterial activity against E. coli O157: H7 [70]. All of 

these biological additives should be uniformly distributed in the silage for maximum efficiency. It is 

apparent that to inhibit aerobic spoilage, one must inhibit the growth and activity of microorganisms 

that cause silage deterioration (i.e. Clostridia, Enterobacteria, molds and yeasts). In addition, the 

bacteriocin did not affect the other bacterial communities involved in silage fermentation [71]. These 

were L. lactis CECT 539 and P. acidilactici NRRL B-5627, both of which are bacteriocinogenic 

strains that have shown antilisterial activity in vitro, and effectiveness for controlling L. 

monocytogenes in the silo [72]. Figure 2 shows the livestock applications of LAB inoculants in 

silage production. Gavrilova et al. [73] reported that new LAB strains isolated from clover silage 

were able to control biofilm formation and inhibit bacterial growth originating from biofilm. In 

addition, these strains exhibit high organic acid production that completely suppresses the growth of 

E. coli and S. aureus. 

 

Figure 2. Biological activity of LAB in silage production and development. 

Silage additives contain specific LAB strains, such as L. plantarum, P. acidilacti, P. 

pentosaceous, and E. faecium, which enhance homolactic fermentation by inhibiting undesirable 

bacteria or dominating the normal flora and increasing the rate of acidification in preserved forage. 

The antibacterial effect of LAB cell-free supernatant (CFS) against pathogens increased with lower 

pH levels, and no antibacterial activity was identified at pH 6.0. The CFS of the LAB strains showed 

moderate antibacterial effects against pathogenic bacteria, except S. aureus and L. monocytogenes, at 

pH below 5. [74]. Previously, Ogunade et al. [75] demonstrated that E. coli O157: H7 growth was 
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suppressed in silage extract when the pH was below 4. The low pH in silage was achieved due to 

rapid production of organic acids by the inoculants. When the pH of the silage falls below 4, lactic 

acid and acetic acid are primarily in their undissociated form. The cell membranes of yeasts and 

filamentous fungi are more permeable to the acids in this form. The acid is dissociated (carboxyl 

cation and hydrogen ion) within the cell, due to the high pH (>6.0), releasing H+ ions, which reduce 

proliferation and survival of pathogenic microorganisms in the silage [76,77]. 

When ryegrass was inoculated with L. plantarum, alone and in combination with either L. lactis 

or P. acidilactici, the DNA band for the spoilage microorganism disappeared after the 5th day of 

silage fermentation, indicating a synergistic effect of bacteriocin-producing bacteria. This synergistic 

effect can be attributed to the low pH achieved (<4.0) within 2 d of fermentation when the 

combination strains were used in the forage [19]. Low pH values stimulate the release of nisin and 

pediocin from the cell surfaces of L. lactis and P. acidilactici, respectively, and both bacteriocin 

metabolites exhibit strong antibacterial activity against spoilage bacteria [78]. Amado et al. [72] 

evaluated the effect of pediocin alone or in combination with a mixture of L. plantarum, E. faecium, 

and L. buchneri strains against L. monocytogenes. The LAB strains effectively suppressed growth of 

L. monocytogenes in corn silage via production of pediocin metabolites. Broberg  et al. [79] reported 

that 3-hydroxydecanoic acid (100 µg/mL) inhibited P. roqueforti, Pichia anomala and Aspergillus 

fumigatus. Also, antifungal activity was seen at pH 4 in the presence of lactic acid (100 mM), 3-

hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid and catechol in LAB-

inoculated grass silage. 

5. Effect of environmental factors on LAB forage ensiling 

Although some forages are deficient in essential dietary nutrients for ruminants, a wide range of 

forages crops has been cultivated for livestock animal feeds. The nutritional value of these crops, 

including crude protein, VFA (volatile free fatty acids), ADF (Acid detergent fiber), NDF (neutral 

detergent fiber), and DM, can be enhanced by addition of LAB additives at the time of ensiling. 

Furthermore, biological additives have beneficial effects on silage fermentation due to improvements 

in the aerobic stability of silage and via control of the growth of pathogenic bacteria [20]. Some 

crops, like corn and sorghum, have better nutritional value to begin with and good ensiling 

characteristics. However, high-quality silage production often requires extensive processing, 

involving harvesting, crop wilting, selection of additives and ensiling steps, which can make 

production more expensive [80,81]. In general, hoLAB strains are preferable to the heLAB for 

preserving. However, some heLAB strains are also quite efficient because of their weaker acids 

production and possibly their higher pKa in heLAB contribute to aerobic stability effect of silage. [82]. 

Figure 3 shows the various factors which influence silage production. Importantly, Tanizawa et al. [52] 

clarified silage fermentation mechanisms from a genomic point of view, especially in cold conditions. 

Several genes were inactive in the cold condition, but some of the L. vaccinostercus strains, clearly 

demonstrating the ability to adapt to specific ecological niches. Also, Doi et al. [83] reported that 

LABs grown at room temperature have a significant capacity to improve the quality of silage. On the 

other hand, it is not clear whether strains showing strong lactic acid production can dominate butyric 

acid bacteria or coliform bacteria at higher temperatures (>37 ℃). Different processes have been 

established to improve the fermentation quality and reduce dry matter losses of whole-crop silages of 

paddy rice, legumes and grasses [84,85]. Overall, biological silage additive-induced hoLAB 
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fermentation is more suitable to crop silage than other types of fermentation because it leads to 

greater dry matter recovery and improved fermentation end products [86]. LAB inoculated forages 

did not alter biochemical and nutritional components and it could preserve its quality of silage in 

terms of crude protein (CP) content, ADF (acid detergent fiber), NDF (neutral detergent fiber), and 

TDF (total detergent fiber). In addition, the nutrient values are nothing but the quality of the silage 

such as organic acids, crude protein content, ADF (acid detergent fiber), NDF (neutral detergent 

fiber), and TDF (total detergent fiber). Although, the organic acids levels and pH can reflect quality 

of fermentation and silage mass stability. The low pH shows the silage is stable and cannot further 

develop undesirable microbes too in the in-silo. 

6. Advantage of LAB use in livestock industries 

The diversity and function of LAB microbes present in a wide range of fermented foods that 

improve the nutritional value of fermented foods is now well‐appreciated [87]. The fermented 

functional foods have presence of live microorganisms inclusing different bioactive molecules, 

vitamins other constituents during the fermentation that enhanced safety, functionality, sensory, and 

nutritional properties of silage product [88]. Table 2 shows the merits of LAB inoculants in silage 

production. Also, the lactic acid bacteria ensiling benefits and uses of chemical additives were 

discussed. 

 

Figure 3. Different factors influencing silage metabolism. 
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Table 2. Comparison of LAB and Chemical additives in silage fermentation. 

Particulars LAB additives  Chemical additives 

Fermentation 

efficiency 

Addition of homofermentative 

LAB speed up fermentative 

process and inhibit the growth of 

pathogenic microbes via 

production of organic acid 

Formic acid, mineral acid, sulphuric acid could 

also be effective silage additives to control 

pathogenic microbes and enhance the 

fermentation process. However they are 

hazardous and can damage ensiling materials 

like equipment and polyethylene wrappers etc. 

Also, undesirable odors. 

Economic 

value 

Effective on a wide range of 

forage crops and economic 

Expensive and inefficient on some crop 

forages 

Aerobic 

stability 

Enhances aerobic stability and 

controls DM loss, on the other 

hand enhances the nutritive value 

Though aerobic stability is high it can 

sometimes damage the silage cover 

Dry matter 

content 

Elimination of fermentation 

losses is not possible, but the use 

of silage additives may help 

minimize them 

Fermentation dry matter loss high 

Different 

environment 

condition 

LAB is more tolerant to low 

moisture conditions (low water 

activity) than another undesirable 

anaerobic microorganisms 

Low moisture fermentation 

 is less active than other additives 

Ruminal microbiota plays a vital role in the conversion of lignocellulose-rich plants into 

nutrients for ruminants. It has been proposed that different genera, such as bacteria, fungi, and 

protozoa, hydrolyze complex flavonoid glycosides to the corresponding less polar aglycones prior to 

gastrointestinal absorption [89]. There is a direct relationship between rumen pH and bacterial 

community, with significant reductions in bacteria at pH values around 6.8. Table 3 shows the 

degradation of different plant secondary metabolites by LAB in rumen fluid. In LAB-inoculated 

potato with wheat straw silage, the chemical composition, silage fermentation characteristics, and in 

vitro gas production were improved after anaerobic storage for 90 d, compared to untreated silage [90]. 

Contreras-Govea et al. [7] found that, in ruminal in vitro fermentation, gas and VFA production were 

not significantly different between non-inoculated and inoculated silage, although the L. plantarum 

MTD/1-inoculated model produced greater microbial populations than were seen in non-inoculated 

silage. 
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Table 3. Degradation of secondary plant metabolites by LAB in rumen. 

Name of the LAB  Silage used Method evaluated Rumen metabolite 

degradation 

Cited 

Lactobacillus rhamnosus 

GG (ATCC 53013) 

Highly 

contaminated feed 

Male Holstein calves Reduced the release 

of toxins into plasma 

[91] 

LAB or a combination. 

Lactobacillus buchneri 

Lactobacillus plantarum 

Propionibacterium 

acidipropionici 

Potato-wheat 

straw mixture 

In-vivo study Enhanced VFA 

production 

[90] 

E. faecalis and ruminal 

microbiota 

Acacia nilotica  In-vitro rumen liquor 

used for analysis 

Improved tannin 

degradation  

[92] 

Rumen microbiota Eucalyptus 

globulus 

Sheep rumen liquor Enhances rutin 

breakdown 

[93] 

Ruminal bacteria Cinnamomum 

zeylanicum, 

Eugenia 

caryophyllata 

In-vitro rumen 

inoculum 

Improved essential 

oil degradation 

[94] 

Complex lactic acid 

bacteria 

Corn crops Crossbred bulls Improved daily dry 

matter intake 

[32] 

Lactic acid bacteria Corn stover silage In vitro fermentation In vitro digestibility 

improved 

[95] 

Those authors suggested that enhanced protein preservation during ensiling with a silage 

inoculant could be one of the reasons behind disturbances in ruminal fermentation. Zhang et al. [32] 

evaluated the effects of Lactobacillus rhamnosus GG on growth performance and hepatotoxicity in 

calves fed a single dose of aflatoxin B1 (AFB1). L. rhamnosus GG administration reduced the 

concentrations of free AFB1 and AFM1 in rumen fluid and reduced the release of toxins into plasma 

and urine. Also, Goel et al. [92] reported that even typical hydrolysable tannins are toxic to both 

ruminants and monogastrics, particularly when present in the forage of such animals in excessive 

amounts. However, ruminants have developed an adaptation that allows degradation of tannins to 

simple isomers via the microbial ecosystem and subsequent excretion in feces. 

6. Conclusion 

LAB inoculants improve silage quality and reduce DM losses under long-term storage. LAB is 

one of best organic additives that allow for precise control over undesirable bacterial growth in silage. 

LAB inoculants utilize water-soluble carbohydrates and complex secondary metabolites in forage 

crops into organic acids and mineral acids, which effectively control pathogenic growth and enhance 

the nutritional quality of silage for livestock animals. However, organic acid production and its 

associated biochemical mechanisms differ depending on the moisture content of forage crops and the 

storage period. Many studies have been done to investigate the effect of different temperature 

conditions, harvesting times, moisture levels on forage ensiling quality. In addition, further 

investigation into the optimal fermentation duration for various kinds of forage crops must be 
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considered, and the effect of LAB additives on fermentation must be investigated, with the overall 

goal being to save time and cost and to minimize nutrient losses. 

Glossary 

Forage 

Forage is defined as feed for domestic and/or livestock animals. 

Silage 

Silage is feedstuff prepared from grass or other green crops (such as corn, wheat, sorghum, 

legumes, grass and triticale) that has been cut and preserved through fermentation under anaerobic 

conditions in a silo. Purpose, to provide winter feed for livestock animals. 

Ensiling 

Ensiling is the name given to the process of preparing and storing forage in order to induce 

conversion to silage in a packed enclosure (silo). 

Silage additives (inoculums) 

The purpose of using silage additives is to enhance feed quality by encouraging lactic acid 

fermentation and inhibiting pathogenic microbial growth and by improving its nutritional value. The 

silage additives may include bacterial cultures, inhibitors of aerobic damage, acids, and nutrients. 

Homofermentative and heterofermentative 

LAB can be classified into two main groups. Homofermentative LAB catabolize glucose into 

lactic acid, while heterofermentative LAB convert glucose into ethanol and CO2 as well as organic 

acids. 

Dry matter 

Dry matter refers to foodstuff that remains after removal of water, and the moisture content 

reflects the amount of water present in the feed ingredient. 

Livestock 

Livestock commonly refers to animals, such as cattle, pigs, sheep, horses and goats that are kept 

on a farm for commodity and profit. 

Fermented feedstuff 

Fermented feedstuff is formed by probiotic microorganisms and mainly encompasses 

agricultural end products. Fermented feedstuffs contain essential nutrition and gut microbiota 

because they contain inoculating microorganisms. 

Buffering capacity 

Silage resistance to pH lowering is called buffering capacity. 

Plant respiration  

The immediate stage of ensiling involves plant cell respiration and oxidation of WSC (hexose). 

This is also called the aerobic phase because it can only take place when O2 is present in a silo. For 

example, the biochemical reaction that occurs when plant respiration happens in a silo is:  

C₆H₁₂O₆ + 6O2→6CO2 + 6H2O + heat energy 
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