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Abstract: This study examined the effect of collecting near infrared (NIR) spectra of forage samples 

through a transparent polypropylene (PP) plastic film instead of glass cups on calibrating two 

handheld NIR spectrometers to nitrogen content (N). The first device was a transportable 

spectrometer (H1) covering 790–2500 nm at 1 nm interval, while the second device was a 

smartphone spectrometer (H2) covering 900–1700 nm at 4 nm interval. The spectra from each 

spectrometer were subjected to principal component analysis (PCA) to identify wavebands for PP 

packaging that would interfere in subsequent partial least squares (PLS) regression modeling to 

predict N. PCA results showed that the loadings of the first principal component (PC1) of the first 

derivative of the spectra from H1 and loadings of the second principal component (PC2) of the 

second derivative of the spectra from H2 were useful in identifying wavebands due to PP film. 

Regression models for H1 had better prediction performance when spectra were collected through 

glass than through PP films, in terms of coefficient of determination (r
2
 = 0.958), standard error of 

prediction (SEP = 0.96 g kg
−1

), and ratio of performance to deviation (RPD) = 4.93 vs. (r
2
 = 0.942, 

SEP = 1.13 g kg
−1

, and RPD = 4.17). Similar results were obtained for H2 using spectra collected 

through glass (r
2
 = 0.821, SEP = 1.73 g kg

−1
, and RPD = 2.72) than through PP (r

2
 = 0.499, SEP = 

2.99 g kg
−1

, and RPD = 1.57). Removing peaks due to PP in the sample spectra improved the PLS 

models for H1 (r
2
 = 0.959, SEP = 0.94 g kg

−1
, and RPD = 5.02), but not for H2 (r

2
 = 0.521, SEP = 

3.17 g kg
−1

, and RPD = 1.49). Hence, scanning samples through PP films can reduce the accuracy of 

predicting N, but for some handheld NIR spectrometers, this could be overcome by excluding 

wavebands due to PP. 
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1. Introduction 

Near infrared (NIR) spectroscopy is routinely used in food and feed quality assessment, given 

that it is a non-destructive, simple, rapid, and inexpensive technology [1]. Miniaturization of 

microprocessors and optical components has enabled the development of portable or handheld 

spectrometers for a fraction of the cost of benchtop instruments, making them easier to transport and 

be used in environments where benchtop spectrometers would be difficult to employ [2]. Their 

suitability for in situ measurements raises questions on the effect of packaging material since glass 

cups or containers, typically used with benchtop NIR spectrometers, would be less durable and less 

convenient to transport and handle than plastic cups or pouches. Glass cups are relatively more 

expensive to buy and keep intact or un-scratched. In contrast, disposable plastic packaging, such as 

thin, transparent polypropylene (PP) films, are cheaper and require little to no maintenance. When 

scanning samples through plastic films, the assumption is that the packaging is transparent to NIR 

light and will have minimal to no influence on the resulting spectra. This might explain the limited 

availability of published literature on the effect of polymer packaging films on the performance of 

NIR spectroscopy [3]. However, collecting NIR spectra through a plastic material can complicate 

spectral data processing and analysis downstream, since plastic polymers absorb NIR light [4–12] 

thereby interfering with the NIR absorption of a sample’s components. For example, 

polyethylene (PE) and PP possess absorption bands in the third overtone regions around 1100–1300 

and 1380–1430 nm. The absorptions are even stronger in the first overtone and combination regions 

around 1600, 1650–1800, and 1850–2500 nm [8,11,13]. If a packaging material such as PP is used to 

contain samples during NIR scanning, its contribution to the spectra may need to be removed or at 

least reduced depending on the strength of the absorption bands of the sample’s constituents and 

analyte of interest. To what extent does this interference affect the utility of a handheld NIR 

spectrometer and its corresponding calibration model? Can the interference by PP film be corrected 

for, in preprocessing the spectra? In an attempt to correct for this PP interference, the approach of 

collecting a background spectrum by encasing a white reference disk in an empty packaging bag has 

been used [14]. The collected background spectrum is then subtracted by the spectrometer from 

subsequent sample spectra. Gowen et al. [3] studied the impact of polymer packaging on visible-NIR 

hyperspectral imaging data in the wavelength range of 450–950 nm. The authors concluded that 

scanning products through polymer packaging can be a source of variability in hyperspectral imaging, 

mainly due to light scattering, and that the thickness and refractive index of thin polymer films 

largely caused interference. However, they reported that imaging and spectral preprocessing reduced 

the polymer packaging effects. The objective of this study was to analyze the of collecting NIR 

spectra of forage samples through 0.08-mm-thick (3 mil = 3/1000th inch thick) PP films instead of 

glass cups on predicting forage nitrogen content (N) using two handheld NIR spectrometers. The two 

handheld spectrometers used—a transportable spectrometer and a smartphone spectrometer—

represented two ends of the spectrum of commercially available handheld NIR in terms of spectral 

range, resolution, cost, and potential applications [15]. The transportable spectrometer (H1) covered 

780–2500 nm, while the smartphone spectrometer (H2) covered 900–1700 nm only, mostly 

collecting absorbances in the second and third overtone regions. Foster et al. [16] identified 
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important spectra during calibration modeling for N in forage as 1450, 1580, 1630, 1830, 2030, 2100, 

2180, 2250, and 2490 nm, most of which are in the first overtone and combination regions. Since H1 

covered the full NIR spectral region, it was hypothesized that the PP influence would be more 

pronounced in the H1 spectra than in the H2 spectra and, that once spectral wavebands due to PP 

film packaging were removed, both spectrometers could be used to predict N concentration of forage 

samples. 

2. Materials and methods 

2.1. Forage samples 

Perennial warm-season grasses, including Switchgrass (Panicum virgatum), Big bluestem 

(Andropogon gerardii), and Indiangrass (Sorghastrum nutans), native to North America, were 

evaluated. Their corresponding laboratory (wet chemistry) data were determined in the USDA 

Forage Research Laboratory at the University of Nebraska-Lincoln. Description of samples and 

procedures for obtaining chemical data were documented by Vogel et al. [17]. Briefly, samples were 

dried in a forced-air oven at 50 ℃ to a moisture content of 8–10%. The dried forage samples were 

ground through a 2-mm screen with a Wiley Mill (Thomas-Wiley Mill Co., Philadelphia, PA). 

Nitrogen (N) concentration was determined by the LECO combustion method (Model FP 428 and FP 

2000, LECO Corp., St. Joseph, MI) [18]. 

2.2. Spectrometers  

Two handheld NIR spectrometers were used to collect spectral data. The first (H1) was a 

transportable NIR spectrometer (ASD QualitySpec® Trek, Malvern Panalytical, Cambridge, UK), 

which measures in the visible and NIR ranges from 350–2500 nm, has a spectral interval of 1 nm, 

making it comparable to benchtop NIR spectrometers used in forage analysis, such as a FOSS XDS 

Rapid Content Analyzer and FOSS 6500 (FOSS, Hilleroed, Denmark). Its weight (2.5 kg), however, 

makes it more portable than these benchtop instruments. The second handheld NIR spectrometer (H2) 

was a smartphone NIR spectrometer (Enterprise Scanner, Tellspec Inc., Toronto, Ontario, Canada), 

which measures from 900–1700 nm and has a spectral interval of 4 nm, weighs 136 g, and can be 

classified as a Hadamard transform-based palm-sized spectrometer [15]. 

2.3. Spectral data collection 

Spectral data of 123 warm season forage samples were collected using both handheld 

spectrometers. The composition and average   of the sample set was as follows: Switchgrass (  = 

136,    = 10.45 gkg
−1

), Big Bluestem (  = 24,    = 9.86 gkg
−1

), and Indiangrass (  = 18,    = 8.61 

gkg
−1

). For each spectrometer, a background spectrum was collected by using a white reference 

(Spectralon®) disk to calibrate the instrument. Each forage sample was scanned through a black ring 

sample cup with a quartz glass window. A spectrum was collected by placing the window of the 

handheld spectrometer directly on top of the quartz glass window covering the sample and pulling 

the trigger on H1 or pressing the scan button on the H2 to start scanning. The recorded NIR scan was 

an average of 50 spectral measurements across the spectrometer’s entire wavelength range. The 
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spectrometer H1 was retreated, and the sample rotated clockwise 90–180 and re-scanned. 

Afterwards, the lid of the glass cup was removed, allowing for the uncovered sample and glass cup 

to be placed inside a clean, 0.08-mm-thick (3 mil = 3/1000th inch thick) PP bag (Uline, Pleasant 

Prairie, WI, USA). The widow for each spectrometer was placed against the PP film, which was 

flush to the sample material. For H1, the trigger was pulled, while for H2, the scan button was 

pressed to start scanning. As with scanning through glass cups, each scan was an average of 50 

spectral measurements across the device’s spectral range. The spectrometer was retracted, sample 

was rotated clockwise 90–180, and re-scanned. The two scans obtained per sample, per 

spectrometer, were averaged in Excel (Microsoft Office Suite, Version 2016, Microsoft Corporation, 

Redmond, WA, USA) before preprocessing and multivariate analyses. The averaged spectra 

collected with H1 were truncated also to include only the NIR range (780–2500 nm). In practice, the 

background spectrum for samples scanned through the PP bag would be collected with the white 

reference encased in an empty bag of the same kind and subtracted from subsequent sample spectra. 

This, however, was not done since the aim was to quantify the effects of PP packaging on the 

resulting spectra and models. 

2.4. Principal component analysis 

H1 and H2 spectra were analyzed first using principal component analysis (PCA), a variable-

reduction method [19], in The Unscrambler® X (Version 10.5, Camo Analytics, Magnolia, TX, 

USA). For each spectrometer, the raw spectra of the samples collected through glass or through PP 

films were subjected to PCA to see if the scans would cluster according to packaging material. The 

loadings were also checked to see if high values were obtained for known absorption wavebands of 

PP. The PCA was repeated for H1 using the first derivative of mean-centered NIR spectra, which 

was estimated using the Savitzky-Golay algorithm utilizing a second order polynomial and 31 

smoothing points [SG1(2,31)]. For H2, the second derivative of mean-centered NIR spectra was used. 

This was estimated using the Savitzky-Golay algorithm utilizing a second order polynomial and 17 

smoothing points [SG2(2,17)]. The second PCA was conducted since, often, mean-centered and 

derivatized NIR spectra are used in instrument calibration [20]. While taking a derivative tends to 

remove noise from the spectra, it could accentuate the effect of PP film and segregate samples due to 

packaging. Using the loadings values, wavebands due to PP film were removed prior to partial least 

squares (PLS) regression modeling. 

2.5. Partial least squares regression 

The N of all 123 forage samples were plotted to allow for samples from each bin of the 

histogram to be randomly selected to form an independent validation set (n = 25) (Figure 1). The 

remaining samples then formed the calibration set (n = 98), for which four PLS regression models 

were developed, one for each packaging material and spectrometer. By utilizing the histogram in 

segregating the samples, the calibration and validation sets had comparable descriptive statistics. 
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Figure 1. Distribution of nitrogen content of all samples and when segregated into 

calibration (Cal) and validation (Val) data sets.  

PLS regression was carried out using The Unscrambler® X software. The NIR spectra were 

projected onto a small number of latent variables (NLV). The corresponding N values were used to 

estimate the LVs so that the first few captured most of the variability in N. These LVs were fitted to 

N using a linear regression model, which serves as the calibration model. A coefficient of 

determination (R
2
) and root mean square error of calibration (RMSEC) were calculated and, 

generally, a good calibration model would have low NLV, high R
2
, and low RMSEC. During 

calibration, the model was cross-validated using a segmented approach, where the calibration set was 

divided into several segments containing four samples each, and one segment was left out of the 

validation at a time. The prediction residuals generated during cross-validation were used to compute 

a residual variance and, eventually, the root mean square error of cross-validation (RMSECV). By 

default, The Unscrambler® X software selects the NLV in the calibrated based on the lowest resulting 

RMSECV. In general, good fit calibration models have similar values for RMSEC and RMSECV. 

Following cross-validation, the model was validated using the independent validation sample 

set, and the prediction performance was evaluated as follows: a high coefficient of determination of 

validation (r
2
), low root mean square error of prediction (RMSEP) and standard error of prediction 

(SEP),      close to zero, a high ratio of standard deviation of the reference values ( ) in the 

validation set to the SEP and a high ratio of   to the range of the reference values in the validation 

set [21]. These two ratios are referred to as RPD and RER, respectively. The range is the difference 

between the maximum and minimum N values in the validation set. Aside from these parameters, the 

effect of packaging material on the prediction performance was evaluated by checking whether the 

loadings and  -coefficients of the PLS regression models included known absorption wavebands for 

PP. Marten’s uncertainty test, a significance testing method based on jack-knifing [22], was enabled 

during cross-validation to identify, along with loading weights, the important wavelengths on which 

the PLS regression model is based. This allowed for a set of model parameters [e.g.,  -coefficients 
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(also called regression coefficients), scores, loadings, and loading weights] to be calculated for every 

sub-model created based on samples that were not held out of the cross-validation segment. 

Differences between the  -coefficients of all the sub-models to those of the full calibration model 

were calculated and used to estimate the uncertainty limits of each  -coefficient. Wavelengths with 

 -coefficients, which had a relatively large uncertainty limit and, at the same time, had loading 

weights with relatively large uncertainties were deemed not important by The Unscrambler® 

software. 

3. Results and discussion 

3.1. Principal components analysis 

PCA scores plot based on raw NIR spectra from H1 shows the first principal component (PC1) 

captured 80% of the variability in the dataset, while the second principal component (PC2) captured 

15% of the variability in the dataset (Figure 2a). PC1 also captured the difference between packaging 

materials, i.e., scanning through glass yielded negative PC1 values while scanning through PP films 

yielded positive PC1 values. The variability in N was captured in both PC1 and PC2. When PCA 

was applied to the first derivative of the NIR absorption spectra, the scores plot showed that PC1 

captured 98% of the variability in the dataset, but strictly the effect of packaging material (Figure 2b). 

Applying PCA to the second derivative of the NIR spectra, PC1, on the scores plot, captured 100% 

of the variation, which could all be attributed to the effect of packaging material (Figure 2c). 

However, looking that the PC1 scale, scores were farther apart with the first derivative than with the 

second derivative spectra, suggesting better separation. Therefore, the loadings plot was based on 

PCA applied to the first derivative spectra. The plot showed that the loadings at 1160–1260, 1680–

1800, and 2200–2500 nm were pronounced (Figure 2d). These wavebands are known absorption 

bands for PP [8,11,13], and they also corresponded to some of the known absorption bands for N in 

forage materials [16]. The strong absorption by the PP film in the combination region greatly 

influenced the PCA model, potentially making the calibration of H1 spectra to N particularly 

sensitive to PP film packaging. When the identified bands were removed, the resulting PCA model 

based on raw spectra had PC1 accounting for 79% and PC2 accounting for 18% of the observed 

variation (Figure 2e). However, the pattern of separation between samples scanned through PP films 

and those scanned through glass—as observed in Figure 2a—was lost. Even when a first derivative 

was applied to the spectra before PCA, there was no clear separation of the two groups of samples 

(Figure 2f), an indicator that removing interfering PP spectra my reduce its effect on prediction of N. 

The variation captured by PC1 reduced to 53%, while that captured by PC2 was 16%. There was no 

observable pattern to N variation across both PCs. 



841 

AIMS Agriculture and Food Volume 5, Issue 4, 835–849. 

 

Figure 2. Scores plot from principal components analysis (PCA) based on (a) raw 

spectra collected using a transportable NIR spectrometer (H1), (b) its first derivative, 

estimated using a Savitzky-Golay algorithm using second order polynomial and 31 

smoothing points [SG1(2,31)], and its second derivative estimated using a Savitzky-

Golay algorithm using second order polynomial and 31 smoothing points [SG2(2,31)]. 

The first principal component (PC1) loadings plot based on (d) first derivative spectra 

showed three spectral bands (1160–1260, 1680–1800, and 2200–2500 nm) that greatly 

influenced the PCA models. When these spectral bands were removed (e and f), scores 

plots showed diminished separation of samples based on packaging material. 
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Figure 3. Scores plot from principal component analysis (PCA) based on (a) raw spectra 

collected using a smartphone NIR spectrometer (H2), (b) its first derivative, estimated 

using a Savitzky-Golay algorithm using second order polynomial and 17 smoothing 

points [SG1(2,17)], and its second derivative estimated using a Savitzky-Golay algorithm 

using second order polynomial and 17 smoothing points [SG2(2,17)]. The first principal 

component (PC1) loadings plot based on (d) second derivative spectra showed three 

spectral bands (1180–1280, 1410–1460, and 1640–1700 nm) that greatly influenced the 

PCA models. When these spectral bands were removed (e and f), scores plots showed 

diminished separation of samples based on packaging material, particularly for the 

second derivative spectra. 
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In comparison, PCA scores plot based on raw NIR spectra from H2 shows that PC1 and PC2 

captured 96% and 3% of the variability in the dataset, respectively, and spectra collected through 

glass and through PP were not distinct from each other (Figure 3a). This showed it was not easy to 

see the PP effect easily with raw spectra from H2, unlike the case with H1. When the PCA was 

conducted on the first derivative of the NIR spectra, PC1 and PC2 captured 67% and 17% of the 

variability in the dataset, respectively, again with no clear distinction between samples scanned 

through glass cups and PP films (Figure 3b). Applying a second derivative before PCA showed the 

scores plot with PC1 capturing 74% and PC2 capturing 16% of the total variation. Separation of 

samples based on packaging material could be seen in PC2, i.e., samples with positive PC2 values 

were those scanned through glass while samples with negative PC2 values were scanned through PP 

films (Figure 3c). The corresponding PC2 loadings plot based on second derivative spectra showed 

pronounced absorption bands that corresponded to those known for PP at 1180–1280, 1410–1460, 

1640–1700 nm (Figures 3d). The absorption by the PP film around these bands greatly influenced the 

PCA model based on the second derivative of the spectra, making the calibration of H2 spectra to N 

potentially sensitive to PP film packaging, but not to the degree seen with H1 spectra. The PCA 

model excluding the highlighted spectral bands had PC1 and PC2 capturing 97% and 3% of the 

variation, respectively, when the analysis was performed on raw spectra, with no clear separat ion of 

samples scanned through PP films and glass cups (Figure 3e), just like the case with raw spectra with 

all the spectral bands. Applying a second derivative prior to PCA indicated that the observed 

separation in Figure 3c had disappeared (Figure 3f). Noting that the separations observed in Figures 

3a and 3b were already minor, the removal of known PP spectral bands had only a minimal effect. 

3.2. Partial least squares regression 

PLS regression models were built to assess further the effects of PP film on the prediction of N, 

as well as the impact of removing the PP wavebands (Table 1). The models were based on spectra 

preprocessed using the same preprocessing techniques applied during PCA, i.e., SG1(2,31) for H1 

and SG2(2,17) for H2, and when scanned through glass (Models H1.1 and H2.1), PP (Models H1.2 

and H2.2), and after PP wavebands identified through PCA were removed (Models H1.3 and H2.3). 

The PLS model based on first derivative spectral data collected through glass cups (Model H1.1) 

had R
2
 = 0.957, r

2
= 0.958, RMSEC, RMSECV, RMSEP and SEP = 0.98, 1.28, 0.94 and 0.96 g kg

−1
, 

respectively. The RPD and RER for this model were 4.93 and 19.14, respectively. Based on r
2
 (>0.92) 

and RPD (>4.1), this model could be applied for any function, including screening, quality, and 

process control [23].  

When spectra scanned through PP films were subjected to a PLS regression following a first 

derivative preprocessing, the calibration model for N (Model H1.2) had parameters similar or 

slightly inferior to those of Model H1.1, with R
2
 = 0.955, r

2
 = 0.942, RMSEC, RMSECV, RMSEP 

and SEP = 1.00, 1.28, 1.11, and 1.13 g kg
−1

, respectively. The RPD and RER for this model were 

4.17 and 16.20, respectively. Again with r
2
 > 0.92 and RPD > 4.1, this model could be used for a 

wide range of applications (e.g., screening to quality control). Comparing Models H1.1 and H1.2 

showed only a slight influence of PP on model performance. This was different than what we would 

have expected based on PCA, which showed an increased effect of packaging after applying a first 

derivative to spectral data. When the PCA-identified wavebands were removed before PLS 

regression modeling, r
2
 increased to 0.959, RMSEP and SEP reduced to 0.94 g kg

−1
, while RPD and 
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RER increased to 5.02 and 19.50, respectively (Model H1.3). The two latter variables were even 

slightly better than those of Model H1.1, with samples scanned through glass cups. 

Table 1. Partial least squares regression models of near infrared spectra to quantify 

nitrogen content in switchgrass, big bluestem, and indiangrass scanned with two 

handheld NIR spectrometers. 

Model
a
 Calibration performance

b
 Validation performance

c
  

NLV R
2 RMSEC 

(g kg
−1

) 

RMSECV 

(g kg
−1

) 

r
2 RMSEP 

(g kg
−1

) 

SEP 

(g kg
−1

) 

bias 

(g kg
−1

) 

RPD RER 

H1.1 8 0.957 0.98 1.28 0.958 0.94 0.96 −0.11 4.93 19.14 

H1.2 7 0.955 1.00 1.28 0.942 1.11 1.13 0.12 4.17 16.20 
H1.3 7 0.948 1.07 1.32 0.959 0.94 0.94 0.17 5.02 19.50 

H2.1 8 0.877 1.66 2.20 0.821 1.96 1.73 −0.98 2.72 10.57 

H2.2 10 0.818 2.02 2.63 0.499 3.27 2.99 −1.45 1.57 6.11 
H2.3 8 0.789 2.17 2.93 0.521 3.20 3.17 −0.77 1.49 5.78 
aModels were built for using spectra from a transportable NIR spectrometer (H1), and a smartphone NIR spectrometer 

(H2) for samples scanned through glass cups (H1.1 and H2.1), samples scanned through polypropylene (PP) films (H1.2 

and H2.2), and samples scanned through PP films, with spectral data adjusted to remove PP absorption bands (H1.3 and 

H2.3). All H1 spectral data covered 780–2500 nm, with a 1 nm interval and preprocessing was done using Savitzky-

Golay first derivative algorithm using second order polynomial and 31smoothing points [SG1(2,31)], equivalent to a 

smoothing window width of equal to        , where   is the number of smoothing points and    is the spectral 

resolution (nm) of the spectrometer. Model H1.3 was based on PP-adjusted spectra, which excluded the windows 1181–

1250, 1681–1800, and 2200–2500 nm. All H2 spectral data covered 900–1700 nm, with a 1 nm interval, and 

preprocessing was done using Savitzky-Golay second derivative algorithm using second order polynomial and 17 

smoothing points [SG1(2,17)], equivalent to a smoothing window width of equal to        , where   is the number of 

smoothing points and    is the spectral resolution (nm) of the spectrometer. Model H2.3 used PP-adjusted spectra, which 

excluded the windows 1180–1280, 1410–1460, 1640–1700 nm. 
bCalibration performance was evaluated using number of latent variables (NLV), coefficient of determination of 

calibration (R2), and root mean square errors of calibration (RMSEC) and cross-validation (RMSECV). 
cValidation performance was evaluated using coefficient of determination of prediction (r2), root-mean-square error of 

prediction (RMSEP), standard error of prediction (SEP),     , ratio of standard deviation to standard error of prediction 

(RPD) and ratio of range to error (RER). 

In comparison, the second derivative spectral data collected through glass cups using H2 had a 

PLS model with R
2
 = 0.877, r

2
 = 0.821, RMSEC = 1.79 g kg

−1
, RMSECV = 2.33 g kg

−1
, RMSEP = 

1.64 g kg
−1

, SEP = 1.57 g kg
−1

, RPD = 2.72 and RER = 10.57 (Model H2.1) (Table 1). Based on r
2
 

and RPD, this model could be applied to screening of samples and research [23]. On the contrary, for 

samples scanned through PP films, the PLS regression model had R
2
 = 0.818, RMSEC = 2.02 g kg

−1
, 

RMSEP = 3.27 g kg
−1

, SEP = 2.99 g kg
−1

, r
2
 = 0.499, RPD = 1.57 and RER = 6.11 (Model H2.2). 

Removing previously identified spectral regions for PP only slightly improved model performance, 

with an increase in r
2
 to 0.521 and a small drop in RMSEP to 3.20 g kg

−1
. Other model parameters 

either did not improve or declined (Model H2.3). Although the RPD was below 2.00, this model, 

based on r
2
, could be used for screening of forage samples for N content. 

While the observed effects of PP film on spectral data variation were significant during PCA, it 

followed that with PLS regression, elimination of interfering spectral bands overcame these effects 
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when using H1. Results from the Martens uncertainty test during cross validation showed that many 

wavebands with high loadings used in predicting N did not overlap with those identified for PP film 

in the PCA (Figure 4). Looking at the spectra identified by Foster et al. [16] as important to modeling 

forage N, even with the removal of identified interfering PP spectral bands, there was a wide window 

left for calibration of spectral data to predict forage N and, thus, no significant difference in Model 

H1.1 and Model H1.3 performance. For H2, the effect of PP film was minimal. It took a second 

derivative transformation to cluster samples according to packaging material, but even then, the 

clustering was not as pronounced as that of H1 spectra. Overall, removing the three PP bands 

identified during the PCA did not improve the model since these are also known to contribute to 

modeling for N. Given that H2 has a limited spectral range, eliminating such spectral bands further 

limited its ability to extract information necessary for calibrating N using the remaining spectra 

(Figure 4). Looking at Figure 4, models for H1 had much more spectral information to facilitate the 

calibration to N, compared to those of H2. Moreover, the reduced spectral region for H2 was mostly 

in the second overtone, with a limited window in the first and second overtone regions of the NIR 

spectrum. Since NIR absorption bands are weaker moving from the combinations to the first, second, 

and third overtone regions [24], it was reasonable to expect a calibration to N based on second and 

third overtone absorption bands would be weaker than one based on the first and combinations 

absorption bands. 

 

Figure 4. Spectra bands identified for polypropylene (PP), and calibration of spectral 

data collected with a transportable spectrometer to nitrogen (N) in forage. N bands—

spectra identified to have a significant contribution during calibration of forage spectral 

data to N. PP bands—spectral bands in which PP is considered to have high NIR 

absorption. H1-PP bands—PP spectral bands identified by principal component analysis. 

H1.1, H1.2, and H1.3 N bands—important spectra identified during modeling spectral 

data to N with samples scanned through glass cups (H1.1), PP films (H1.2), and PP films 

without interfering PP spectra (H1.3), respectively. 

Wavelength (nm) 800 1000 1200 1400 1600 1800 2000 2200 2400

N absorption bands
(Foster et al., 2013) 

Model H1.1 bands
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PP film bands 
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Figure 5 shows the validation performance for PLS models based on samples scanned through 

glass cups and PP films using both H1 and H2. Overall, predicted N values from the H1 models 

agreed better with reference N values than predicted N values from H2 models. It was visibly evident 

that H1 models Figure 5a) showed more linearity than H2 models (Figure 5b). For H2 models, 

samples scanned through glass cups showed less deviation from linearity than samples scanned 

through PP films (Table 2). 

 

Figure 5. Validation performance of the partial least squares regression models 

developed for the (a) transportable and (b) smartphone near infrared spectrometers. The 

models were based on preprocessed spectra collected through glass cups (Models H1.1 

and H2.1) and polypropylene films (Models H1.2 and H2.2), as well as preprocessed 

spectra without wavebands attributed to polypropylene film (Models H1.3 and H2.3). 

Table 2. Calibration of predicted nitrogen (  , g kg
−1

) values to reference nitrogen (N, g kg
−1

) values. 

Partial least squares 

regression model 

Near infrared spectra collected 

through 

Calibration:         

r
2
     

  

(g kg
−1

) 

     
a,b

      
a,b

 

(g kg
−1

) 

H1.1 Glass cups 0.97 0.75  0.87 ± 0.03  1.18 ± 0.36 

H1.2 Polypropylene films 0.94 1.11 * 0.93 ± 0.05 * 0.78 ± 0.53 

H1.3 Polypropylene films with 

1160–1260, 1680–1800, and 

2200–2500 nm wavebands 

removed 

0.96 0.95 * 0.97 ± 0.04 * 0.47 ± 0.45 

H2.1 Glass cups 0.89 1.28  0.75 ± 0.06  1.54 ± 0.61 

H2.2 Polypropylene films 0.60 2.45  0.62 ± 0.11  2.33 ± 1.17 

H2.3 Polypropylene films with 

1180–1280, 1410–1460, and 

1640–1700 nm wavebands
b
 

removed 

0.55 2.31  0.53 ± 0.10  3.93 ± 1.10 

aStandard errors of the model (    ), slope (   ), and intercept (   ); 
bA “*” denotes slope is equal to unity or intercept is equal to zero. 
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A direct comparison of predicted N values to reference N values showed variations in how close 

the two sets of data were (Table 2). Slopes were equal to unity and intercepts equal to zero for 

Models H1.2 and H1.3. All other model predictions were biased (i.e., slope   1) and were offset (i.e., 

intercept   0) when compared against reference N. 

In general, the model calibration and validation parameters for samples scanned through glass 

cups were better than those of the model for samples scanned through PP films, with the former 

having higher R2, r2, RPD, RER, and lower model errors. For samples scanned through PP films 

removing previously identified spectral regions for PP improved model performance to a greater 

extent when using H1 than when using H2. Scanning samples through packaging was enabled by the 

fact that NIR, compared to other spectroscopy methods, can penetrate more than 10 mm deep into 

the sample [25,26], thus capturing spectral characteristics of both the sample and the package. 

However, it should be noted that light goes through the package, to the sample and back through the 

package to the detector. This double passage through the package carries extra information that is not 

related to the sample, especially when the package has significant absorption in the NIR region. 

Payne and Wolfrum [27] suggested that using higher quality packaging, such as optical glass cups, 

provides spectral information with reduced noise. Therefore, when choosing to scan a sample 

through a packaging material, one must consider the relative strength of NIR absorption by the 

package and target analyte in the sample and whether the effects of the packaging material can be 

eliminated through spectral preprocessing or excluding specific wavebands from the calibration. 

4. Conclusions 

This study showed that scanning samples through PP film instead of glass cups using handheld 

NIR spectrometers affects the ability to predict N concentration of perennial warm-season grass 

samples, including Switchgrass, Big Bluestem and Indian grass. For the transportable spectrometer 

(H1), regression models had better prediction performance when spectra were collected through 

glass than through PP films (r
2
 = 0.958, SEP = 0.96 g kg

−1
, and RPD = 4.93 vs. r

2
 = 0.942, SEP = 

1.13 g kg
−1

, and RPD = 4.17). Similar results were obtained for the smartphone spectrometer (H2) 

with spectra collected through glass (r
2
 = 0.821, SEP = 1.73 g kg

−1
, and RPD = 2.72) than through 

PP (r
2
 = 0.499, SEP = 2.99 g kg

−1
, and RPD = 1.57). Removing peaks due to PP in the sample 

spectra improved the PLS models for H1 to improve N prediction (r
2
 = 0.959, SEP = 0.94 g kg

−1
, and 

RPD = 5.02), but not for H2 (r
2
 = 0.521, SEP = 3.17 g kg

−1
, and RPD = 1.49). Therefore, scanning 

samples through PP films can reduce the accuracy of predicting N, but for some handheld NIR 

spectrometers, this could be overcome by excluding wavebands due to PP. Despite the advantages of 

using plastic packaging, scanning through glass cups using the smartphone spectrometer led to more 

accurate prediction of N concentration. The N prediction models based on scanning through PP films 

were useful for rough screening applications or for developing rations in regions with limited access 

to benchtop spectrometers.  
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