Citation: Tetsuya Takaishi. Volatility estimation using a rational GARCH model[J]. Quantitative Finance and Economics, 2018, 2(1): 127-136. doi: 10.3934/QFE.2018.1.127
[1] | Alderweireld T, Nuyts J (2004) Detailed empirical study of the term structure of interest rates. Emergence of power laws and scaling laws. Physica A 331: 602–616. |
[2] |
Andersen TG, Bollerslev T (1998) Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. Int Econ Rev 39: 885–905. doi: 10.2307/2527343
![]() |
[3] |
Aasi M (2006) Comparison of MCMC methods for estimating GARCH models. J Japan Stat Society 36: 199–212. doi: 10.14490/jjss.36.199
![]() |
[4] |
Barndorff-Nielsen OE, Shephard N (2001) Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J Roy Stat Soc B 63: 167–241. doi: 10.1111/1467-9868.00282
![]() |
[5] |
Bollerslev T (1986) Generalized Autoregressive Conditional Heteroskedasticity. J Econometrics 31: 307–327. doi: 10.1016/0304-4076(86)90063-1
![]() |
[6] | Chen TT, Takaishi T (2013) Empirical study of the GARCH model with rational errors. JPCS 454: 9714–9722. |
[7] | Clark MA (2006) The rational hybrid Monte Carlo algorithm. POS 75: 453–456. |
[8] | Clark MA, Kennedy AD (2006) Accelerating dynamical-fermion computations using the Rational Hybrid Monte Carlo algorithm with multiple pseudofermion fields. Phys Rev lett 98: 051601. |
[9] |
Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50: 987–1007. doi: 10.2307/1912773
![]() |
[10] |
Glosten LR, Jagannathan R, Runkle DE (1993) On the relation between the expected value and the volatility of the nominal excess return on stocks. J Financ 48: 1779–1801. doi: 10.1111/j.1540-6261.1993.tb05128.x
![]() |
[11] |
Hansen PR, Lunde A (2005) A forecast comparison of volatility models: does anything beat a GARCH(1, 1)? J appl Econom 20: 873–889. doi: 10.1002/jae.800
![]() |
[12] |
Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97–109. doi: 10.1093/biomet/57.1.97
![]() |
[13] |
Metropolis N, Rosenbluth AW, Rosenbluth MN, et al. (1953) Equation of state calculations by fast computing machines. J Chem phys 21: 1087–1092. doi: 10.1063/1.1699114
![]() |
[14] | Mitsui H,Watanabe T (2003) Bayesian analysis of GARCH option pricing models. J Japan Statist Soc (Japanese Issue) 33: 307–324. |
[15] |
Nelson DB (1991) Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59: 347–370. doi: 10.2307/2938260
![]() |
[16] |
Nuyts J, Platten I (2001) Phenomenology of the term structure of interest rates with Padé Approximants. Physica A 299: 528–546. doi: 10.1016/S0378-4371(01)00320-X
![]() |
[17] |
Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. J Econom 160: 246–256. doi: 10.1016/j.jeconom.2010.03.034
![]() |
[18] |
Sentana E (1995) Quadratic ARCH models. Rev Econ Stud 62: 639–661. doi: 10.2307/2298081
![]() |
[19] |
Spiegelhalter DJ, Best NG, Carlin BP, et al. (2002) Bayesian measures of model complexity and fit. J Roy Stat Soc B 64: 583–639. doi: 10.1111/1467-9868.00353
![]() |
[20] |
de Forcrand P, Takaishi T (1997) Fast fermion Monte Carlo. Nucl Phys B - Proc Sup 53: 968–970. doi: 10.1016/S0920-5632(96)00829-8
![]() |
[21] | Takaishi T, de Forcrand P (2001a) Odd-flavor simulations by Hybrid Monte Carlo. Non-Perturbative Methods and Lattice QCD, World Scientific 112–120. |
[22] | Takaishi T, de Forcrand P (2001b) Simulation of nf= 3 QCD by Hybrid Monte Carlo. Nucl Phys B-Proc Sup 94: 818–822. |
[23] | Takaishi T, de Forcrand P (2001c) Simulations of Odd Flavors QCD by Hybrid Monte Carlo. Int Symposium Quantum Chromodynamics Color Confinement, CONFINEMENT 2000, World Scientific 383–387. |
[24] |
Takaishi T, de Forcrand P (2002) Odd-flavor Hybrid Monte Carlo Algorithm for Lattice QCD. Int J Mod Phys C 13: 343–365. doi: 10.1142/S0129183102003152
![]() |
[25] | Takaishi T (2009a) An Adaptive Markov Chain Monte Carlo Method for GARCH Model. Lecture Notes Inst Computer Sciences, Social Inform Telecommun Engineering. Complex Sciences 5: 1424–1434. |
[26] | Takaishi T (2009b) Bayesian Estimation of GARCH Model with an Adaptive Proposal Density. New Advances Intell Decis Technol, Stud Comput Intell 199: 635–643. |
[27] | Takaishi T (2009c) Bayesian Inference on QGARCH Model Using the Adaptive Construction Scheme. Proc 8th IEEE/ACIS Int Conf Computer Inf Science 525–529. |
[28] | Takaishi T (2010) Bayesian inference with an adaptive proposal density for GARCH models. JPCS 221: 012011. |
[29] |
Takaishi T (2017) Rational GARCH model: An empirical test for stock returns. Physica A 473: 451–460. doi: 10.1016/j.physa.2017.01.011
![]() |
[30] | Takaishi T, Chen TT (2012) Bayesian Inference of the GARCH model with Rational Errors. Int Proc Econ Dev Res 29: 303–307. |