AIMS Mathematics, 2020, 5(1): 701-716. doi: 10.3934/math.2020047.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Some new bounds on the spectral radius of nonnegative matrices

Department of Computer Science and Biomedical Informatics, University of Thessaly

In this paper, we determine some new bounds for the spectral radius of a nonnegative matrix with respect to a new defined quantity, which can be considered as an average of average 2-row sums. The new formulas extend previous results using the row sums and the average 2-row sums of a nonnegative matrix. We also characterize the equality cases of the bounds if the matrix is irreducible and we provide illustrative examples comparing with the existing bounds.
  Figure/Table
  Supplementary
  Article Metrics

Keywords nonnegative matrix; spectral radius; row sum; 2-row sum; average 2-row sum; signless Laplacian matrix

Citation: Maria Adam, Dimitra Aggeli, Aikaterini Aretaki. Some new bounds on the spectral radius of nonnegative matrices. AIMS Mathematics, 2020, 5(1): 701-716. doi: 10.3934/math.2020047

References

  • 1. M. Adam, Aik. Aretaki, Sharp bounds for eigenvalues of the generalized k, m-step Fibonacci matrices, Proceedings of the 3rd International Conference on Numerical Analysis and Scientific Computation with Applications (NASCA18), Kalamata, Greece, (2018). Available from: http://nasca18.math.uoa.gr/participants-nbsp.html.
  • 2. A. Brauer, I.C. Gentry, Bounds for the greatest characteristic root of an irreducible nonnegative matrix, Linear Algebra its Appl., 8 (1974), 105-107.    
  • 3. F. Duan, K. Zhang, An algorithm of diagonal transformation for Perron root of nonnegative irreducible matrices, Appl. Math. Comput., 175 (2006), 762-772.
  • 4. X. Duan, B. Zhou, Sharp bounds on the spectral radius of a nonnegative matrix, Linear Algebra its Appl., 439 (2013), 2961-2970.    
  • 5. G. Frobenius, Über Matrizen aus nicht negativen Elementen, Sitzungsber, Kön. Preuss. Akad. Wiss. Berlin, (1912), 465-477.
  • 6. J. He, Y.M. Liu, J.K. Tian, et al., Some new sharp bounds for the spectral radius of a nonnegative matrix and its application, J. Inequalities Appl., 260 (2017), 1-6.
  • 7. W. Hong, L. You, Further results on the spectral radius of matrices and graphs, Appl. Math. Comput., 239 (2014), 326-332.
  • 8. R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, second edition, 2013.
  • 9. H. Lin, B. Zhou, On sharp bounds for spectral radius of nonnegative matrices, Linear Multilinear Algebra, 65 (2017), 1554-1565.    
  • 10. A. Melman, Upper and lower bounds for the Perron root of a nonnegative matrix, Linear Multilinear Algebra, 61 (2013), 171-181.    
  • 11. R. Xing, B. Zhou, Sharp bounds for the spectral radius of nonnegative matrices, Linear Algebra its Appl., 449 (2014), 194-209.    
  • 12. C. Wen, T. Z. Huang, A modified algorithm for the Perron root of a nonnegative matrix, Appl. Math. Comput., 217 (2011), 4453-4458.
  • 13. P. Walters, An introduction to ergodic theory, New York (NY), Springer-Verlag, 1982.

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved