Citation: Min Kang, Hai Zhou. Facile Synthesis and Structural Characterization of Co3O4 Nanocubes[J]. AIMS Materials Science, 2015, 2(1): 16-27. doi: 10.3934/matersci.2015.1.16
| [1] |
Mou XL, Zhang BS, Li Y, et al. (2012) Rod-Shaped Fe2O3 as an Efficient Catalyst for the Selective Reduction of Nitrogen Oxide by Ammonia. Angew Chem Int Ed 51: 2989-2993. doi: 10.1002/anie.201107113
|
| [2] |
Muir JMR, Idriss H (2009) Formamide reactions on rutile TiO2(011) surface. Surf Sci 603:2986-2990. doi: 10.1016/j.susc.2009.08.012
|
| [3] | Smith WL, Hobson AD (1973) The structure of cobalt oxide, Co3O4. Acta Cryst B 29: 362-363. |
| [4] |
Petitto SC, Marsh EM, Carson GA, et al. (2008) Cobalt oxide surface chemistry: The interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water. J Mol Catal A: Chem 281:49-58. doi: 10.1016/j.molcata.2007.08.023
|
| [5] | Jang YI, Wang HF, Chiang YM (1998) Room-temperature synthesis of monodisperse mixed spinel (CoxMn1-x)3O4 powder by a coprecipitation method. J Mater Chem 41: 2761-2764. |
| [6] |
Zhou H, Lv BL, Wu D, et al. (2013) Synthesis and properties of octahedral Co3O4 single crystalline nanoparticles enclosed by (111) facets. CrystEngComm 15: 8337-8344. doi: 10.1039/c3ce41419a
|
| [7] |
Wang HT, Zhang L, Tan XH, et al. (2011) Supercapacitive Properties of Hydrothermally Synthesized Co3O4 Nanostructures. J Phys Chem C 115: 17599-17605. doi: 10.1021/jp2049684
|
| [8] |
Xiao XL, Liu XF, Zhao H, et al. (2012) Facile Shape Control of Co3O4 and the Effect of the Crystal Plane on Electrochemical Performance. Adv Mater 24: 5762-5766. doi: 10.1002/adma.201202271
|
| [9] |
Li WY, Xu LN, Chen J (2005) Co3O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors. Adv Funct Mater 15: 851-857. doi: 10.1002/adfm.200400429
|
| [10] |
Jansson J, Palmqvist AEC, Fridell E, et al. (2002) On the Catalytic Activity of Co3O4 in Low-Temperature CO Oxidation. J Catal 211: 387-397. doi: 10.1016/S0021-9517(02)93738-3
|
| [11] |
Fujita S, Suzuki K, Mori T (2003) Preparation of High-Performance Co3O4 Catalyst for Hydrocarbon Combustion from Co-Containing Hydrogarnet. Catal Lett 86: 139-144. doi: 10.1023/A:1022679529612
|
| [12] |
Xu R, Zeng HC (2003) Mechanistic Investigation on Self-redox Decompositions of Cobalt-Hydroxide-Nitrate Compounds with Different Nitrate Anion Configurations in Interlayer Space. Chem Mater 15: 2040-2048. doi: 10.1021/cm021732o
|
| [13] |
Li L, Ren JC (2006) Rapid preparation of spinel Co3O4 nanocrystals in aqueous phase by microwave irradiation. Mater Res Bull 41: 2286-2290. doi: 10.1016/j.materresbull.2006.04.022
|
| [14] |
Fan YQ, Shao HB, Wang JM, et al. (2011) Synthesis of foam-like freestanding Co3O4 nanosheets with enhanced electrochemical activities. Chem Commun 47: 3469-3471. doi: 10.1039/c0cc05383j
|
| [15] |
Shen XP, Miao HJ, Zhao H, et al. (2008) Synthesis, characterization and magnetic properties of Co3O4 nanotubes. Appl Phys A 91: 47-51. doi: 10.1007/s00339-007-4361-6
|
| [16] |
Chen Y, Zhang Y, Fu S (2007) Synthesis and characterization of Co3O4 hollow spheres. Mater Lett 61: 701-705. doi: 10.1016/j.matlet.2006.05.046
|
| [17] | Liu QK, Wang GH, Xu CK, et al. (2002) Fabrication of Co3O4 nanorods by calcination of precursor powders prepared in a novel inverse microemulsion. Chem Commun 14: 1486-1487. |
| [18] | Yang LX, Zhu YJ, Li L, et al. (2006) A Facile Hydrothermal Route to Flower-Like Cobalt Hydroxide and Oxide. Eur J Inorg Chem 2006: 4787-4792. |
| [19] |
He T, Chen DR, Jiao XL, et al. (2006) Co3O4 Nanoboxes: Surfactant-Templated Fabrication and Microstructure Characterization. Adv Mater 18: 1078-1082. doi: 10.1002/adma.200501864
|
| [20] |
Hu LH, Sun KQ, Peng Q, et al. (2010) Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res 3: 363-368. doi: 10.1007/s12274-010-1040-2
|
| [21] |
Liu XH, Qiu GZ, Li XG (2005) Shape-controlled synthesis and properties of uniform spinel cobalt oxide nanocubes. Nanotechnology 16: 3035-3040. doi: 10.1088/0957-4484/16/12/051
|
| [22] |
Song XC, Wang X, Zheng YF, et al. (2011) Synthesis and electrocatalytic activities of Co3O4 nanocubes. J Nanopart Res 13: 1319-1324. doi: 10.1007/s11051-010-0127-8
|
| [23] |
Lou XW, Deng D, Lee JY, et al. (2008) Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes. Adv Mater 20: 258-262. doi: 10.1002/adma.200702412
|
| [24] |
Feng SQ, Zheng MB, Li NW, et al. (2009) Synthesis of Ordered Macroporous Co3O4 Microspheres via an Easy Melt Infiltration Route. Chem Lett 38: 1050-1051. doi: 10.1246/cl.2009.1050
|
| [25] |
Wang L, Zhao Y, Lai QY, et al. (2010) Preparation of 3D rose-like NiO complex structure and its electrochemical property. J Alloys Compd 495: 82-87. doi: 10.1016/j.jallcom.2010.01.091
|
| [26] |
Rana RK, Zhang LZ, Yu JC, et al. (2003) Mesoporous Structures from Supramolecular Assembly of in situ Generated ZnS Nanoparticles. Langmuir 19: 5904-5911. doi: 10.1021/la0343627
|
| [27] |
Li YC, Li XH, Yang CH, et al. (2003) Controlled synthesis of CdS nanorods and hexagonal nanocrystals. J Mater Chem 13: 2641-2648. doi: 10.1039/b307594j
|
| [28] |
Yu JH, Joo J, Park HM, et al. (2005) Synthesis of Quantum-Sized Cubic ZnS Nanorods by the Oriented Attachment Mechanism. J Am Chem Soc 127: 5662-5670. doi: 10.1021/ja044593f
|
| [29] | Shi EW, Chen ZZ, R. L. Yuan RL, et al. (2004) Thermal Crystallography. Beijing: Science Press. |
| [30] | Zhang L, Yu XW, Wu HP, et al. (2009) High-pressure hydrothermal synthesis and growth mechanism of Co3O4 nanoparticles. Mater Eng Powder Metall 4: 306-309. |
| [31] | Wang XX, Lv GL, Zeng YW, et al. (2003) Studies on the Nanocrystalline Co3O4 by Wet Synthesis and Its Microstructure. Acta Chim. Sinica 61: 1849-1853. |
| [32] |
Jin LN, Liu Q, Sun WY (2012) Shape-controlled synthesis of Co3O4 nanostructures derived from coordination polymer precursors and their application to the thermal decomposition of ammonium perchlorate. CrystEngComm 14: 7721-7726. doi: 10.1039/c2ce25713k
|
| [33] |
Guan XF, Li GS, Zhou LH, et al. (2009) Template-free Approach to Core-Shell-structured Co3O4 Microspheres. Chem Lett 38: 280-281. doi: 10.1246/cl.2009.280
|