Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

The spread of influenza-like-illness within the household in Shanghai, China

1 College of Science, Donghua University, Shanghai 201620, China
2 Department of Applied Mathematics and Statistics, Montclair State University, Montclair, NJ 07043, USA
3 Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 2Y2, Canada

Special Issues: Modeling, analysis and computation in Mathematical Biology

High-density urban habitats provide a hotbed for the rapid spread of infectious diseases. School children densely aggregate in classrooms. So schools are high incidence area of infectious diseases. This paper aims at investigating the transmission of influenza-like-illness within households with a school child using a survey study of fourth grade elementary school students in Shanghai, China. We found that the pairwise transmission probability within a household is only 0.172, which implies that the average number of infections caused by a single infectious individual in a household in Shanghai is only 0.304. Thus, the majority of transmission must occur outside of a household for a disease to cause an outbreak.
  Figure/Table
  Supplementary
  Article Metrics

Keywords household transmission; pairwise transmission probability; influenza-like-illness; Markov Chain

Citation: Meili Li, Hong Wang, Baojun Song, Junling Ma. The spread of influenza-like-illness within the household in Shanghai, China. Mathematical Biosciences and Engineering, 2020, 17(2): 1889-1900. doi: 10.3934/mbe.2020099

References

  • 1. R. E. H. Simpson, Infectiousness of communicable diseases in the household, Lancet., 2 (1952), 549-554.
  • 2. J. W. McGrath, Social network of disease spread in the lower Illinios valley: a simulation approach, Am. J. Phys. Anthropol., 77 (1988), 483-496.
  • 3. H. Andersson, T. Britton, Stochastic epidemic models and their statistical analysis, Springer Science & Business Media, 2012.
  • 4. F. Ball, Stochastic and deterministic models for SIS epidemics among a population partitioned into households, Math. Biosci., 156 (1999), 41-67.
  • 5. T. Britton, Stochastic epidemic models: A survey, Math. Biosci., 225 (2010), 24-35.
  • 6. S. Cauchemez, F. Carrat, C. Viboud, A. J. Valleron, P. Y. Boelle, A Bayesian MCMC approach to study transmission of infuenza: application to household longitudinal data, Stat. Med., 23 (2004), 3469-3487.
  • 7. P. J. Dodd, N. M. Ferguson, Approximate disease dynamics in household-structured populations, J. R. Soc. Interface., 4 (2007), 1103-1106.
  • 8. J. T. Wu, S. Riley, C. Fraser, G. M Leung, Reducing the impact of the next influenza pandemic using household-based public health interventions, PLoS Med., 3 (2006), 1532-1540.
  • 9. T. House, M. J. Keeling, Household structure and infectious disease transmission, Epidemiol. Infect., 137 (2009), 654-661.
  • 10. C. Fraser, Estimating individual and household reproduction numbers in an emerging epidemic, PLoS One., 2 (2007), e758.
  • 11. W. Mahikul, L. J. White, K. Poovorawan, N. Soonthornworasiri, P. Sukontamarn, P. Chanthavilay, et al., Modeling household dynamics on respiratory syncytial virus (RSV), PLoS One., 14 (2009), e0219323.
  • 12. I. M. Longini, J. S. Koopman, A. S. Monto, J. P. Fox, Estimating household and community transmission parameters for influenza, Am. J. Epidemiol., 115 (1982), 736-751.
  • 13. J. P. Aparicio, A. F. Capurro, C. Castillo-Chavez, Transmission and dynamics of tuberculosis on generalized households, J. Theor. Biol., 206 (2000), 327-341.
  • 14. B. Song, C. Castillo-Chavez, J. P. Aparicio, Tuberculosis models with fast and slow dynamics: the role of close and casual contacts, Math. Biosci., 180 (2002), 187-205.
  • 15. D. L. Chao, M. E. Halloran, V. J. Obenchain, I. M. Longnini, FluTE, a publicly available stochastic influenza epidemic simulation model, PLoS Comput. Biol., 6 (2010), e1000656.
  • 16. R. A. Nichols, K. T. Averbeck, A. G. Poulsen, M. M. Bassam, F. Cabral, P. Aaby, et al., Household size is critical to varicella-zoster virus transmission in the tropics despite lower viral infectivity, Epidemics., 3 (2011), 12-18.
  • 17. E. M. Volz, J. C. Miller, A. Galvani, L. A. Meyers, Effects of heterogeneous and clustered contact patterns on infectious disease dynamics, PLoS Comput. Biol., 7 (2011), e1002042.
  • 18. J. Ma, P. van den Driessche, F. H. Willeboordse, Effective degree household network disease model, J. Math. Biol., 66 (2012), 75-94.
  • 19. S. Cauchemez, C. A. Donnelly, C. Reed, A. C. Ghani, C. Fraser, C. K. Kent, et al., Household transmission of 2009 pandemic influenza A (H1N1) virus in the United States, N. Engl. J. Med., 361 (2009), 2619-2627.
  • 20. T. K. Tsang, L. L. H. Lau, S. Cauchemez, B. J. Cowling, Household transmission of influenza virus, Trends Microbiol., 24 (2016), 123-133.
  • 21. B. M. Bolker, Ecological models and data in R, Princeton University Press, 2008.
  • 22. 2010 Shanghai Census Information, 2012. Available from: http://www.statssh.gov.cn/html/huibian/indexch.htm.

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved