Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Dynamics of the tumor-immune-virus interactions: Convergence conditions to tumor-only or tumor-free equilibrium points

Instituto Politecnico Nacional-CITEDI,Avenida IPN N 1310, Nueva Tijuana,Tijuana 22510, B.C., Mexico.

In the present paper convergence dynamics of one tumor-immune-virus model is examined with help of the localization method of compact invariant sets and the LaSalle theorem. This model was elaborated by Eftimie et al. in 2016. It is shown that this model possesses the Lagrange stability property of positive half-trajectories and ultimate upper bounds for compact invariant sets are obtained. Conditions of convergence dynamics are found. It is explored the case when any trajectory is attracted to one of tumor-only equilibrium points or tumor-free equilibrium points. Further, it is studied ultimate dynamics of one modification of Eftimie et al. model in which the immune cells injection is included. This modified system possesses the global tumor cells eradication property if the influx rate of immune cells exceeds some value which is estimated. Main results are expressed in terms simple algebraic inequalities imposed on model and treatment parameters.
  Article Metrics

Keywords tumor model; convergence dynamics; localization; compact invariant set; tumor-free equilibrium point; tumor-only equilibrium point

Citation: Konstantin E. Starkov, Giovana Andres Garfias. Dynamics of the tumor-immune-virus interactions: Convergence conditions to tumor-only or tumor-free equilibrium points. Mathematical Biosciences and Engineering, 2019, 16(1): 421-437. doi: 10.3934/mbe.2019020


  • 1. Ž. Bajzer, T. Carr, K. Josić, S.J Russell and D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses, J. Theor. Biol. 252 (2008), 109–122.
  • 2. M. Biesecker, J.H. Kimn, H. Lu, D. Dingli and Ž. Bajzer, Optimization of virotherapy for cancer, Bulletin Math. Biol., 72 (2010), 469–489.
  • 3. B.W. Bridle, K.B. Stephenson, J.E. Boudreau, S. Koshy, N. Kazdhan, E. Pullenayegum, J. Brunellière, J.L. Bramson, B.D. Lichty and Y. Wan, Potentiating cancer immunotherapy using an oncolytic virus, Mol. Ther., 18 (2010), 1430–1439.
  • 4. R.M. Diaz, F. Galivo, T. Kottke, P.Wongthida, J. Qiao, J. Thompson, M. Valdes, G. Barber and R.G Vile, Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus, Cancer Res., 67 (2007), 2840–2848.
  • 5. R. Eftimie, J. Dushoff, B.M. Bridle, J.L. Bramson and D.J.D. Earn, Multi-stability and multiinstability phenomena in a mathematical model of tumor-immune-virus interactions, Bulletin Math. Biol., 73 (2011), 2932–2961.
  • 6. R. Eftimie, C.K. Macnamara, J. Dushoff, J.L. Bramson and D.J.D. Earn, Bifurcations and chaotic dynamics in a tumour-immune-virus system, Math. Modell. Nat. Pheno., 11 (2016), 65–85.
  • 7. M.W. Hirsch, Systems of differential equations that are competitive or cooperative II: Convergence almost everywhere, SIAM J. Math. Analysis, 16 (1985), 423–439.
  • 8. B.Y. Hwang and D.V. Schaffer, Engineering a serum-resistant and thermostable vesicular stomatitis virus G glycoprotein for pseudotyping retroviral and lentiviral vectors, Gene Ther., 20 (2013), 807– 815.
  • 9. A.P. Krishchenko, Estimation of domains with cycles, Computer Math. Appl., 34 (1997), 325–332.
  • 10. A.P. Krishchenko, Localization of invariant compact sets of dynamical systems, Differ. Equations, 41 (2005), 1669–1676.
  • 11. A.P. Krishchenko and K.E. Starkov, Localization of compact invariant sets of the Lorenz system, Phys. Lett. A, 353 (2006), 383–388.
  • 12. A.P. Krishchenko and K.E. Starkov, On the global dynamics of a chronic myelogenous leukemia model, Commun. Nonlin. Sci. Numer. Simul., 33 (2016), 174–183.
  • 13. A.P. Krishchenko and K.E. Starkov, The four-dimensional Kirschner-Panetta type cancer model: how to obtain tumor eradication? Math. Biosci. Eng., 15 (2018), 1243–1254.
  • 14. S. Varghese and S.D. Rabkin, Oncolytic herpes simplex virus vectors for cancer virotherapy, Cancer Gene Ther., 9 (2002), 967–978.
  • 15.M.Y. Li and S.J. Muldowney, On R.A. Smith's autonomous convergence theorem, Rocky Mountain J. Math., 25 (1995), 365–379.
  • 16. R.A. Smith, Some applications of Hausdorff dimension inequalities for ordinary differential equations, Proceed. Royal Soc. Edinburgh Sec. A: Math., 104 (1986), 235–259.
  • 17. K.E. Starkov, On dynamic tumor eradication conditions under combined chemical/anti-angiogenic therapies, Phys. Lett. A, 382 (2018), 387–393.
  • 18. K.E. Starkov and S. Bunimovich-Mendrazitsky, Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy, Math. Biosci. Eng., 13 (2016), 1059–1075.
  • 19. K.E. Starkov and L. Jimenez Beristain, Dynamic analysis of the melanoma model: from cancer persistence to its eradication, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750151-1– 1750151-11.
  • 20. K.E. Starkov and A.P. Krishchenko, Ultimate dynamics of the Kirschner-Panetta model: Tumor eradication and related problems, Phys. Lett. A, 381 (2017), 3409–3016.
  • 21. H.R. Thieme, Asymptotically autonomous differential equations in the plane, Rocky Mountain J. Math., 34 (1994), 351–380.


This article has been cited by

  • 1. A. N. Kanatnikov, Localizing Sets and Behavior of Trajectories of Time-Varying Systems, Differential Equations, 2019, 55, 11, 1420, 10.1134/S00122661190110028
  • 2. Konstantin E. Starkov, Anatoly N. Kanatnikov, Giovana Andres, Ultimate tumor dynamics and eradication using oncolytic virotherapy, Communications in Nonlinear Science and Numerical Simulation, 2020, 105469, 10.1016/j.cnsns.2020.105469

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved