Citation: Dawei Liu, Zeeshan Shaukat, Rashid Hussain, Mahwish Khan, Stephen L. Gregory. Drosophila as a model for chromosomal instability[J]. AIMS Genetics, 2015, 2(1): 1-12. doi: 10.3934/genet.2015.1.1
| [1] |
Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396: 643-649. doi: 10.1038/25292
|
| [2] |
Weaver BA, Cleveland DW (2006) Does aneuploidy cause cancer? Curr Opin Cell Biol 18: 658-667. doi: 10.1016/j.ceb.2006.10.002
|
| [3] | Rao CV, Yamada HY (2013) Genomic instability and colon carcinogenesis: from the perspective of genes. Front Oncol 3: 130. |
| [4] |
Duijf PHG, Benezra R (2013) The cancer biology of whole-chromosome instability. Oncogene 32: 4727-4736. doi: 10.1038/onc.2012.616
|
| [5] |
McGranahan N, Burrell RA, Endesfelder D, et al. (2012) Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep 13: 528-538. doi: 10.1038/embor.2012.61
|
| [6] |
Carter SL, Eklund AC, Kohane IS, et al. (2006) A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 38: 1043-1048. doi: 10.1038/ng1861
|
| [7] | Bakhoum SF, Swanton C (2014) Chromosomal instability, aneuploidy, and cancer. Front Oncol 4: 161. |
| [8] |
Roschke A, Kirsch I (2010) Targeting karyotypic complexity and chromosomal instability of cancer cells. Curr Drug Targets 11: 1341-1350. doi: 10.2174/1389450111007011341
|
| [9] |
Roschke AV, Lababidi S, Tonon G, et al. (2005) Karyotypic "state" as a potential determinant for anticancer drug discovery. Proc Natl Acad Sci U S A 102: 2964-2969. doi: 10.1073/pnas.0405578102
|
| [10] |
Wallqvist A, Huang R, Covell DG, et al. (2005) Drugs aimed at targeting characteristic karyotypic phenotypes of cancer cells. Mol Cancer Ther 4: 1559-1568. doi: 10.1158/1535-7163.MCT-05-0224
|
| [11] |
Shaukat Z, Wong HWS, Nicolson S, et al. (2012) A Screen for Selective Killing of Cells with Chromosomal Instability Induced by a Spindle Checkpoint Defect. PLoS One 7: e47447. doi: 10.1371/journal.pone.0047447
|
| [12] |
Morais da Silva S, Moutinho-Santos T, Sunkel CE (2013) A tumor suppressor role of the Bub3 spindle checkpoint protein after apoptosis inhibition. J Cell Biol 201: 385-393. doi: 10.1083/jcb.201210018
|
| [13] |
Dekanty A, Barrio L, Muzzopappa M, et al. (2012) Aneuploidy-induced delaminating cells drive tumorigenesis in Drosophila epithelia. Proc Natl Acad Sci U S A 109: 20549-20554. doi: 10.1073/pnas.1206675109
|
| [14] |
Silk AD, Zasadil LM, Holland AJ, et al. (2013) Chromosome missegregation rate predicts whether aneuploidy will promote or suppress tumors. Proc Natl Acad Sci U S A 110: E4134-E4141. doi: 10.1073/pnas.1317042110
|
| [15] |
Foijer F, DiTommaso T, Donati G, et al. (2013) Spindle checkpoint deficiency is tolerated by murine epidermal cells but not hair follicle stem cells. Proc Natl Acad Sci U S A 110: 2928-2933. doi: 10.1073/pnas.1217388110
|
| [16] |
St Johnston D (2002) The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 3: 176-188. doi: 10.1038/nrg751
|
| [17] |
Brumby AM, Richardson HE (2005) Using Drosophila melanogaster to map human cancer pathways. Nat Rev Cancer 5: 626-639. doi: 10.1038/nrc1671
|
| [18] |
Gonzalez C (2013) Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 13: 172-183. doi: 10.1038/nrc3461
|
| [19] | Tipping M, Perrimon N (2014) Drosophila as a model for context-dependent tumorigenesis. J Cell Physiol 229: 27-33. |
| [20] |
Gladstone M, Su TT (2011) Chemical genetics and drug screening in Drosophila cancer models. J Genet Genomics 38: 497-504. doi: 10.1016/j.jgg.2011.09.003
|
| [21] |
Pastor-Pareja JC, Xu T (2013) Dissecting social cell biology and tumors using Drosophila genetics. Annu Rev Genet 47: 51-74. doi: 10.1146/annurev-genet-110711-155414
|
| [22] |
Castellanos E, Dominguez P, Gonzalez C (2008) Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr Biol 18: 1209-1214. doi: 10.1016/j.cub.2008.07.029
|
| [23] |
Basto R, Brunk K, Vinadogrova T, et al. (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell 133: 1032-1042. doi: 10.1016/j.cell.2008.05.039
|
| [24] |
Kwon M, Godinho SA, Chandhok NS, et al. (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22: 2189-2203. doi: 10.1101/gad.1700908
|
| [25] |
Caussinus E, Gonzalez C (2005) Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 37: 1125-1129. doi: 10.1038/ng1632
|
| [26] |
Poulton JS, Cuningham JC, Peifer M (2014) Acentrosomal Drosophila Epithelial Cells Exhibit Abnormal Cell Division, Leading to Cell Death and Compensatory Proliferation. Dev Cell 30: 731-745. doi: 10.1016/j.devcel.2014.08.007
|
| [27] | Jüschke C, Dohnal I, Pichler P, et al. (2013) Transcriptome and proteome quantification of a tumor model provides novel insights into post-transcriptional gene regulation. Genome Biol 14: r133. |
| [28] |
Purdy A, Su TT (2004) Telomeres: not all breaks are equal. Curr Biol 14: R613-R614. doi: 10.1016/j.cub.2004.07.042
|
| [29] | Krüger A, Ralser M (2011) ATM Is a Redox Sensor Linking Genome Stability and Carbon Metabolism. Sci Signal 4: 4-6. |
| [30] | Li TS, Marbán E (2010) Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells. Stem Cells 28: 1178-1185. |
| [31] |
Pfau SJ, Amon A (2012) Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Rep 13: 515-527. doi: 10.1038/embor.2012.65
|
| [32] |
Albrecht SC, Barata AG, Grosshans J, et al. (2011) In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab 14: 819-829. doi: 10.1016/j.cmet.2011.10.010
|
| [33] | Dronamraju R, Mason JM (2011) MU2 and HP1a regulate the recognition of double strand breaks in Drosophila melanogaster. PLoS One 6: e25439. |
| [34] |
Chiolo I, Minoda A, Colmenares SU, et al. (2011) Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144: 732-744. doi: 10.1016/j.cell.2011.02.012
|
| [35] |
Burrell RA, McClelland SE, Endesfelder D, et al. (2013) Replication stress links structural and numerical cancer chromosomal instability. Nature 494: 492-496. doi: 10.1038/nature11935
|
| [36] |
Bakhoum SF, Silkworth WT, Nardi IK, et al. (2014) The mitotic origin of chromosomal instability. Curr Biol 24: R148-R149. doi: 10.1016/j.cub.2014.01.019
|
| [37] | Liu Y, Nielsen CF, Yao Q, et al. (2014) The origins and processing of ultra fine anaphase DNA bridges. Curr Opin Genet Dev 26C: 1-5. |
| [38] |
Wong HW, Shaukat Z, Wang J, et al. (2014) JNK signaling is needed to tolerate chromosomal instability. Cell Cycle 13: 622-631. doi: 10.4161/cc.27484
|
| [39] |
McNamee LM, Brodsky MH (2009) p53-independent apoptosis limits DNA damage-induced aneuploidy. Genetics 182: 423-435. doi: 10.1534/genetics.109.102327
|
| [40] | Shaukat Z, Liu D, Hussain R, et al. (2014) The Role of JNK Signaling in Responses to Oxidative DNA damage. Curr Drug Targets [in press]. |
| [41] |
Karpac J, Biteau B, Jasper H (2013) Misregulation of an adaptive metabolic response contributes to the age-related disruption of lipid homeostasis in Drosophila. Cell Rep 4: 1250-1261. doi: 10.1016/j.celrep.2013.08.004
|
| [42] |
Christmann M, Kaina B (2013) Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res 41: 8403-8420. doi: 10.1093/nar/gkt635
|
| [43] |
Thompson SL, Compton DA (2008) Examining the link between chromosomal instability and aneuploidy in human cells. J Cell Biol 180: 665-672. doi: 10.1083/jcb.200712029
|
| [44] | Perez de Castro I, de Carcer G, Malumbres M (2007) A census of mitotic cancer genes: new insights into tumor cell biology and cancer therapy. Carcinogenesis 28: 899-912. |
| [45] |
Hanks S, Coleman K, Reid S, et al. (2004) Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 36: 1159-1161. doi: 10.1038/ng1449
|
| [46] |
Wood LD, Parsons DW, Jones S, et al. (2007) The genomic landscapes of human breast and colorectal cancers. Science 318: 1108-1113. doi: 10.1126/science.1145720
|
| [47] |
Privette LM, Weier JF, Nguyen HN, et al. (2008) Loss of CHFR in human mammary epithelial cells causes genomic instability by disrupting the mitotic spindle assembly checkpoint. Neoplasia 10: 643-652. doi: 10.1593/neo.08176
|
| [48] |
Schvartzman JM, Sotillo R, Benezra R (2010) Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat Rev Cancer 10: 102-115. doi: 10.1038/nrc2781
|
| [49] |
Buffin E, Emre D, Karess RE (2007) Flies without a spindle checkpoint. Nat Cell Biol 9: 565-572. doi: 10.1038/ncb1570
|
| [50] | Shaukat Z, Liu D, Choo A, et al. (2014) Chromosomal instability causes sensitivity to metabolic stress. Oncogene [Epub ahead of print]. |
| [51] |
Rudrapatna VA, Bangi E, Cagan RL (2013) Caspase signalling in the absence of apoptosis drives Jnk-dependent invasion. EMBO Rep 14: 172-177. doi: 10.1038/embor.2012.217
|
| [52] |
Olaharski AJ, Sotelo R, Solorza-Luna G, et al. (2006) Tetraploidy and chromosomal instability are early events during cervical carcinogenesis. Carcinogenesis 27: 337-343. doi: 10.1093/carcin/bgi218
|
| [53] |
Margolis RL (2005) Tetraploidy and tumor development. Cancer Cell 8: 353-354. doi: 10.1016/j.ccr.2005.10.017
|
| [54] |
Galipeau PC, Cowan DS, Sanchez CA, et al. (1996) 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett’s esophagus. Proc Natl Acad Sci U S A 93: 7081-7084. doi: 10.1073/pnas.93.14.7081
|
| [55] |
Fujiwara T, Bandi M, Nitta M, et al. (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437: 1043-1047. doi: 10.1038/nature04217
|
| [56] |
Ebrahimi S, Gregory SL (2011) Dissecting protein interactions during cytokinesis. Commun Integr Biol 4: 243-244. doi: 10.4161/cib.4.2.14751
|
| [57] |
D’Avino PP, Savoian MS, Glover DM (2005) Cleavage furrow formation and ingression during animal cytokinesis: a microtubule legacy. J Cell Sci 118: 1549-1558. doi: 10.1242/jcs.02335
|
| [58] |
Somma MP, Ceprani F, Bucciarelli E, et al. (2008) Identification of Drosophila mitotic genes by combining co-expression analysis and RNA interference. PLoS Genet 4: e1000126. doi: 10.1371/journal.pgen.1000126
|
| [59] |
Eggert US, Mitchison TJ, Field CM (2006) Animal cytokinesis: from parts list to mechanisms. Annu Rev Biochem 75: 543-566. doi: 10.1146/annurev.biochem.74.082803.133425
|
| [60] |
Fox DT, Duronio RJ (2013) Endoreplication and polyploidy: insights into development and disease. Development 140: 3-12. doi: 10.1242/dev.080531
|
| [61] |
Ganem NJ, Cornils H, Chiu SY, et al. (2014) Cytokinesis Failure Triggers Hippo Tumor Suppressor Pathway Activation. Cell 158: 833-848. doi: 10.1016/j.cell.2014.06.029
|
| [62] | Lampson MA, Renduchitala K, Khodjakov A, et al. (2004) Correcting improper chromosome-spindle attachments during cell division. Nat Cell Biol 6: 232-237. |
| [63] | Salemi JD, McGilvray PT, Maresca TJ (2013) Development of a Drosophila cell-based error correction assay. Front Oncol 3: 187. |
| [64] |
Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10: 478-487. doi: 10.1038/nrm2718
|
| [65] |
Milán M, Clemente-Ruiz M, Dekanty A, et al. (2014) Aneuploidy and tumorigenesis in Drosophila. Semin Cell Dev Biol 28: 110-115. doi: 10.1016/j.semcdb.2014.03.014
|
| [66] |
Marthiens V, Piel M, Basto R (2012) Never tear us apart--the importance of centrosome clustering. J Cell Sci 125: 3281-3292. doi: 10.1242/jcs.094797
|
| [67] |
Sheltzer JM, Torres EM, Dunham MJ, et al. (2012) Transcriptional consequences of aneuploidy. Proc Natl Acad Sci U S A 109: 12644-12649. doi: 10.1073/pnas.1209227109
|
| [68] |
Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12: 931-947. doi: 10.1038/nrd4002
|
| [69] |
Oromendia AB, Dodgson SE, Amon A (2012) Aneuploidy causes proteotoxic stress in yeast. Genes Dev 26: 2696-2708. doi: 10.1101/gad.207407.112
|
| [70] |
Lundberg LE, Figueiredo MLA, Stenberg P, et al. (2012) Buffering and proteolysis are induced by segmental monosomy in Drosophila melanogaster. Nucleic Acids Res 40: 5926-5937. doi: 10.1093/nar/gks245
|
| [71] |
Siegel JJ, Amon A (2012) New insights into the troubles of aneuploidy. Annu Rev Cell Dev Biol 28: 189-214. doi: 10.1146/annurev-cellbio-101011-155807
|
| [72] |
Ferrari F, Alekseyenko AA, Park PJ, et al. (2014) Transcriptional control of a whole chromosome: emerging models for dosage compensation. Nat Struct Mol Biol 21: 118-125. doi: 10.1038/nsmb.2763
|
| [73] |
Davidsson J, Veerla S, Johansson B (2013) Constitutional trisomy 8 mosaicism as a model for epigenetic studies of aneuploidy. Epigenetics Chromatin 6: 18. doi: 10.1186/1756-8935-6-18
|