Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Improving Engineered Escherichia coli strains for High-level Biosynthesis of Isobutyrate

1 Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minnesota 55455, USA;
2 College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou 310035, Zhejiang Province, People's Republic of China

Special Issues: Recent Advances in Metabolic Engineering

Isobutyrate is an important platform chemical with various industrial applications. Previously, a synthetic metabolic pathway was constructed in E. coli to produce isobutyrate from glucose. However, isobutanol was found to be a major byproduct. Herein, gene knockouts and enzyme overexpressions were performed to optimize further the engineered E. coli strain. Besides yqhD, the knockouts of three genes eutG, yiaY and ygjB increased isobutyrate production in shake flasks. Furthermore, the introduction of an additional padA on a medium copy number plasmid under the constitutive promoter significantly reduced isobutanol formation. The IBA15-2C strain (BW25113, DyqhD, DygjB; carrying two copies of padA) produced 39.2% more isobutyrate (0.39 g/glucose yield, 80% of the theoretical maximum yield) than IBA1-1C strain (BW25113, DyqhD; carrying one copy of padA). A scale-up process was also investigated for IBA15-2C strain to optimize the conditions for the production of isobutyrate in the fermentor. With Ca(OH)2 as the base for pH control and 10% dissolved oxygen level, IBA15-2C strain produced 90 g/L isobutyrate after 144 h. This study has engineered E. coli to achieve biosynthesis of a nonnative compound with the highest titer and opened up the possibility of the industrial production of isobutyrate.
  Article Metrics

Keywords synthetic biology; isobutyrate; isobutanol; fermentor; E.coli

Citation: Mingyong Xiong, Ping Yu, Jingyu Wang, Kechun Zhang. Improving Engineered Escherichia coli strains for High-level Biosynthesis of Isobutyrate. AIMS Bioengineering, 2015, 2(2): 60-74. doi: 10.3934/bioeng.2015.2.60


  • 1. McFarlane J, Robinson S (2007) Survey of Alternative Feedstocks for Commodity Chemical Manufacturing. Available from: http://infoornlgov/sites/publications/files/Pub8760pdf.
  • 2. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451: 86-89.    
  • 3. Causey TB, Zhou S, Shanmugam KT, et al. (2003) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc Natl Acad Sci USA 100: 825-832.    
  • 4. Pfeifer BA, Admiraal SJ, Gramajo H, et al. (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291: 1790-1792.
  • 5. Steen EJ, Kang Y, Bokinsky G, et al. (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463: 559-562.    
  • 6. Yan Y, Chemler J, Huang L, et al. (2005) Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Appl Environ Microbiol 71: 3617-3623.    
  • 7. Zha W, Shao Z, Frost JW, et al. (2004) Rational pathway engineering of type I fatty acid synthase allows the biosynthesis of triacetic acid lactone from D-glucose in vivo. J Am Chem Soc 126: 4534-4535.    
  • 8. Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing Escherichia coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23: 612-616.    
  • 9. Bastian S, Liu X, Meyerowitz JT, et al. (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13: 345-352.    
  • 10. Park JH, Lee KH, Kim TY, et al. (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci USA 104: 7797.    
  • 11. Zhang K, Woodruff AP, Xiong M, et al. (2011) A synthetic metabolic pathway for production of the platform chemical isobutyric acid. ChemSusChem 4: 1068-1070.    
  • 12. Godshall MA Value-Added Products for a Sustainable Sugar Industry. Sustainability of the Sugar and Sugar-Ethanol Industries: Eggleston, G.; ACS Symposium Series 1058; American Chemical Society: Washington, DC, 2010 1253-1268.
  • 13. Screening Information Data Set (SIDS) for High Production Volume Chemicals, Organization for Economic Cooperation and Development. (2005) Available from: http://wwwinchemorg/documents/sids/sids/25265774pdf.
  • 14. Lee IY, Hong WK, Hwang YB, et al. (1996) Production of D-β-hydroxyisobutyric acid from isobutyric acid by Candida rugosa. J Ferment Bioeng 81: 79-82.    
  • 15. Millet JMM (1998) FePO catalysts for the selective oxidative dehydrogenation of isobutyric acid into methacrylic acid. Catal Rev Sci Eng 40: 1-38.    
  • 16. Marx A, Poetter M, Buchholz S, et al. (2007) Microbiological Production of 3-Hydroxyisobutyric Acid. US Patent App 20: 773.
  • 17. Nagai K (2001) New developments in the production of methyl methacrylate. Appl Catal A-Gen 221: 367-377.    
  • 18. Atsumi S, Wu TY, Eckl EM, et al. (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85: 651-657.    
  • 19. Baba T, Ara T, Hasegawa M, et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 10.1038.
  • 20. Atsumi S, Wu TY, Eckl EM, et al. (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85: 651-657.    
  • 21. Atsumi S, Wu T-Y, Eckl E-M, et al. (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85: 651-657.    
  • 22. Kallio P, Pásztor A, Thiel K, et al. (2014) An engineered pathway for the biosynthesis of renewable propane. Nat Commun 5.
  • 23. Rodriguez GM, Atsumi S (2012) Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity. Microb Cell Fact 11: 90.    
  • 24. Åkesson M, Hagander P, Axelsson JP (2001) Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding. Biotechnol Bioeng 73: 223-230.    
  • 25. Thompson BG, Kole M, Gerson DF (1985) Control of ammonium concentration in Escherichia coli fermentations. Biotechnol Bioeng 27: 818-824.    
  • 26. Riesenberg D, Menzel K, Schulz V, et al. (1990) High cell density fermentation of recombinant Escherichia coli expressing human interferon alpha 1. Appl Environ Microbiol 34: 77-82.
  • 27. Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24: 530-536.    
  • 28. Koh BT, Nakashimada U, Pfeiffer M, et al. (1992) Comparison of acetate inhibition on growth of host and recombinant E. coli K12 strains. Biotechnol Lett 14: 1115-1118.    
  • 29. Zhu Y, Eiteman M, DeWitt K, et al. (2007) Homolactate fermentation by metabolically engineered Escherichia coli strains. Appl Environ Microbiol 73: 456-464.    
  • 30. Stephanopoulos G, Aristidou AA, Nielsen JH, et al. (1998) Metabolic engineering: principles and methodologies: Academic Press.
  • 31. Warnecke T, Gill RT (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact 4: 25.    
  • 32. Yim H, Haselbeck R, Niu W, et al. (2011) Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat Chem Biol 7: 445-452.    
  • 33. Qian ZG, Xia XX, Lee SY (2011) Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng 108: 93-103.    
  • 34. Moon TS, Dueber JE, Shiue E, et al. (2010) Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab Eng 12: 298-305.    
  • 35. Dellomonaco C, Clomburg JM, Miller EN, et al. (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476: 355-359.    
  • 36. McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 13: 544-554.    
  • 37. Xiong M, Schneiderman DK, Bates FS, et al. (2014) Scalable production of mechanically tunable block polymers from sugar. Proc Natl Acad Sci U S A 111: 8357-8362.    
  • 38. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies a review. J Chem Technol Biotechnol 81: 1119-1129.    
  • 39. Lin H, Bennett GN, San KY (2005) Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng 7: 116-127.    


This article has been cited by

  • 1. Sammy Pontrelli, Tsan-Yu Chiu, Ethan I. Lan, Freddy Y. Chen, Pei-Ching Chang, James C. Liao, Escherichia coli as a host for metabolic engineering, Metabolic Engineering, 2018, 10.1016/j.ymben.2018.04.008
  • 2. Juliana Lebeau, John P. Efromson, Michael D. Lynch, A Review of the Biotechnological Production of Methacrylic Acid, Frontiers in Bioengineering and Biotechnology, 2020, 8, 10.3389/fbioe.2020.00207
  • 3. Christopher J. Robinson, Pablo Carbonell, Adrian J. Jervis, Cunyu Yan, Katherine A. Hollywood, Mark S. Dunstan, Andrew Currin, Neil Swainston, Reynard Spiess, Sandra Taylor, Paul Mulherin, Steven Parker, William Rowe, Nicholas E. Matthews, Kirk J. Malone, Rosalind Le Feuvre, Philip Shapira, Perdita Barran, Nicholas J. Turner, Jason Micklefield, Rainer Breitling, Eriko Takano, Nigel S. Scrutton, Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers, Metabolic Engineering, 2020, 10.1016/j.ymben.2020.04.008
  • 4. L. L. Gogin, E. G. Zhizhina, Z. P. Pai, Methods for the Synthesis of Methacrylic Acid and Methacrylates, Kataliz v promyshlennosti, 2020, 20, 5, 374, 10.18412/1816-0387-2020-5-374-380

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Kechun Zhang, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved